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Abstract—In order to obtain good network performance in
Long Term Evolution-Advanced (LTE-A) heterogeneous net-
works (HetNets), enhanced inter-cell interference coordination
(eICIC) and further enhanced inter-cell interference coordination
(FeICIC) have been proposed by LTE standardization bodies
to address the entangled inter-cell interference and the user
association problems. We propose distributed algorithms based
on the exact potential game framework for both eICIC and
FeICIC optimizations. We demonstrate via simulations a 64%
gain on energy efficiency (EE) achieved by eICIC and another
17% gain on EE achieved by FeICIC. We also show that FeICIC
can bring other significant gains in terms of cell-edge throughput,
spectral efficiency (SE) and fairness among user throughputs.
Moreover, we propose a downlink scheduler based on a cake-
cutting algorithm that can further improve the performance of
the optimization algorithms compared to conventional schedulers.

Index Terms—LTE/LTE-A, heterogeneous networks, resource
allocation, distributed optimization, potential game.

I. INTRODUCTION

According to an estimate of the growth of mobile data

volume [1], more capacity must be added to the current cellular

networks. Cell densification, due to its ability of reusing spec-

trum geographically and its property of preserving signal-to-

interference-plus-noise ratio (SINR) [2], serves as a promising

candidate solution to meet the demand of mobile users [3].

Contrary to the traditional cell densification where more high-

power base stations (BSs) are added, it is more practical to

add low-power BSs due to the high cost of installing macro

BSs and the shortage of available sites suitable for macro BSs

[4], which gives rise of the development of heterogeneous

networks (HetNets).

The emergence of HetNets gives rise to two challenging net-

work management problems. First, because pico BSs transmit

Y. Liu is with the Wolfson School of Mechanical, Manufacturing and Elec-
trical Engineering, Loughborough University, Leicestershire, United Kingdom,
LE11 3TU (email: y.liu6@lboro.ac.uk).

C. S. Chen is with the Mathematics of Dynamic & Complex Net-
works department in Nokia Bell Labs, 91620 Nozay, France (e-mail:
chung shue.chen@nokia.com).

C. W. Sung is with the Department of Electronic Engineering, College of
Science and Engineering, City University of Hong Kong, Kowloon, Hong
Kong (e-mail: albert.sung@cityu.edu.hk).

C. Singh is with the Department of Electronic Systems Engineering, Indian
Institute of Science (e-mail:chandra@iisc.ac.in).

Part of the work was done when Y. Liu was with Nokia Bell Labs, Centre
de Villarceaux, 91620 Nozay, France.

This work has been partially supported by ANR project IDEFIX under grant
number ANR-13-INFR-0006, a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China, under Project CityU
121713, and by the Engineering and Physical Science Research Council of
the UK, EPSRC, under the grant EP/M015475.

at low power levels compared to macro BSs, mobile users

who are physically located near pico BSs may be attracted

to macro BSs, which can create underutilized pico BSs and

overcrowded macro BSs. Therefore, in order to fully utilize

the available resources in BSs with different transmission

power, careful treatment is needed when performing user

association. Second, the surrounding macro BSs of a pico BS

can generate large interference to a user associated to the pico

BS, and such inter-cell interference must be well-managed

in order to prevent pico BSs’ users from suffering very low

downlink throughputs. To solve these issues, enhanced inter-

cell interference coordination (eICIC) has been proposed in

Release-10 of the 3GPP LTE standards, where

1) Cell selection bias (CSB) is used to offset the received

signal power from BSs to a user so that a user is not

necessarily associated with the BS that provides the

strongest received power, and

2) Almost blank subframe (ABS) can be configured in

macro BSs so that the macro BSs cease data transmis-

sions in certain time slots, which reduces interference to

pico BSs.

The use of ABSs can help reduce the interference from

macro BSs to pico BSs. However, the restriction that macro

BSs must mute their data transmissions entirely in ABSs

may result in the inefficient use of the increasingly scarce

resources. In Release-11, further enhanced inter-cell interfer-

ence coordination (FeICIC) has been proposed, where instead

of offering ABSs, macro BSs allocate reduced power almost

blank subframes (RP-ABSs) to serve their users at reduced

power levels.

Clearly, the configurations of CSB values and ABS patterns

in eICIC optimization are coupled, because the amount of

ABSs depends on the load on pico BSs which depends on the

CSB values. To achieve the maximum possible performance

gain using eICIC, joint optimization in ABS patterns and CSB

values is required. Similarly, we must jointly consider RP-ABS

patterns and CSB values when doing FeICIC optimization.

While eICIC optimization algorithms have been studied in

[5]–[15], little attention is paid on the algorithm that performs

FeICIC optimization.

In this paper, we propose an exact potential game framework

that is suitable for performing both eICIC and FeICIC opti-

mizations. Specifically, we make the following contributions:

1) A distributed optimization framework: Based on the

exact potential game framework, we propose a scalable

distributed algorithm that can either jointly optimize
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ABS and CSB patterns or jointly optimize RP-ABS and

CSB patterns. The game theoretic framework can adapt

itself to various system optimization targets, such as

proportional fairness (PF) and sum rate maximization.

2) Performance evaluation: We evaluate the performance

gain due to FeICIC and eICIC optimizations. Simula-

tion results show that, compared to the case when no

optimization is performed, FeICIC can nearly double

the energy efficiency (EE) while eICIC provides about a

64% improvement on EE. Also, FeICIC provides higher

fairness in the throughputs of the users and better cell-

edge throughputs compared to eICIC.

3) A better downlink scheduler: We propose a downlink

scheduler based on a cake-cutting algorithm. Simulation

results show that the proposed scheduler can further

improve the EE and spectral efficiency (SE) by 10%

compared to conventional schedulers, can provide better

fairness in SE, and is about 20 times faster than con-

ventional convex algorithms in terms of simulation run

time.

A. Related work

A number of eICIC optimization algorithms have been pro-

posed in the literature. Tall et al.’s algorithm in [5] decouples

the ABS optimization and CSB optimization, where the ABS

patterns are simplified as fractional numbers. A centralized

algorithm is proposed by Deb et al. in [6], where ABS and

CSB patterns are jointly optimized and the surrounding macro

BSs of a pico BS must offer ABSs on the same subframes. In

[7], a distributed algorithm is proposed by Pang et al. where

the number of ABSs is determined without considering CSB.

Thakur et al. considered the problem of CSB optimization and

power control in [8]. Bedekar and Agrawal, in [9], simplify

the joint ABS and CSB optimization problem so that the

optimization of ABS ratios and user attachment are solved

separately. Simsek et al. propose a learning algorithm that

optimizes CSB patterns in frequency domain in [10] and

further extend the idea to optimizing CSB patterns in both

time and frequency domain in [11]. Liu et al., in [12],

propose to optimize the probability that a macro BS offers

almost blank resource blocks on both time and frequency

dimensions. Potential game based solutions for distributed

eICIC optimization are considered in [13]–[15].

The benefit of FeICIC against eICIC has been analyzed in

[16] using stochastic geometric approach, where the expres-

sions for SE and cell-edge throughputs have been derived as

a function of the power reduction factor on the RP-ABSs.

However, the power reduction factor on all RP-ABSs are

assumed to be the same in [16]. An optimization algorithm

that can dynamically adjust the transmission power on each

RP-ABS has not been considered to our best knowledge.

In this work, we address the FeICIC optimization problem

based on exact potential game models. We adapt the game

theoretic frameworks in [14], [15] such that power control

on each time-frequency slot, i.e., physical resource block

(PRB), are included during the optimization process. Also, we

rigorously discuss the necessary assumptions which are needed

for the validity of the exact potential game formulations

and evaluate the effect of such assumptions. Moreover, we

evaluate the performance of a downlink scheduler based on

a cake-cutting algorithm and compare it against conventional

schedulers.

B. Organization and notation

The rest of the paper is organized as follows. Section

II gives the system model of the LTE-A HetNets. Section

III formulates the eICIC and FeICIC optimization problems.

Section IV develops the exact potential game framework that

is suitable for eICIC and FeICIC optimizations. Section V

describes the strategy sets and the better response dynamics

of the games for eICIC and FeICIC optimization. Section

VI introduces the cake-cutting downlink scheduler and other

benchmark schedulers. Section VII presents the numerical

studies. Finally, Section VIII concludes the paper.

Unless otherwise specified, we use small letters such as a to

denote scalars, bold small letters such as a to denote vectors,

calligraphy letters such as A to denote sets. Also, |A| returns

the number of elements in set A and ∅ denotes the empty set.

A \ B gives the elements in set A that are not in set B.

II. SYSTEM MODEL

Consider a randomly generated HetNet as shown in Fig. 1

which consists of macro BSs and pico BSs, where the squares

represent macro BSs and the triangles represent pico BSs.

Denote M and P as the set of all macro BSs and the set

of all pico BSs, respectively. Also, denote Mc and Pc as

the macro BSs in the center cluster of the HetNet and pico

BSs in the center cluster of the HetNet, respectively, where

the center cluster is surrounded by bolded borders in Fig. 1.

Six clusters which are identical to the center clusters are

placed around the center cluster. We make such distinction

between the center cluster and other clusters because we only

care about the optimization of the BSs in the center cluster,

and the surrounding clusters are generated only to realize the

interference as encountered in practice. We assume that there

is only one macro BS located at the center of each hexagon,

and each hexagon has the same number of pico BSs, e.g., one

pico BS per hexagon in Fig. 1.

Let N (i, n) be BS i’s neighboring BSs that are located in

the n-th layer of hexagons w.r.t.1 the hexagon in which BS

i is located, where i ∈ M ∪ P . The 0-th layer of hexagons

w.r.t. the hexagon ξ is ξ itself, and the n-th layer of hexagons

w.r.t. ξ are the hexagons

1) that are adjacent to the (n− 1)-th layer of hexagons of

ξ, and

2) that are further away from ξ than the hexagons of the

(n− 1)-th layer.

For example, in Fig. 1, N (1, 0) gives {101},

N (101, 0) gives {1}, both N (1, 1) and N (101, 1) give

{2, 3, 4, 5, 6, 7, 102, 103, 104, 105, 106, 107}, and both

N (1, 2) and N (101, 2) give the set of BSs in the center

cluster except the BSs in {1, 101} ∪ N (1, 1). The definition

1w.r.t. stands for with respect to.
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Fig. 1: An example of a hexagonal HetNet layout. The squares

represent the macro BSs and the triangles represent the pico

BSs. Users are not displayed for the sake of clarity.

of N (i, n) can also be easily extended to the case where i

represents a set of BSs located in the same hexagon.

Let U be the set of all users in the system. Denote mu as

the macro BS that is located in the same hexagon as user u.

We assume that only the BSs in the same hexagon or in the

adjacent hexagons can serve a user. In other words, the set of

candidate BSs that can serve user u is given as:

Ou , {mu} ∪ N (mu, 0) ∪ N (mu, 1).

Define vector γOu
as the CSB values of all BSs in Ou and

let γOu
(i) gives the CSB value of BS i, where i ∈ Ou. The

set C contains all possible values that γOu
(i) can take. Let

PRx
i,u be the reference signal received power (RSRP) of user u

from BS i when the BS is transmitting at its full power. The

exact value of PRx
i,u depends on the distance between BS i and

user u and the loss due to shadow fading. The effect of fast

fading is assumed to be averaged out for PRx
i,u. The following

equation gives the BS that serves user u:

g(u,γOu
) , arg max

i∈Ou

(PRx
i,u + γOu

(i)). (1)

Let UB be the set of users who are associated with BSs in the

set B, i.e.,

UB , {u|g(u,γOu
) ∈ B}.

Clearly, UB is a function of the CSB values of the BSs in B
and their nearby BSs. Let γ denote the vector which specifies

all BS’s CSB values.

Suppose each BS has NT subframes in the time domain

and NF resource blocks (RBs) in the frequency domain. All

subframes have the same duration and all RBs are identical in

terms of bandwidth. A PRB is formed by a pair of subframe

and RB, and we denote NB := NT ·NF as the total number

of PRBs available at each BS. It is assumed that all subframes

and RBs of all BSs are synchronized.

Let the length NT vector αm specify the ABS pattern

of macro BS m, where all the entries in αm are binary.

Let A contain all possible ABS patterns that a macro BS

can adopt, where each element in A consists of a binary

vector of length NT . Also, let Â be a subset of {1, 2, ..., NT }
which contains the indices of subframes which can be an

ABS as indicated in any element in A. For example, suppose

A = {(0, 1, 1, 1), (0, 1, 0, 1), (0, 0, 0, 1)}, then Â = {1, 2, 3}
because subframes 1, 2, and 3 are possible ABSs.

Let τ(b) be the subframe index of PRB b. Moreover, let α̂m

be a vector of length NT × NF whose elements specify the

power allocation of macro BS m on each PRB, where α̂m(b)
is a real number between 0 and 1 for τ(b) ∈ Â and α̂m(b) is

fixed to be one for τ(b) ∈ {1, 2, ..., NT } \ Â. The vector α̂m

then defines the RP-ABS pattern of macro BS m. Note that

although it is not necessary to assume that a macro BS offers

RP-ABS only in the subframes specified by Â, the definition

of α̂m aims at offering a fair comparison between FeICIC

optimization and eICIC optimization.

In this paper, we assume that only the macro BSs would

offer ABSs/RP-ABSs while the pico BSs always transmit on

all subframes. Such an assumption is reasonable because

1) The macro BSs have much more transmission power

than the pico BSs. Consequently, the macro BSs are the

main source of interference in the network.

2) The complexity of the resulting eICIC/FeICIC optimiza-

tion is reduced compared to the case where all stations

offer ABSs/RP-ABSs.

Also, we assume that only the pico BSs may set their CSB

values to some positive numbers while the macro BSs fix their

CSB values to zeros. This is because, in general, it is the

coverage range of a pico BS which needs to be extended in

order to better utilize the resources from the pico BS.

Given the above definitions, the signal-to-noise-plus-

interference ratio (SINR) of user u on PRB b when associated

with macro BS m can be calculated as:

SINRm
u,b=





hm
u,bP

Rx
m,u·αm(τ(b))

P IF
Im,u,b+N0W

,BS m offers ABS, (2a)

hm
u,bP

Rx
m,u·α̂m(b)

P IF
Im,u,b+N0W

,BS m offers RP-ABS,(2b)

where hm
u,b gives the fast fading gain on PRB b from macro

BS m to user u, τ(b) returns the subframe index of PRB b, Im
denotes the set of BSs whose transmission will interfere the

users located in the same hexagon as macro BS m, P IF
Im,u,b is

the sum of interference at user u received from BSs in Im at

PRB b, N0 denotes the additive white Gaussian noise (AWGN)

spectral density and W is the bandwidth of a PRB. Similarly,

the SINR of user u on PRB b when associated with pico BS

p is given by:

SINR
p
u,b =

h
p
u,bP

Rx
p,u

P IF
Ip,u,b

+N0W
, (3)

where a pico BS does not offer ABS/RP-ABS as discussed

before. Let ru,b be the achieved rate of user u at PRB b,

where b ∈ [1, NB ]. It is assumed that the serving BS knows
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the achieved rate of user u at PRB b, and the achieved rate is

calculated by Shannon’s capacity formula, i.e.,

ru,b =

{
W · log2(1 + SINRm

u,b), g(u,γOu
) = m ∈ M,

W · log2(1 + SINR
p
u,b), g(u,γOu

) = p ∈ P.

Table I summarizes the notation used in this paper.

III. PROBLEM FORMULATION

Let xu,b be a binary variable indicating whether PRB b

is allocated to user u by its serving BS, where xu,b = 1
means that PRB b is allocated to user u and xu,b = 0 means

otherwise. To discriminate the importance of different users,

positive weighting factors are applied, where we denote wu as

the weighting factor for user u.

We formulate the eICIC optimization problem as follows

MAXPFUTILITY-I

maximize
∑

i∈M∪P

∑
u∈Ui

wu·ln
∑NB

b=1
(xu,b·ru,b), (4a)

subject to
∑

u∈Um

xu,b=αm(τ(b)),

∀m∈Mc, b∈[1, NB ], αm∈A, (4b)
∑

u∈Up

xu,b=1, ∀p∈Pc, b∈[1, NB ], (4c)

xu,b∈{0, 1}, ∀u∈U , b∈[1, NB ], (4d)

γ(i)∈C, ∀i∈Pc, (4e)

where (4b) specifies that a macro BS can adopt one of the ABS

patterns in A and only non-ABS PRBs can be assigned to the

users such that at most one user can occupy a PRB, (4c) states

that all PRBs from pico BSs can be allocated to the users and

at most one user can occupy a PRB, and (4e) means that a

pico BS can adopt one of the CSB values specified in C.

For the FeICIC optimization in which macro BSs may offer

RP-ABSs, we aim at solving the following problem

MAXPFUTILITY-II

maximize
∑

i∈M∪P

∑
u∈Ui

wu·ln
∑NB

b=1
(xu,b·ru,b), (5a)

subject to α̂m(b)∈[0, 1], τ(b)∈Â, ∀m∈Mc, (5b)

α̂m(b)=1, τ(b)∈{1, 2, ..., NT }\Â, ∀m∈Mc, (5c)
∑

u∈Ui

xu,b=1, ∀i∈Mc∪Pc, b∈[1, NB ], (5d)

(4d) and (4e),

where (5b) means that power allocation is optimized on PRBs

whose subframe indices are in Â and (5c) means that no power

optimization is performed on PRBs whose subframe indices

are not in Â. Because there is no restriction on a macro BS

that it must completely mute its transmission on a subframe

in FeICIC optimization, every PRB from a macro BS can be

allocated to at most one user as specified in (5d).

The objective functions of both (4) and (5) are defined as

the sum of logarithm of users’ throughputs. Such an objective

achieves the proportional fairness among the users’ achiev-

able rates, which strikes a good trade-off between aggregate

network throughput and user fairness [17]. Also, different

realizations of γ will affect the elements in {Ui|i∈Pc}, which

is how CSB optimization comes into the problems (4) and (5).

TABLE I: Summary of notation.

Notation Description

αm ABS pattern of macro BS m

α̂m RP-ABS pattern of macro BS m

γ Vector specifying CSB values of all BSs

γOu
Vector specifying CSB values of BSs in Ou

g(u,γOu
) The BS that user u is associated with

mi The macro BS located in the same hexagon as an object
with index i, where the object can be a user or a pico BS

ru,b Achieved rate of user u at PRB b

τ(b) The subframe index of PRB b

wu Weighting factor on the achieved rate of UE u

xu,b Indicator of whether user u occupies PRB b of the
serving cell

N0 Noise power spectral density

NB Number of PRBs

NF Number of RBs (in frequency domain)

NT Number of subframes (in time domain)

Vi The payoff function of player i

W Bandwidth per RB

A Set of vectors from which macro BSs can
choose their ABS patterns

Â Set containing indices of subframes which can be ABSs

C Set of CSB values from which a pico BS can choose from

Im Set of BSs whose transmissions interfere the users
located in the same hexagon as BS m

L The set of players in the potential game model

M Set of all macro BSs

Mc Set of macro BSs in the center cluster

N (i, n) The set of BS i’s neighboring BSs located in the
n-th layer of hexagons w.r.t. the hexagon that contains i

Ou Candidate BSs who can serve user u

P Set of all pico BSs

Pc Set of pico BSs in the center cluster

Si The strategy set of player i

U Set of all users in the system

Ui Set of users associated with BSs in set i or with BS i

We now show the NP-hardness of (4) and (5).

Theorem 1. Both (4) and (5) are NP-hard.

Proof: Consider the case where no ABS/RP-ABS is

applied in any macro BS and all pico BSs fix their CSB values

to zeros, and assume there is only one element in Mc ∪ Pc.

We then obtain a special case for both (4) and (5) where the

only problem left is to decide how to allocate the PRBs of a

single BS. We denote this special case as:

PRB-ALLOCATION

maximize
∑

u∈Ui

wu · ln
∑NB

b=1
(xu,b · ru,b), (6a)

subject to
∑

u∈Ui

xu,b = 1, b ∈ [1, NB ], (6b)

xu,b ∈ {0, 1}, ∀u ∈ Ui, b ∈ [1, NB ]. (6c)

It is shown in [18] that (6) is NP-hard. Therefore, both (4) and

(5) are NP-hard because a special case of the two problems is

NP-hard.

In the next section, we propose a potential game based

framework which can be applied to both (4) and (5) to solve

the problems distributedly and heuristically.

IV. EXACT POTENTIAL GAME FORMULATION

In this section, we frame the eICIC and FeICIC optimization

problems as exact potential games. Our approach is motivated
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by the successful application of potential games to another

scenario in [19] for BS power control and user association.

A. Preliminary

A finite game consists of a finite set of players, a finite

set of strategies of each player, and the payoff functions of

the players, where the payoff of a player is a function of the

strategies played by all the players. A strategy profile gives the

strategies adopted by all the players, and a Nash equilibrium

is a strategy profile s
∗ such that no player can improve its

payoff by playing a different strategy than the one specified

in s
∗ while other players keep their strategies same.

A game is called an exact potential game if there exists an

exact potential function such that change in the value of the

exact potential function due to a change of a player’s strategy

is the same as the change of the player’s payoff. In a finite

exact potential game, a Nash equilibrium can be achieved if

players take turns randomly and play their best responses or

better responses [20], where, given that all other players fix

their strategies,

1) A best response is a player strategy that maximizes the

player’s payoff function.

2) A better response is a player strategy that improves the

payoff function of the player.

As demonstrated later, that being able to formulate the eICIC

and FeICIC optimization problems as exact potential games

will allow us to solve them distributively using simple algo-

rithms based on best/better response dynamics.

In order to realize the process by which a macro BS adapts

its ABS/RP-ABS pattern when a pico BS in the same hexagon

optimizes its CSB value, it is convenient to define a player

as a union of a macro BS and the pico BSs within the same

hexagon. Let L be the set of players, where each element in L
consists of a set that contains the macro BS and the pico BSs in

a hexagon in the center cluster. We can then denote the game as

Γ , ⟨L, {Si : i ∈ L}, {Vi, : i ∈ L}⟩, where Si is the strategy

set of player i and Vi is the payoff function of player i. Note

that the game structure Γ can be applied to both eICIC and

FeICIC optimization problems because the two problems have

the same players and the same objective functions. The only

difference between the eICIC optimization and the FeICIC

optimization is the power allocation constraint on the PRBs,

and this difference can be captured by the definitions of the

respective strategy sets. The details of the strategy sets and

payoff functions will be discussed later.

When a player changes its strategy during the game for

eICIC optimization, users that are associated with the BSs

represented by the player and are associated with other nearby

BSs would be affected. A similar situation applies to the

game for FeICIC optimization. Consequently, to achieve a

good system performance for both (4) and (5), the payoff

function of a player should take users who are located in

nearby hexagons into account, even if these users are not being

served by the player. On the other hand, the transmission of

a BS can, in theory, interfere users located very far away.

To ensure accuracy, the payoff function of a player should

then consider all users in the system. However, such a payoff

function will introduce high complexity to the optimization

process and at the same time deviate from the intention of

designing a distributed algorithm. Some approximation on

the interference is necessary for a low complexity distributed

algorithm. It is therefore important to first identify the impact

of changing ABS/RP-ABS and CSB patterns before defining

a payoff function that leads to an exact potential game and

facilitates low-complexity distributed designs.

In the following, we first discuss which neighboring BSs

of player i can be affected by changes in player i’s CSB

values2. We then define the payoff function of players and

identify an exact potential function based on some interference

approximation. Details of the strategy sets, the algorithms that

converge to a Nash equilibrium, and the downlink schedulers

will be given in later sections.

B. Neighboring sets of a player

As mentioned in previous discussion, for scalability, we

make an approximation that the interference range of a BS

is limited only to some of its neighboring hexagons, because

the interference power from a BS to a user is negligible if the

user is located far away from the BS. We use N IF
i to specify

the set of BSs whose hexagons are interfered by player i. More

precisely, it means that a user is interfered by the transmission

of the BSs represented by player i if and only if he is located

in the hexagon of a BS that belongs to N IF
i .

Let NAtt
i contains the BSs whose user attachment patterns

depend on the CSB values of the pico BSs represented by

player i. Clearly, the actual serving BS of a user depends on

the CSB values of the pico BSs represented by player i, if a

BS represented by player i is a candidate serving BS of that

user. Moreover, because user u can be attached to any BS

in Ou, the actual serving BS of user u depends on the CSB

values of all BSs in Ou. Therefore,

NAtt
i =

∪
{∀u|{i}⊂Ou}

Ou. (7)

The next proposition shows which elements constitute NAtt
i .

Proposition 1. N Att
i = i ∪N (i, 1) ∪ N (i, 2).

Proof: See Appendix A.

Define the utility of player i as

Ui(s) ,
∑

u∈Ui

wu · ln
∑NB

b=1
(xu,b · ru,b), (8)

where s is the strategy vector that specifies the strategies

played by all players. Let Ni contain player i and player i’s

neighboring BSs whose downlink users’ SINRs and/or whose

user attachment patterns can be affected by changing the

ABS/RP-ABS patterns and CSB values of player i. The next

proposition shows the elements in Ni when N IF
i = i∪N (i, 1).

Proposition 2. Suppose i ∈ L and N IF
i = i∪N (i, 1). Keeping

s−i unchanged, changes in si may affect Uj only if j ∈ N Att
i .

In other words, Ni = N Att
i .

Proof: See Appendix B.

2More accurately, by changes of the CSB values of the pico BSs represented
by player i.
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The approximation on the interference range, i.e., the def-

inition of N IF
i , is crucial to the constitution of Ni. This is

demonstrated in the next proposition.

Proposition 3. Suppose i ⊂ L and N IF
i = i ∪ N (i, 1) ∪ {j},

where j ∈ N (i, 2), then N Att
i ⊂ Ni.

Proof: See Appendix C.

C. Exact potential game formulation

The key to the exact potential game formulation lies in

the appropriate definition of the payoff function. We first

define some notations regarding the strategies of players before

defining the payoff function. Then, we show there exists an

exact potential function with respect to our payoff function.

Let si be the strategy that player i adopts, where si ∈ Si.

Define

s−i , (s1, ..., si−1, si+1, ..., s|Mc|)

to be the strategies of all players other than player i. Denote

(s̃i, s−i) , (s1, ..., si−1, s̃i, si+1, ..., s|Mc|)

as the strategies of all players, where player i selects strategy

s̃i and other players’ strategies are specified as s−i. The payoff

function of player i is defined as

Vi(s) ,
∑

j⊂NAtt
i

Uj(s), (9)

and the aggregate utility of all the players is given as

U(s) =
∑

i∈L
Ui(s). (10)

In the following theorem, we show that when N IF
i = i ∪

N (i, 1), U(s) is an exact potential function.

Theorem 2. If N IF
i = i ∪ N (i, 1), then U(·) is an exact

potential function of the game Γ, such that Γ is an exact

potential game.

Proof: Suppose player i changes its strategy, so that the

strategies played by all players changes from s to (s̃i, s−i).
The change in U(·) due to this unilateral change of player i’s

strategy is:

U(s̃i, s−i)−U(s)

=
∑

j⊂L
(Uj(s̃i, s−i)−Uj(s))

=
∑

j⊂NAtt
i

(Uj(s̃i, s−i)−Uj(s))+
∑

j⊂L\NAtt
i

(Uj(s̃i, s−i)−Uj(s))

=
∑

j⊂Ni

(Uj(s̃i, s−i)−Uj(s))+
∑

j⊂L\Ni

(Uj(s̃i, s−i)−Uj(s))

(11a)

=
∑

j⊂Ni

(Uj(s̃i, s−i)−Uj(s)) (11b)

=
∑

j⊂NAtt
i

(Uj(s̃i, s−i)−Uj(s)) (11c)

=Vi((s̃i, s−i))−Vi(s), (11d)

where (11a) and (11c) follow from Proposition 2, (11b)

follows from the definition of Ni, and (11d) follows from the

definition of the payoff function. Equation (11d) indicates that

the change of U(·) due to the change of a player’s strategy

is exactly the same the change of the payoff function of that

player. This proves that U(·) is an exact potential function

of the game Γ. Consequently, Γ is an exact potential game

because it admits an exact potential function.

Note that the above potential game framework can also

be used to optimize utility functions other than proportional

fairness. For example, in case the objective function in (4)

and (5) is the sum of all users’ rates, then the same potential

game framework can still be used except that now the utility

function of player i should be
∑

u∈Ui
wu ·∑NB

b=1(xu,b · ru,b).

V. STRATEGY SETS AND OPTIMIZATION ALGORITHMS

In this section, we define the strategy sets of the players for

the eICIC and FeICIC optimizations based on exact potential

game formulations. We also provide the algorithms that solve

the exact potential games for eICIC and FeICIC optimizations.

A. The strategy sets and the algorithm for eICIC

By definition, ru,b is a function of the ABS patterns of

the macro BSs in N IF
i and the CSB values of the pico BSs

in NAtt
i , where i ⊂ L. Moreover, xu,b is a function of the

downlink scheduler of the serving BS of user u. Therefore,

the strategy of a player should specify the ABS pattern of

the macro BS represented by player i, the CSB values of the

pico BSs represented by player i, and the way of performing

downlink scheduling.

Suppose user u is attached to BS j in the hexagon of player

i when player i plays si, and the same user is attached to BS

k when player i plays s′i, where BS k is not necessarily in the

hexagon of player i. At this point, user u must be rescheduled

to some PRBs offered by BS k, otherwise Vj(s
′
i, s−i) becomes

minus infinity. Such an outcome will prevent a player from

changing its CSB values, which does not fulfill our objective

of CSB optimization. Also, the PRBs that are assigned to user

u when player i plays si becomes unused when player i plays

s′i. These unused PRBs can be assigned to other users in order

to improve the payoff function of player i. Therefore, it is

necessary for a strategy of player i to provide not only the

scheduling of the BSs in player i but also the scheduling of

BSs in NAtt
i , so that a strategy that changes user attachment

patterns can have the chance of being a best/better response.

Let ΓeICIC
ϕ , ⟨L, {SeICIC

i : i ∈ L}, {Vi, : i ∈ L}⟩ be the

exact potential game for eICIC optimization using scheduler

ϕ, where SeICIC
i denotes the set of strategies of player i when

eICIC optimization is performed. We have

SeICIC
i = A× C × C × · · · × C︸ ︷︷ ︸

|i|−1 times

×ϕ(NAtt
i ), (12)

where |i| is the number of BSs in the hexagon of player i,

|i| − 1 is the number of pico BSs in in the hexagon of player

i, and ϕ(NAtt
i ) gives the scheduling decision of the BSs in

NAtt
i using scheduler ϕ.

The best response dynamics solves an exact potential game

by iteratively finding the strategies that maximize the payoff

functions of the players selected in each iteration. From the

definition in (12), we can see that the size of the strategy
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set for eICIC optimization scales up quickly as the number

of pico BSs in a hexagon increases. In order to reduce the

complexity in each iteration of the best response dynamics, we

use better response dynamics where only one pico BS’s CSB

value will be optimized in each iteration. Although, in general,

better response dynamics cannot improve the payoff function

of a player as much as best response dynamics does, better

response dynamics also reaches a Nash equilibrium [20]. We

therefore propose the following eICIC optimization algorithm

based on exact potential game formulation:

I-1. Randomly select a player i from L.

I-2. Randomly select a pico BS p in the set of BSs repre-

sented by player i.

I-3. Denote the macro BS in the hexagon of player i as m.

For all possible elements in A× C, perform scheduling

for all BSs in NAtt
i using scheduler ϕ and evaluate Vi.

Select the element in A× C that maximizes Vi.

I-4. Repeat the above steps until some stopping criterion is

met.

The objective function in (4) will be improved when the above

better response dynamic is carried out, because the aggregate

utility of ΓeICIC improves as a result of improved payoff

function of each selected player during the better response

dynamic. Therefore, the steps from I-1 to I-4 optimize (4)

heuristically.

B. The strategy sets and the algorithm for FeICIC

Similar to the eICIC optimization, the strategy of a player

should contain the RP-ABS pattern of the macro BS in the

selected player, the CSB pattern of a randomly selected pico

BS in the hexagon of the selected player, and the scheduling

decision of the BSs in NAtt
i . On the other hand, because

in FeICIC optimization, the transmission power level in a

RP-ABS can take a fractional value, it is impossible to

exhaustively search all possible transmission power levels for

each RP-ABS.

Let τ(b) ∈ Â, and assume that macro BS m belongs to

player i which is chosen to perform FeICIC optimization. Let

u be the index of the user who occupies PRB b from macro

BS m, and let U IF
m,b be the set of users who are interfered by

the transmission of macro BS m and who are using the b-th

PRBs offered by their respective serving BSs. Fixing macro

BS m’s transmission power on PRBs other than b, we optimize

macro BS m’s transmission power on PRB b by solving the

following problem

POWERALLOCATION

maximize
α̂m(b)

wu ln
(
log2(1+SINRm

u,b)+r
−b
u

)

+
∑

v∈U IF
m,b

[
wv ln

(
log2(1+SINR

j
v,b)+r

−b
v

)]
, (13a)

subject to 0≤α̂m(b)≤1, (13b)

where r−b
u gives user u’s rate obtained from PRBs other than

b in case user u has been allocated to more than one PRB and

SINR
j
v,b =

h
j
v,b · PRx

j,v,b

α̂m(b) · PRx
m,v + P IF

Ip\{m},v,b +N0 ·W
, (14)

where PRx
j,v,b is the received signal power of user v at PRB b

from its serving BS j and PRx
m,v gives the interference power

from macro BS m to user v when macro BS m is transmitting

at its maximum power. Note that the index j in (14) is an

element from Ni, where i is the index of the chosen player.

Also, without loss of generality, we assume that PRx
j,v,b > 0,

since we can remove user v from U IF
m,b if PRx

j,v,b = 0.

The objective function of (13) is chosen to be in line with

the objective function of (5) so that when (13) is optimized the

objective function of (5) will also increase. Also, all variables

in (13) are known except α̂m(b). The next theorem shows the

nature of the objective function of (13).

Theorem 3. Equation (13a) is the difference between

two convex functions, where the two convex functions

are
∑

v∈U IF
m,b

[
wv ln

(
log2(1 + SINR

j
v,b) + r−b

v

)]
and

−wu ln
(
log2(1 + SINRm

u,b) + r−b
u

)
.

Proof: See Appendix D.

Because of Theorem 3, (13) can be solved by the convex-

concave procedure (CCP) which converges to a stationary

point [21]. Let φ1(α̂m(b)) , wu ln
(
log2(1+SINRi

u,b)+r−b
u

)

and φ2(α̂m(b)) ,
∑

v∈U IF
m,b

[
wv ln

(
log2(1 + SINR

j
v,b) +

r−b
v

)]
. Also, denote α̂

ζ
m(b) as the value of α̂m(b) in the ζ-

th iteration in the CCP. The CCP algorithm is described in

Algorithm 1, where φ′
2(α̂m(b)) is the first derivative of φ2

w.r.t. α̂m(b) and it is given in (15) at the top of the next page.

Note that step 4 in Algorithm 1 involves solving a convex

problem which can be easily solved by standard software tools.

Algorithm 1 Convex-concave procedure (CCP)

1: ζ := 0, give α̂
ζ
m(b) an initial value from the interval [0, 1].

2: repeat

3: Define φ̂2

(
α̂m(b), α̂ζ

m(b)
)

, φ2

(
α̂

ζ
m(b)

)
+

φ′
2

(
α̂

ζ
m(b)

)(
α̂m(b)− α̂

ζ
m(b)

)
.

4: Set the value of α̂
ζ
m(b) to be the solution of the

following problem

minimize
α̂m(b)

− φ1(α̂m(b))− φ̂2

(
α̂m(b), α̂ζ

m(b)
)
,

subject to 0 ≤ α̂m(b) ≤ 1.

5: ζ := ζ + 1.

6: until some stopping criterion is met.

We are now ready to describe the FeICIC optimization

algorithm based on the exact potential game formulation:

II-1. Randomly select a player i from L. Denote the macro

BS in player i as m.

II-2. Randomly select a pico BS p from the set of BSs

represented by player i.

II-3. For each possible CSB values of pico BS p,

a) Perform scheduling for all stations in NAtt
i using

scheduler ϕ, assuming that it transmits at full

power on all PRBs.

b) For each element in {b|τ(b) ∈ Â}, perform power

optimization on macro BS m’s transmission power

by solving (13).
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φ′
2(α̂m(b)) = −

∑
v∈U IF

m,b

ρ1,vρ2,vwv

(ρ2,vα̂m(b) + ρ3,v)(ρ2,vα̂m(b) + ρ3,v + ρ1,v)
(
ln(1 +

ρ1,v

ρ2,vα̂m(b)+ρ3,v
) + ln(2)r−b

v

) , (15)

where ρ1,v , h
j
u,bP

Rx
j,u,b, ρ2,v , PRx

m,u, and ρ3,v , P IF
Ip\{m},u,b +N0W .

c) Perform scheduling for all stations in NAtt
i using

the scheduler ϕ and evaluate Vi.

II-4. Select the strategy of player i that maximizes Vi.

II-5. Repeat the above steps until some stopping criterion is

met.

The steps from II-1 to II-5 optimize (5) heuristically, because

the aggregate utility of ΓFeICIC improves as the game is being

played.

C. Implementation in practice

In LTE-A systems, a user’s association is determined by the

received signal strength and the offset value (i.e., CSB value

in our context) from each of the candidate BSs. The offset

values are stored in the system information blocks (SIBs)

which are defined and broadcast to the users by the evolved

universal terrestrial radio access network (E-UTRAN), i.e., by

the BSs [22, Chapters 2 and 3]. A user continuously measures

the channel conditions of its nearby BSs and reports these

measurements to its serving BS. When a BS offers ABSs,

a user served by the BS may find if a nearby pico BS has a

better channel condition than its serving BS. Such information

can be utilized by the serving BS to decide whether the CSB

values should be updated so that a handover can be performed.

After accessing the interference situation of its users, a BS

may request a neighboring BS for ABSs using an “Invoke

Indication” message via the X2 interface. The BS that receives

such a request may then configure its ABS pattern and

inform its neighboring BSs such that the latter may perform

scheduling based on the new ABS pattern [22, Chapters 31].

Also, BSs can adjust and coordinate the ABS patterns based

on the “ABS Status” messages exchanged among them.

We can see that the LTE-A standards have prescribed

signaling that allows FeICIC/eICIC optimizations to be carried

out in a distributed manner. Via the signaling from neighboring

BSs and the measurement reports from the users, a BS is able

to know the interference situations of its users and the users

served by nearby BSs. A BS can then decide how to adjust

ABS/RP-ABS and CSB patterns for performance optimization.

The realization of the distributed optimizations is a design

issue which is not standardized. Our proposed game theoretic

framework provides distributed algorithms for eICIC/FeICIC

optimizations and can be supported by the existing LTE-A

standards. More specifically, the better response dynamics for

eICIC/FeICIC optimizations are in the spirit of distributed

optimization, since each player uses only local information

to drive the overall system to optimality. In particular, each

player is able to evaluate the impact of his strategy on his

neighboring player’s utilities. All this is possible thanks to

the availability of the aforementioned signaling over the X2

interface.

VI. DOWNLINK SCHEDULERS

We now present the downlink schedulers that can be the

potential candidates for ϕ.

A. Round-Robin (RR) Scheduler

When using the RR scheduler, the available PRBs of a BS

are allocated to the associated users in turns. For example,

suppose a BS has five available PRBs labeled as PRB1, PRB2,

..., and PRB5, and two users are associated with the BS, then

user 1 will get PRB1, PRB3, and PRB5, and user 2 will get

PRB2 and PRB4. Note that a macro BS’s PRBs that are ABSs

will not be allocated to any user.

B. PF Scheduler

The b-th PRB of a BS will be allocated to the following

user [22]:

ûb , argmax
u∈Ui

ru,b

ru(τ(b))
, (16)

where τ(b) gives the subframe index of the b-th PRB and the

underlying assumption is that subframe τ(b) is not an ABS,

b ∈ [1, NB ], and ru(t) is the long-term average throughput of

user u in subframe τ(b) which is calculated as:

ru(τ(b)) = (1− 1
tc
)ru(τ(b)− 1)

+ 1
tc

∑
{b̃|τ (̃b)=τ(b)} ru,̃b · 1{ûb = u}. (17)

In (17), tc is the time window which is a design parameter

and 1{·} is the indicator function. The performance of this

scheduler has been evaluated in several scenarios; see [23].

C. Convex Scheduler

Given a strategy of player i, we wish to maximize the utility

function of the players in Ni as defined in (8) subject to the

constraints (4b), (4c) and (4d). This problem is the same as

(6) and it is, unfortunately, NP-hard as stated in Theorem 1.

On the other hand, we can relax the binary constraint in (6)

to reduce the complexity of solving the problem. For example,

considering pico BS p, we can relax the integer constraint in

(4d) and formulate the following problem

PRB-ALLOCATION-RELAXED

maximize
∑

u∈Up

wu · ln
∑NB

b=1
(x̃u,b · ru,b), (18a)

subject to 0 ≤ x̃u,b ≤ 1, ∀u ∈ Up, b ∈ [1, NB ], (18b)
∑

u∈Up

x̃u,b = 1, b ∈ [1, NB ]. (18c)

In (18), x̃u,b represents the fraction of PRB b allocated to user

u. We make the following observations:

(a) The objective function of (18) is concave. To see this,

notice that ln
∑NB

b=1(x̃u,b · ru,b) is a concave function
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of a linear combination of {x̃u,b|b ∈ [1, NB ]}. There-

fore, the objective function of RELAXEDALLOCATION

is also concave because it is a nonnegative summation

of concave functions [24].

(b) The constraints of (18) are linear.

As a result, (18) is a concave optimization problem, and it can

be solved by using standard convex optimization solvers. Let

the matrix X
Relaxed be the solution to (18), where its (u, b)-

th entry, XRelaxed
u,b , gives the fraction of the b-th PRB that is

allocated to user u. To get an allocation pattern that satisfies

the constraints of MAXPFUTILITY, we need to quantize

X
Relaxed. Also, we need to make sure that every user gets at

least one PRB after quantization, because the utility function

in (8) evaluates to minus infinity if no PRB is allocated to a

user, which contradicts with the goal of maximizing the utility

function. The quantization can be done in the following steps:

1) For each column of X
Relaxed, set the largest element in

the column to one and other elements to zeros. Denote

the resultant matrix as X
Quan..

2) If there exists a zero row in X
Quan.:

a) Denote all columns of XQuan. as free columns.

b) Randomly select a zero row in X
Quan., e.g., row u.

c) Let Xu,b be the largest element in row u of XRelaxed

where column b is still a free column in X
Quan.. Set

X
Quan.
u,b to one and every other element in column

b of XQuan. to zeros.

d) Remove column b from the free column list. Repeat

steps b) and c) if there still exists a zero row in

X
Quan..

The above quantization ensures that the PRB allocation con-

straints in (4) and (4) are satisfied, and at the same time each

user gets at least one PRB.

The scheduler for a macro BS is similar and therefore its

details are omitted for brevity. The only difference is that PRBs

that are configured as ABSs are not allocated to any user.

D. Cake-Cutting Scheduler

We now present a method that solves (18). We use the fact

that the solution to (18) leads to a price equilibrium to the

following PRICEEQUILIBRIUM problem [25, Chapter 8.5]:

PRICEEQUILIBRIUM. Let ru,b be nonnegative real numbers,

where u ∈ Ui, b ∈ [1, NB ]. The real vector (ν1, ν2, ..., νNB
)

is called an equilibrium price vector and the nonnegative real

vectors {(x̃u,1, x̃u,2, ..., x̃u,NB
)|u ∈ Ui} are called equilibrium

bundles, if

∑
b νb =

∑
u wu, (19a)

{x̃u,b|∀b} maximize
∑

b(x̃u,b · ru,b), ∀u, (19b)

subject to
∑

b νb · x̃u,b ≤ wu, ∀u, (19c)∑
u x̃u,b = 1, ∀b. (19d)

The intuition for PRICEEQUILIBRIUM is as follows. There

are NB goods in the market each with price νb, where b ∈
[1, NB ]. User u has budget wu and he is allowed to buy a

nonnegative portion of any good. ru,b gives the utility of the

b-th good to user u. A price equilibrium is the set of prices of

the goods so that all users spend all their budgets, all goods

are sold out, and under these conditions all users maximize

their own utilities.

Let {x∗
u,b|∀u, b} be the solution to (18). It is proved in

[18] that a price equilibrium of PRICEEQUILIBRIUM gives

an optimal solution to (18).

Theorem 4. A solution of PRICEEQUILIBRIUM gives an

optimal solution to (18).

Proof: See [18].

The PRICEEQUILIBRIUM problem can be solved by the

algorithm proposed in [26]. The algorithm works by iteratively

adjusting the prices of the goods and assumes that a user only

buys the goods that have the largest utilities to him. Each

iteration of the algorithm involves solving a max flow problem

in a single-source single-sink directed graph where the edges

are weighted, and therefore an iteration takes polynomial time.

The algorithm terminates within finite iterations, though [26]

does not provide an upper bound on the number of iterations.

In the simulation section, we will compare the run time of the

cake-cutting PF scheduler to that of the convex PF scheduler.

VII. SIMULATION RESULTS

We perform simulation studies on FeICIC and eICIC op-

timizations by randomly generating 100 HetNet topologies

and then averaging the performance indicators from all the

topologies. In the center cluster of each topology, a number

of pico BSs and 20 users are placed inside each hexagon in

the center cluster, where the pico BSs are randomly placed.

Moreover, in each hexagon in the center cluster, 10 users

are randomly placed within 100 meters of the pico BSs in

the same hexagon3. The distances between different BSs and

the distances between BSs and users are constrained by the

minimum distance requirements as specified in Table II. The

six surrounding clusters of the center cluster are exact copies

of the center cluster. Other parameters regarding the generation

of a random HetNet are also shown in Table II. We assume that

the users are static. Also, each PRB experiences independent

Rayleigh fading with variance 1. The shadow fading in dB

from a BS to a user is calculated by adding a common

shadowing value and a random shadowing value and then

dividing the sum by
√
2, where both shadowing values are

generated according to log-normal distribution [27]4.

The parameters of the problems (4) and (5) for simulations

are configured as follows. The weighting factors of all users

are set to be 1, i.e., wu = 1 for all u. NT is set to be 10 and NF

is set to be 3. Fig. 2 shows all the possible ABS patterns. Also,

the CSB values that a pico BS can adopt are given in Table II.

For conciseness, in the rest of the figures, we use “Nil” to

represent the case where neither eICIC nor FeICIC is carried

out, “Exact” to represent the case where N IF
i = i∪N (i, 1), and

“Non-exact” to represent N IF
i = i∪N (i, 1)∪N (i, 2)∪N (i, 3).

Moreover, we use the terms cell and hexagon interchangeably.

3If there exists more than one pico BS, then the 10 users are equally divided
into a number of groups which is the same as the number of pico BSs, and
one and only one group of users are randomly placed near a pico BS.

4This is to create correlations among shadow fading.
5Min. dist. stands for minimum distance.
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Fig. 2: ABS patterns that can be chosen by a macro BS.

TABLE II: Parameters for generating HetNet topologies [27].

Parameter Value

Inter-macro-BS distance 1000 m

Min. dist.5 from macro BS to user 35 m

Min. dist. from pico BS to user 10 m

Min. dist. from macro BS to pico BS 75 m

Antenna per site Omnidirectional × 1

Macro BS power 40 W

Pico BS Power 1 W

Noise density -174 dBm/Hz

Noise figure 9 dB

Duration per subframe 1 ms

Bandwidth per RB 180 kHz

CSB values C := {0, 3, 6, 9, 12, 15} dB

Log-normal shadowing 10 dB
standard deviation

Path loss from macro BS to user 128.1 + 37.6 log10 d, d in km

Path loss from pico BS to user 140.7 + 36.7 log10 d, d in km

Fig. 3 shows the EE of different optimization schemes in

the center cluster, where the EE is calculated as the number of

transmitted bits divided by the transmission energy. We can see

that eICIC optimization largely improves the EE and FeICIC

optimization further enhances the EE. Specifically, when the

PF scheduler is used and there are three pico BSs in each

hexagon, eICIC can offer about 64% improvement compared

to the no-optimization case and FeICIC can offer about 92%

compared to the no-optimization case. Moreover, compared to

the no-optimization case, eICIC and FeICIC can offer more

gain on EE when there are more pico BSs in each hexagon.

Fig. 3: EE of the center cluster for various topology settings.

Fig. 4: SE of the center cluster for various topology settings.

Fig. 5: Jain’s fairness indices of the users’ achieved rates in

the center cluster for various topology settings.

Fig. 4 shows the SE of different optimization schemes in the

center cluster, where the SE is defined as the average trans-

mitted bits per second per Hz of all allocated PRB. Although

the SE after FeICIC optimization using PF scheduler may be

slightly (around 1% in general) less than the SE after eICIC

optimization, FeICIC optimization should still be treated as

a better scheme than eICIC optimization because compared

to eICIC optimization, FeICIC optimization offers significant

gain on EE, offers better fairness when PF scheduler is used

as shown in Fig. 5, and offers better worst 5% user’s achieved

rates as shown in Fig. 6.

Fig. 6 plots the cumulative distribution function (CDF) of

the users’ achieved rates which are in the worst 5% range

of all users’ achieved rates6, where the PF scheduler is used

and each hexagon has one pico BS. We can see that eICIC

optimization can improve the median value of the worst 5%

users’ achieved rates by about 30%, and FeICIC can further

6This is also commonly referred to as the cell-edge throughput.
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Fig. 6: The cumulative distribution function (CDF) of the worst

5% users’ achieved rates in the center cluster, where the PF

scheduler is used and each hexagon has one pico BS.

Fig. 7: Aggregate utilities of the games ΓFeICIC and ΓeICIC,

where there are 3 pico BSs in each hexagon.

improve the median value by about 15%.

Fig. 7 plots the averaged global utilities of the games ΓFeICIC

and ΓeICIC when both RR and PF schedulers are used, where

three pico BSs are placed in each hexagon. We can see that the

better response dynamics proposed in Sections V-A and V-B

can optimize the problems (4) and (5) heuristically because

the global utilities increase as the games are being played.

The results in Fig. 3 to Fig. 7 are obtained when player i

only interferes near-by users, i.e., N IF
i = i∪N (i, 1). In reality,

however, the interference from a BS can reach farther. Suppose

we count the interference from BSs in
∪4

n=0 N (mu, n) to

user u as all the interference user u suffers from, where no

ABS/RP-ABS or CSB is applied. Table III summarizes the

averaged interference power to a user from the neighboring

cells. The definition of N IF
i = i∪N (i, 1) takes 95.38% of the

total interference into account.

To see the impact of interference approximation, we com-

pare the performance of the game theoretic optimization

schemes when N IF
i = i ∪ N (i, 1) and N IF

i = i ∪ N (i, 1) ∪

TABLE III: Average interference to user u from neighboring

BSs.

N (mu, 0) N (mu, 2) N (mu, 3) N (mu, 4)
∪N (mu, 1)

Interference -106.59 -122.42 -124.70 -128.17
Power (dB)

Percentage 95.38% 2.49% 1.47% 0.66%

Fig. 8: EE when there are two pico BSs in each hexagon.

N (i, 2)∪N (i, 3), where i is a player in the games ΓFeICIC and

ΓeICIC. Note that when N IF
i = i∪N (i, 1)∪N (i, 2)∪N (i, 3),

the games ΓFeICIC and ΓeICIC will no longer be exact potential

games because (11c) is no longer true. For the scenario where

there are two pico BSs in each hexagon, we plot the EE, the

SE, and the Jain’s fairness indices after FeICIC optimization in

Fig. 8, Fig. 9, and Fig. 10, respectively, where in those figures,

“Exact” represent the case when N IF
i = i∪N (i, 1) and “Non-

exact” represent the case when N IF
i = i∪N (i, 1)∪N (i, 2)∪

N (i, 3). We can see that although the performances of the

optimization schemes are over-estimated by the assumption of

N IF
i = i∪N (i, 1), the performance gains achieved by FeICIC

compared to the no-optimization case is accurately predicted.

The performance of the cake-cutting scheduler is compared

with RR scheduler and PF scheduler in Fig. 8, Fig. 9, and Fig.

10. We can observe that the cake-cutting scheduler can lead to

better performance on EE, SE, and fairness compared to the

other schedulers. Specifically, when FeICIC is performed, the

cake-cutting scheduler has approximately an 11% gain on EE

and approximately a 10% gain on SE.

Table IV shows the average MATLAB simulation run time

for each macro BS to perform downlink scheduling using

different schedulers, where it is assumed that no pico BS

is present and each macro BS serves exactly 10 users. The

MATLAB version is R2013a, and the simulation is performed

on a laptop equipped with an Intel i5-4200U CPU using

single thread. For the convex scheduler, we compare all the

four available convex solvers in MATLAB’s built-in function

“fmincon”, and we record the run time of the fastest solver. We

observe that the scheduling decisions resulted from the convex

scheduler are almost the same as those from the cake-cutting
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Fig. 9: SE when there are two pico BSs in each hexagon.

Fig. 10: Jain’s fairness indices of users’ achieved rates when

there are two pico BSs in each hexagon.

scheduler, but the averaged run time of the convex scheduler is

about 20 times as long as that of the cake-cutting scheduler.

Although the PF scheduler and the RR scheduler run faster

than the cake-cutting PF scheduler, the cake-cutting scheduler

gives better performance in terms of EE, SE, and fairness in

users’ achieved rates.

VIII. CONCLUSION

In this paper, we have proposed distributed algorithms based

on the exact potential game framework to optimize FeICIC and

eICIC in LTE-A HetNets. Through simulation studies, we have

TABLE IV: Comparison on downlink schedulers’ run time.

Scheduler Average Run Time per BS

Convex 7.5275 seconds

Cake-cutting 0.3860 seconds

PF tc = 5 0.0045 seconds

RR 0.0018 seconds

demonstrated that eICIC optimization can improve the EE of

the network by 64% while FeICIC optimization can improve

the EE by about 92%. In addition, FeICIC can offer better

fairness in users’ throughputs and can also yield significant

cell-edge throughput gains compared to eICIC. Furthermore,

we have shown that a cake-cutting algorithm can be used as a

downlink scheduler to offer better EE, SE, and fairness among

users compared to conventional PF schedulers while being

much more computationally efficient than the conventional

convex-solvers.
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APPENDIX A

PROOF OF PROPOSITION 1

Given a user u:

1) Suppose mu = j, where j ∈ i, then user u can be

associated with any BSs in Ou = i ∪ N (i, 0) ∪ N (i, 1)
for any CSB values that the pico BSs represented by

player i takes.

2) Suppose mu ∈ N (i, 1) and g(u,γOu
) = j, where j ∈ i.

If we change γOu
(j), then:

a) Depending on the CSB value of BS i, user u can be

associated with a BS in N (i, 2) because N (i, 2)∩
Ou ̸= ∅ and i ⊂ Ou.

b) User u cannot be associated with any BS in

N (i, x), where x ≥ 3. The reason is that N (i, x)∩
Ou = ∅, for x ≥ 3.

3) Suppose mu ∈ N (i, x), where x ≥ 2. In this case, the

change of CSB values of player i will not affect the

association of user u because player i is not in Ou.

Summarizing the above three scenarios, we can conclude that

NAtt
i = i ∪N (i, 0) ∪N (i, 1) ∪ N (i, 2).

APPENDIX B

PROOF OF PROPOSITION 2

Suppose player i changes its strategy from si to s′i. We can

easily see that if the difference between si and s′i includes

the scheduling decision, then the scheduling change will only

affect Ui. Therefore, we can decouple the effect of scheduling

change and the following three cases are sufficient to deter-

mine which players’ utility functions will be affected:

C-1. If si and s′i differs by the ABS/RP-ABS pattern only,

then users who are located in the same hexagons as BSs

in N IF
i will have their achieved rates changed, while

these users can be attached to BSs in i ∪ N (i, 1) ∪
N (i, 2) = NAtt

i . Therefore, utilities of players in NAtt
i

may be changed in this case.
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f ′′
2,v(α̂m(b)) =

ρ1,vρ
2
2,vwv

{
ρ1,v

[(
2ρ2,vα̂m(b)+2ρ3,v

ρ1,v
+ 1

)
ln(1 +

ρ1,v

ρ2,vα̂m(b)+ρ3,v
)− 1

]
+ µv

}

(ρ2,vα̂m(b) + ρ3,v)
2
(ρ2,vα̂m(b) + ρ3,v + ρ1,v)

2 [
ln(1 +

ρ1,v

ρ2,vα̂m(b)+ρ3,v
) + ln(2)r−b

v

]2 (20)

C-2. If si and s′i differs by the CSB patterns only, and

consequently user u’s serving BS is changed from n

to j, then the utilities of the players where BS n and

BS j belong to will be changed and mu ∈ i ∪ N (i, 1).
Moreover:

a) If mu ∈ i, then n ∈ Ou ⊂ NAtt
i and j ∈ i ∪

N (i, 1) ⊂ NAtt
i .

b) If mu ∈ N (i, 1), then {n, j} ∈ Ou ⊂ i∪N (i, 1)∪
N (i, 2). In other words, {n, j} ∈ NAtt

i .

C-3. Suppose si and s′i differs by both the ABS/RP-ABS and

the CSB patterns, and consequently user u’s serving BS

is changed from n to j. From the analysis of C-1, we

know that users who are interfered by player i can only

be attached to BSs in NAtt
i . From the analysis of C-2,

we know that a user may only change its serving BS

from a BS in NAtt
i to another BS in NAtt

i . Therefore,

the changes of ABS and CSB patterns will only affect

the utilities of players in NAtt
i .

Summarizing the above arguments, we can conclude that only

Uj can be changed if si is changed to s′i, where j ⊂ NAtt
i .

The statement that Ni = NAtt
i given that N IF

i = i∪N (i, 1)
is readily true by the definition of Ni.

APPENDIX C

PROOF OF PROPOSITION 3

Suppose user u is located in the same hexagon as BS j.

Then it is possible that user u is attached to a BS in N (i, 3)
because Ou ∩N (i, 3) ̸= ∅. This means that N (i, 3)∩Ni ̸= ∅.

Because NAtt
i ∩N (i, 3) = ∅ and by definition NAtt

i ⊆ Ni, we

conclude that NAtt
i ⊂ Ni.

APPENDIX D

PROOF OF THEOREM 3

For brevity of presentation, let ρ ,
SINRm

u,b

α̂m(b) . Also, note

that SINR
j
v,b =

ρ1,v

α̂m(b)ρ2,v+ρ3,v
, where ρ1,v , ρ2,v , and ρ3,v are

defined in (15). Then, (13a) can be rewritten as

wu ln
(
log2 (1 + α̂m(b) · ρ) + r−b

u

)

+
∑

v∈U IF
m,b

[
wv ln

(
log2

(
1 +

ρ1,v

α̂m(b)ρ2,v + ρ3,v

)
+ r−b

v

)]

= C + f1(α̂m(b)) +
∑

v∈U IF
m,b

f2,v(α̂m(b)), (21)

where C , ln( 1
ln(2) )(wu +

∑
v∈U IF

m,b
wv) is a constant,

f1(α̂m(b)) , wu ln
(
ln (1 + α̂m(b) · ρ) + ln(2)r−b

u

)
, (22)

and

f2,v(α̂m(b)),wv ln

(
ln

(
1+

ρ1,v

α̂m(b)ρ2,v+ρ3,v

)
+ln(2)r−b

v

)
.

(23)

Observe that f1(α̂m) is concave because wu is non-negative,

ln (1 + α̂m(b) · ρ) + ln(2)r−b
u is concave and ln(·) is a non-

decreasing concave function [24, pp. 84].

Next, we argue that f2,v(α̂m(b)) is convex. The second

derivative of f2,v(α̂m(b)) w.r.t. α̂m(b) is given in (20), where

µv = 2 ln(2)ρ2,vr
−b
v α̂m(b) + (2 ln(2)ρ3,v + ln(2)ρ1,v) r

−b
v ≥

0. We now argue that f ′′
2,v(α̂m(b)) > 0. Let qv ,

ρ1,v

ρ2,vα̂m(b)+ρ3,v
, where qv > 0 by definition. Then,

ρ1,v

[(2ρ2,vα̂m(b)+2ρ3,v
ρ1,v

+1

)
ln(1+

ρ1,v

ρ2,vα̂m(b)+ρ3,v
)−1

]

=ρ1,v
(2+qv) ln(1+qv)−qv

qv
>ρ1,v

(1+qv) ln(1+qv)−qv
qv

, (24)

where (24) is true because ln(1 + qv) > 0. Then, notice

that (24) is positive because ρ1,v > 0 by definition and

(1 + qv) ln(1 + qv) − qv > 0 for qv > 0 for the following

reasons:

1) limqv→0+(1 + qv) ln(1 + qv)− qv = 0.

2) The derivative of (1 + qv) ln(1 + qv) − qv w.r.t. qv is

ln(1+qv) which is larger than zero for qv > 0, meaning

that (1+ qv) ln(1+ qv)− qv is an increasing function of

qv when qv > 0.

Therefore, f ′′
2,v(α̂m(b)) > 0 because (24) is positive and the

terms ρ1,v , ρ2,v , ρ3,v , and wv are all positive. The fact that

f ′′
2,v(α̂m(b)) > 0 implies that f2,v(α̂m(b)) is convex7 [24].

From (21), (22), and (23), the objective function of (13) can

be rewritten as

C +
∑

v∈U IF
m,b

f2,v(α̂m(b))− (−f1(α̂m(b))) , (25)

where the first term is a constant, the second term is a sum-

mation of convex functions, and the third term −f1(α̂m(b))
is also convex because f1(α̂m(b)) is concave. Therefore, the

objective function of (13) is a difference between two convex

functions.
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