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ABSTRACT
The ad hoc coordination problem is to design an ad hoc agent
which is able to achieve optimal flexibility and efficiency in a
multiagent system that admits no prior coordination between
the ad hoc agent and the other agents. We conceptualise this
problem formally as a stochastic Bayesian game in which the
behaviour of a player is determined by its type. Based on this
model, we derive a solution, called Harsanyi-Bellman Ad Hoc
Coordination (HBA), which utilises a set of user-defined types
to characterise players based on their observed behaviours.
We evaluate HBA in the level-based foraging domain, showing
that it outperforms several alternative algorithms using just
a few user-defined types. We also report on a human-machine
experiment in which the humans played Prisoner’s Dilemma
and Rock-Paper-Scissors against HBA and alternative algo-
rithms. The results show that HBA achieved equal efficiency
but a significantly higher welfare and winning rate.
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1. INTRODUCTION
We are concerned with the ad hoc coordination problem, in
which the goal is to design an ad hoc agent which is able
to achieve optimal flexibility and efficiency in a multiagent
system that admits no prior coordination between the ad
hoc agent and the other agents. We are motivated by human-
machine interaction problems such as robots used in nursing
homes or rescue scenarios, and software agents used in online
trading or video games. Here, the agent is expected to be
able to quickly adapt to initially unknown behaviours, while
at the same time produce consistently good results.

Game theorists have studied a related problem known as
incomplete information game, in which the players have some

⇒ A detailed account of this work can be found in [2].
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private information which is relevant to their decision making.
Harsanyi [5] introduced Bayesian games in which the private
information of a player is represented by its type. While the
concept of Bayesian games is useful to describe the ad hoc
coordination problem, the learning processes and solutions
studied therein are not directly applicable, since the focus
has traditionally been on equilibrium attainment but not on
efficiency. On the other hand, much work in intelligent agents
focuses on efficiency, whilst often using some form of prior
coordination (see [1] for a discussion). Thus, it is natural to
ask if these fields can be combined in a useful way.

There have been several attempts to address incomplete
information in multiagent systems, e.g. [3, 4, 6]. However,
the assumptions made by the solutions proposed therein
are relatively strong, which means that they only address
certain aspects of the larger problem. For example, in [3,4]
it is assumed that all agents follow complex plans which
specify roles and synchronised action sequences, and in [6]
and affiliated works it is assumed that the behaviours of the
other agents are a priori known and fixed, and that all agents
have common payoffs. Furthermore, the problem descriptions
in these works are of a procedural nature, associated with the
specific tasks considered therein. That is, there is no formal
model of the ad hoc coordination problem, general enough
to accommodate a wide spectrum of problems.

In this work, we propose to model the problem as a stochas-
tic Bayesian game, based on which we give formal definitions
of flexibility, efficiency, and ad hoc coordination. We derive a
best-response rule from this model, called Harsanyi-Bellman
Ad Hoc Coordination (HBA), that utilises a set of user-defined
types which, similar to [5], specify a player’s payoffs and strate-
gies. This solution is extended by mechanisms which allow it
to register changed types and learn new types. We demon-
strate the effectiveness of HBA in both simulated experiments
and a human-machine experiment.

2. MODEL & SOLUTION
A stochastic Bayesian game (SBG) starts at time t = 0 in
some initial state s0. In state st, the player types θt1, ..., θ

t
n

are sampled with probability ∆(t, (θt1, ..., θ
t
n)) (∆ is the type

distribution) and each player i is informed about its own type
θti . Based on the history Ht = 〈s0, a0, s1, a1, ..., st〉, each
player i chooses an action ati with probability πi(H

t, ati, θ
t
i)

(πi is player i’s strategy). Given at = (at1, ..., a
t
n), the game

transitions into state st+1 with probability T (st, at, st+1) and
every player i receives an individual payoff ui(s

t, at, θti). This
continues until the game reaches a terminal state.



Given a SBG Γ, we define the flexibility F (α|Γ,D) and the
efficiency E(α|Γ,D) of ad hoc agent α (controlling player i)
with respect to a set of type distributions D as

F (α|Γ,D) =
1

|D|
∑
∆∈D

∑
ρ∈Φ

Pr(ρ|Γ,∆)

E(α|Γ,D) =
1

|D|
∑
∆∈D

∑
ρ∈Φ

Pr(ρ|Γ,∆)

(∑tρ−1
τ=0 ui(s

τ
ρ , a

τ
ρ , α)

)r1
(tρ)r2

where Φ is the set of all paths ρ = 〈s0
ρ, θ

0
ρ, a

0
ρ, s

1
ρ, θ

1
ρ, a

1
ρ, ..., s

tρ
ρ 〉

such that s
tρ
ρ is a terminal state in Γ, Pr(ρ|Γ,∆) is the

probability of ρ in Γ with type distribution ∆, Pr(ρ|Γ,∆) is
the probability of ρ normalised over Φ, and r1, r2 ≥ 1 specify
the relative importance between payoff and time.

Based on the above definitions, the ad hoc coordination
problem is to optimise the flexibility F (α|Γ,D) and efficiency
E(α|Γ,D) of α in Γ with respect to a set of type distributions
D, subject to the constraint that α does not know the type
spaces Θj in Γ (and, thus, the type distributions in Γ).

We derive a solution to this problem, called Harsanyi-
Bellman Ad Hoc Coordination (HBA), by combining the
concept of the Bayesian Nash equilibrium [5] with the Bellman
optimality equation. Let Γ be an ad hoc coordination problem
where ad hoc agent α controls player i and has access to
user-defined type spaces Θ∗−i = ×j 6=i Θ∗j . The best response
rule HBA is defined as ati ∼ arg maxai E

ai
st

(Ht) where

Eais (Ĥ) =
∑
θ∗−i ∈Θ∗

−i

Pr(θ∗−i|Ht)
∑
a−i ∈A−i

Q
ai,−i
s (Ĥ)

∏
j 6=i

πj(Ĥ, aj , θ
∗
j )

is the expected long-term payoff for player i of taking action ai
in state s after history Ĥ (ai,−i denotes (ai, a−i)), Pr(θ∗−i|Ht)
is the posterior over opponent types θ∗−i after history Ht,

and Qas(Ĥ) is the expected long-term payoff for player i when

joint action a is executed in state s after history Ĥ.
Two properties of HBA are that it is optimal in self-play

and that it achieves optimal efficiency against the class of
deterministic learners [2]. For a more detailed description
of our model and solution, including two extensions which
enable HBA to recognise changed types (TR-posteriors) and
learn new types (conceptual types), we refer to [2].

3. EXPERIMENTS
We tested various configurations of HBA and three alterna-
tive algorithms in the level-based foraging domain (Figure 1a),
in which a group of agents (circles) attempts to collect foods
(squares) in minimal time while also maximising their individ-
ual payoffs. Each agent and food has a random level (shown
in centre), and a group of agents can collect a food only if the
sum of their levels is at least as high as the food’s level. All
algorithms were implemented using the same reinforcement
learning framework. The HBA configurations were “Cor” (al-
ways using correct types), “Gtw” (using TR-posteriors), and
“Unl” (without TR-posteriors). Gtw and Unl used conceptual
types (d1 and d2) to learn new types. The types of the other
players were sampled from a large set of fixed and learning
behaviours (of which HBA knew only a small fraction) and
some players were changing their types periodically. Since
optimal solutions were infeasible to compute, we measured
the performance of humans using a graphical user interface.
The results are shown in Figure 1b.
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Figure 1: Simulated experiments. Results averaged
over 1000 runs. Markers have same colour if differ-
ence insignificant (paired t-test, 5% sig. level).
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Figure 2: Human-machine experiment. Circles and
whiskers show mean, min, and max. Welfare plot in
(a) shows median and 25% / 75% percentiles.

We also conducted a human-machine experiment at the
Royal Society Summer Science Exhibition 2012 in London.1

Therein, the human participants played repeated Prisoner’s
Dilemma (PD) and Rock-Paper-Scissors (RPS) against HBA
and alternative algorithms, where each game was played
for 20 rounds. All algorithms were implemented using the
same exact planning framework. We collected data from
427 participants, of which 186 played PD and 241 played
RPS. The lowest and highest recorded ages were 9 and 72,
respectively, with an average age of about 17. HBA used a
small set of types (cf. Table 1 in [2]) and did not learn any
new types. The results (Figure 2) show that HBA achieved
equal efficiency but a significantly higher social welfare (sum
of payoffs) and winning rate.
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