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Abstract  9 

The connected environment provides real-time information about surrounding traffic; such 10 

information can be helpful in complex driving manoeuvres, such as lane-changing, that require 11 

information about surrounding vehicles. Lane-changing modelling in the connected 12 

environment has so far received little attention. This is due to the novelty of connected 13 

environment, and the consequent scarcity of data. A behaviourally sound lane-changing model 14 

is not even available for the traditional environment; that is, an environment without driving 15 

aids. To address this need, this study develops a game theory-based mandatory lane-changing 16 

model (AZHW model) for the traditional environment and extends it for the connected 17 

environment. The CARRS-Q advanced driving simulator is used to collect high-quality vehicle 18 

trajectory data for the connected environment. The developed models (for traditional 19 

environment and connected environment) are calibrated using NGSIM and simulator data in a 20 

bi-level calibration framework. The performance of the models has been rigorously evaluated 21 

using various performance indicators. These include the true positive, false positive, detection 22 

rate, false alarm rate, time prediction error, and location prediction error. Results consistently 23 

show that the developed game theory-based models can effectively capture mandatory lane-24 

changing decisions with a high degree of accuracy. Furthermore, the performance of the 25 

developed AZHW models is compared with representative game theory-based lane-changing 26 

models in the literature. The comparative analysis reveals that the AZHW models developed 27 

in this study outperform existing models. 28 

Keywords: Lane-changing; Decision-making; Game theory; Connected vehicles; Driving 29 

simulator. 30 

 31 

1. Introduction 32 

The connected environment is expected to contribute to solving many transport issues related 33 

to safety, efficiency, mobility, and environmental impact. The connected environment provides 34 

drivers with aids that help them to navigate current and upcoming driving situations, especially 35 

the provision of information on possible but unseen hazards. As a result, drivers in a connected 36 

environment can make more informed and safer lane-changing decisions. Unfortunately, 37 

however, lane-changing decision (LCD) modelling in a connected environment has received 38 

little attention. This is due to the novelty of the connected environment, which is not yet in 39 

large-scale operation, and to the consequent scarcity of relevant data.  40 

Lane-changing is often performed either to change the driving situation (discretionary 41 

lane-changing) or to reach the planned lane position (mandatory lane-changing). 42 

Unfortunately, the benefits of lane-changing often come at the cost of neighbouring road users 43 

by slowing down the following vehicles in the target lane; this, in turn, causes negative impacts 44 

on traffic flow such as breakdowns, capacity drops (Cassidy and Rudjanakanoknad, 2005), 45 

stop-and-go oscillations (Ahn and Cassidy, 2007, Zheng et al., 2011), and safety hazards. Due 46 
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to these adverse lane-changing impacts on traffic safety and traffic flow, modelling lane-1 

changing behaviour remains an area of interest. Compared to discretionary lane-changing, 2 

mandatory lane-changing’s negative impacts on traffic flow and road safety are generally more 3 

pronounced because lane-changes (more specifically, forced lane-changes) frequently occur 4 

during merging scenario, which have significant impact on traffic stream as mentioned in 5 

previous research. Due to the greater disruption caused by its mandatory and forceful nature 6 

(Ali et al., 2018), this study focusses on modelling mandatory lane-changing behaviour. 7 

Zheng (2014) points out several issues in LCD modelling literature in general and 8 

modelling methodology in particular that need to be addressed. The former includes calibration 9 

and validation issues in LCD models. Except for Kang and Rakha (2017), for example, existing 10 

studies ignore the impact of a waiting period before mandatory lane-changing (i.e., non-11 

merging events) on the model’s performance. Additionally, non-merging events in the data for 12 

calibrating the mandatory LCD model are predominant because merging events are relatively 13 

rare. This unbalanced representation of merging and non-merging events can affect both model 14 

calibration and model validation. Moreover, the performance of a mandatory LCD model is 15 

often evaluated using numerical errors such as Mean Absolute Error (MAE) and Root Mean 16 

Square Error, and these are inadequate for testing the prediction capability of a model for 17 

discrete events such as mandatory lane-changing. Rather, the performance of a mandatory LCD 18 

model should be rigorously evaluated using a frequency-based matrix that is capable of reliably 19 

testing its accuracy in predicting discrete events.  20 

Apart from general LCD modelling problems, the adopted LCD modelling 21 

methodology is another important issue that plays a vital role in capturing mandatory LCD 22 

making behaviour of drivers. Driving behaviour varies across different lane-changings 23 

(particularly mandatory), which may be classified as free, cooperative, and forced (Hidas, 24 

2002). In the cooperative and forced lane-changings, at least two decision-makers are involved 25 

in the decision-making process. For example, in a merging scenario, a merging vehicle either 26 

waits or accelerates to attain an acceptable gap, while an immediate follower in the mainline 27 

traffic often responds to the situation either by showing courtesy (i.e., by decelerating or 28 

changing lanes) or by discouraging the mandatory lane-changing (i.e., accelerating or 29 

maintaining their speed as they have the right-of-way). This shows the strong interaction of the 30 

merging and the immediate following vehicles during the mandatory LCD making process, as 31 

each player’s decision depends on the (expected) response of the other. If the decision of either 32 

decision-maker is ignored, a collision could result. Unfortunately, most mandatory lane-33 

changing decision models in the literature consider mandatory lane-changing as a one-way 34 

decision process by focusing on the lane-changer only. In other words, there is a great need to 35 

expand both the behavioural scope and the consistency of the existing approaches to modelling 36 

mandatory lane-changing decisions, as concluded in Zheng (2014). 37 

To address this need, this study employs the game theory approach, as this approach 38 

has the ability to simultaneously incorporate the decision of two players. Although the game 39 

theory approach has been used for modelling mandatory lane-changing decisions in the 40 

literature for both traditional environment (Kita, 1999, Liu et al., 2007, Kang and Rakha, 2017) 41 

and connected environment (Talebpour et al., 2015, Weng et al., 2016), several important 42 

issues are yet to be addressed, as discussed in detail in Section 2.3.  43 

The objective of this paper, therefore, is threefold: (a) to develop a game theory-based 44 

mandatory lane-changing model for traditional environment and for connected environment by 45 

addressing the aforementioned issues in the previous game theory models; (b) to rigorously 46 

test the developed models using more reliable performance indicators; and (c) to compare the 47 

performance of the developed models with the existing game theory-based mandatory lane-48 
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changing models. 1 

The main contribution of this study is a game theory-based mandatory lane-changing 2 

model in a connected environment. The performance of model is assessed using the real data 3 

from a connected environment where drivers make decisions with the help of driving aids. The 4 

developed model is rigorously tested using two minimisation algorithms and different waiting 5 

periods. Result shows behavioural soundness and consistency of the model. Furthermore, the 6 

following vehicle’s actions are validated for the first time in a game theoretical framework, 7 

which provides further insights into prediction capability and efficacy of the proposed game 8 

theory approach for modelling mandatory lane-changing behaviour. 9 

The rest of the paper is organised as follows: Section 2 reviews major modelling 10 

approaches and game theory for modelling mandatory lane-changing behaviour; Section 3 11 

describes the methodology, including model formulation and payoff matrices; Section 4 12 

explains the data sources, processing, and empirical evidence of strategies; Section 5 presents 13 

the model calibration and validation results; Section 6 compares the performances of the 14 

developed models with those of the existing game theory-based mandatory lane-changing 15 

decision models; Section 7 discusses issues and  main findings. 16 

2. Literature review 17 

For the most part, the literature reviewed comprises two main themes: (a) previous mandatory 18 

lane-changing decision modelling approaches; and (b) mandatory lane-changing decision 19 

modelling using the game theory approach and their main issues. Providing a comprehensive 20 

and exhaustive review of lane-changing decision models is beyond the scope of this paper; 21 

however, interested readers can refer to Zheng (2014).  22 

2.1. Lane-changing decision modelling approaches  23 

Major lane-changing decision modelling approaches in the literature include rule-based, utility-24 

based, and game theory-based approaches. Gipps (1986) was among the first to develop a rule-25 

based deterministic lane-changing decision model that evaluates the possibility, necessity, and 26 

desirability of a lane-changing. This model also considers factors such as the existence of a 27 

safety gap, the locations of permanent obstructions, the intent of turning movement, the 28 

presence of heavy vehicles, and speed advantage. These factors are evaluated based on a set of 29 

sequential deterministic rules according to their importance. When more than one lane is 30 

available for the lane-changing, this model selects a lane that is deterministically based on a 31 

set of priority rules that depend on factors such as the location of any obstruction, the presence 32 

of a heavy vehicle, and speed gain. Gipps’ lane-changing model can be viewed as a decision 33 

tree that generates a binary outcome (i.e., change lane/not change lane), which is based on 34 

various fixed conditions. Due to its deterministic nature, this model fails to incorporate driver 35 

heterogeneity, especially under varying traffic conditions and different interactions between 36 

the subject vehicle and the surrounding traffic stream. To overcome some of the limitations of 37 

Gipps’ model, several rule-based models were developed (Yang and Koutsopoulos, 1996, 38 

Hidas, 2002, Kesting et al., 2007).  39 

Ahmed et al. (1996) developed a utility-based mandatory lane-changing model that can 40 

incorporate driver heterogeneity and state dependence. The lane-changing process in a utility-41 

based approach consists of two steps: target lane selection, and gap acceptance (Toledo et al., 42 

2003). A driver compares the utilities of the available lanes and selects the lane that will best 43 

improve his/her driving condition. The gap acceptance in the target lane is evaluated as a binary 44 

problem in which a driver decides to accept or reject the available gap by comparing it with 45 

the critical (that is, the minimum acceptable) gap. The critical gaps are modelled as random 46 

variables to capture the uncertainty associated with decision-making. Many extensions of, and 47 
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improvements to utility-based models can be found in the literature (Toledo et al., 2005, 1 

Choudhury et al., 2006, Toledo and Katz, 2009). 2 

Game theory-based approaches incorporate the decisions of the lane-changer and the 3 

immediate follower in the target lane in a competing situation, where the outcome of one 4 

decision-maker depends on the actions of the other. The game theory approach captures the 5 

complexity of human behaviour, and determines the optimal outcome from a set of choices by 6 

analysing the cost and benefit to each player as they compete. Exploiting the inherent capability 7 

of game theory, Arbis et al. (2016) study drivers’ interactions at a signalised intersection. The 8 

ensuing sub-section further explains the game theory approach in the context of mandatory 9 

lane-changing decision modelling. The ensuing sub-section further explains the game theory 10 

approach in the context of mandatory lane-changing decision modelling.  11 

Besides these widely used approaches, researchers have adopted several other 12 

approaches to modelling lane-changing decision behaviour; e.g., artificial intelligence 13 

technique (Moridpour et al., 2009), cellular automata (Maerivoet and De Moor, 2005), markov 14 

process (Toledo and Katz, 2009), and hazard-based models (Hamdar, 2009). 15 

2.2. The game theory approach to mandatory lane-changing decision modelling 16 

As one of the first studies that considers merging as a two-player non-zero-sum non-17 

cooperative game (that is, where both players do not cooperate, and their aggregate gain or loss 18 

is not equal to zero), Kita (1999) developed a merging model using the game theory approach. 19 

Each player has two strategies: the strategies for the subject vehicle (SV) are merging and 20 

waiting, whilst the strategies for the following vehicle (FV) are giving way or not. This model 21 

was based on the safety criterion of time-to-collision, and was calibrated using the maximum 22 

likelihood method. Although the developed model shows promise, it does not consider the 23 

remaining distance in the acceleration lane, a critical factor in the merging process. 24 

Additionally, speed is kept constant during the merging process in this model, and this is 25 

unrealistic (Liu et al., 2007). Moreover, Kita considers time-to-collision as the payoff for both 26 

players. This results in unrealistic Nash equilibria, as both players are similarly affected by 27 

time-to-collision.   28 

Liu et al. (2007) present an enhanced game theoretic model for the merging situation 29 

where a merging vehicle’s motive is to minimise the time spent in the acceleration lane without 30 

causing a collision, whilst a through vehicle’s objective is to minimise interruption to its speed. 31 

Strategies in the model of Liu et al. (2007) are similar to those in the model of Kita (1999). 32 

However, Liu et al. (2007) propose robust payoff matrices for defining the strategies. To solve 33 

the game, a bi-level calibration framework was used, with the upper level as an ordinary least 34 

square problem, and the lower level as a linear complementarity problem for finding the Nash 35 

equilibrium. The units of payoff for both players are different, resulting in a trivial equilibrium 36 

solution. In addition, the acceleration of the merging vehicle in a merging strategy has not been 37 

explicitly considered, and the speed variation of the following vehicle during the yield strategy 38 

is ignored. 39 

Wang et al. (2015) presented a game theory-based lane-changing control approach for 40 

connected and automated vehicles in which a lane-changing game can be formulated as non-41 

cooperative as well as cooperative. This study does not predefine a set of finite strategies, but 42 

rather evaluates different combination of lane-change time and acceleration in a prediction time 43 

window to optimise some performance function (own cost and collective cost). Results indicate 44 

that the proposed control approach reasonably generates future lane-changing decisions whilst 45 

maintaining drivers’ safety and comfort. 46 

Talebpour et al. (2015) pioneered the game theory approach to modelling lane-changing 47 
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in a connected environment by applying the Harsanyi transformation (Harsanyi, 1967) to 1 

transform the game from incomplete information to imperfect information. They developed a 2 

generic model for both mandatory and discretionary lane-changing. However, their study does 3 

not explicitly define the formulation of payoff matrices, and does not consider same payoff 4 

units for both players. All of these factors might have resulted in a high prediction error in their 5 

model in replicating observed mandatory lane-changing behaviour. In contrast, the game 6 

theory-based mandatory lane-changing model in a connected environment is calibrated and 7 

validated using NGSIM data, which do not have merging events in a connected environment. 8 

Kang and Rakha (2017) model merging behaviour as a two-player game in which the 9 

merging vehicle has three strategies: merging, waiting, and overtaking, and the strategies for 10 

the following vehicle are the same as in previous studies (Kita, 1999, Liu et al., 2007). Payoffs 11 

with different units are formulated on the basis of safety, expected travel time and efficiency, 12 

and acceleration. They adopt the calibration approach proposed in Liu et al. (2007), and report 13 

their model’s effective performance. 14 

Arbis and Dixit (2019) recently modelled mandatory lane-changing behaviour in a 15 

traditional environment using game theory approach by incorporating conflict risks into 16 

utilities of the players, and reported that longer acceleration lanes and reduced speed limits tend 17 

to reduce the likelihood of a conflict.  18 

2.3. Issues in the previous studies using the game theory approach  19 

A thorough literature review of previous game theory-based mandatory lane-changing models 20 

revealed several important issues in the previous studies that are yet to be addressed, as 21 

discussed below. 22 

First, following vehicle strategies that they consider are either incomplete or improperly 23 

defined. For example, some studies only consider the yield/give way strategy (Kita, 1999, Liu 24 

et al., 2007, Kang and Rakha, 2017) and ignore other strategies such as doing nothing 25 

(Talebpour et al., 2015). It has been frequently observed in the field that drivers of following 26 

vehicles remain unaffected (or maintain their speed as they have the right-of-way) by the lane-27 

changing action of merging vehicles, considering such action as safe. Thus, it is necessary to 28 

capture this behaviour of following vehicles to realistically mimic the mandatory lane-changing 29 

decision-making process. Furthermore, some studies consider changing lane as a new strategy 30 

(Talebpour et al., 2015) whereas it is more appropriate to treat changing lane by the immediate 31 

follower as a new game, as the following vehicle would need to play a game with players in 32 

the adjacent lane for changing lanes, which requires a separate formulation and thus, should 33 

not be considered as a strategy in the merging game. In addition, the field data show that 34 

changing lane strategy is rarely selected, which implies that due to insufficient data, reliably 35 

estimating parameters for this strategy would be difficult. This brings another shortcoming of 36 

many existing studies, i.e., the lack of empirical evidence for the selected strategies in the field 37 

data. Mandatory lane-changing strategies in the previous studies are not extracted from, or 38 

verified by field observations. This is important because: (a) different strategies should be 39 

separated based on their availability in the data; and (b) each strategy must have a reasonable 40 

sample size for calibration purpose. Ignoring this aspect in game theory modelling process 41 

would lead to unrealistic and biased parameter estimates of the model. 42 

Second, with the exception of Liu et al. (2007) and Kang and Rakha (2017), the 43 

formulation of payoff matrices is not explicitly defined. However, the payoff units for two 44 

players are different in these two studies, and this can result in trivial equilibrium solutions, 45 

which may not be realistic in representing drivers’ selection from a set of choices. 46 

Third, the previous studies did not fully utilise the advantage of using game theory 47 
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approach as they only focused on actions of the merging vehicle during the model validation 1 

process whilst ignoring the actions of the following vehicle. As the game theory approach 2 

simultaneously evaluates the decisions of two players, it is important to consider the actions of 3 

both merging and following vehicles when assessing the model’s performance. 4 

Finally, and more importantly, the developed model for connected environment in 5 

previous studies is either tested by using NGSIM data (which do not contain any data for 6 

connected environment) or by numerical simulation, and this can be unrealistic or (even) 7 

misleading. NGSIM data do not contain decisions under the connected environment whilst 8 

numerical simulations ignore human factor involved in mandatory lane-changing decision-9 

making.  10 

In summary, all of the aforementioned approaches (except game theory) consider 11 

mandatory lane-changing as one-way decision-making process focusing on decision of lane-12 

changer whilst ignoring the corresponding action of following vehicle in response to merging 13 

action of the subject vehicle. In a typical mandatory lane-changing scenario, at least two drivers 14 

are engaged in decision-making process affecting each other’s decision. Ignoring decision of 15 

any decision maker could result in a crash. In addition, by reviewing the literature, many issues 16 

in existing game-theory based mandatory lane-changing models are identified. Addressing 17 

these issues is critical for developing more realistic and behaviourally sound mandatory lane-18 

changing models. 19 

3. Methodology 20 

3.1. Game and its components 21 

This study first develops a mandatory lane-changing decision model for traditional 22 

environment (LCD_TE hereon), and this is then used as the foundation for developing the 23 

mandatory lane-changing model in a connected environment (LCD_CE hereon). (Note that the 24 

mandatory lane-changing model developed in this study is referred as AZHW model and 25 

LCD_TE, LCD_CE, two-strategy, and three-strategy models are mainly the variation of the 26 

AZHW model.) In the traditional environment drivers perform driving tasks without driving 27 

aids. The connected environment, in contrast, provides driving aids for assisting drivers to 28 

perform merging manoeuvres. A typical merging scenario, as shown in Figure 1, includes a 29 

merging vehicle (subject vehicle [SV] in this study) on the acceleration lane; an immediately 30 

following/lag vehicle (FV) on the target lane; and (possibly) a lead vehicle (LV) on the target 31 

lane. In the merging scenario, both SV and FV are assumed to act in a rational way. This 32 

situation can be modelled as a game with various components such as a number of players, 33 

player strategies, payoff matrix, and the cooperative or non-cooperative nature of the game. 34 

 35 

Fig. 1. A typical merging scenario 36 

This study considers a two-player non-zero-sum non-cooperative game under 37 

incomplete information for the LCD_TE model, where the two players in a game are SV and 38 

FV. The interaction between these vehicles is dominant, and the effect of other vehicles (for 39 

example, the effect of LV) can be implicitly taken into FV’s payoff (more discussion on this in 40 
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ensuing sub-sections). A non-zero-sum game refers to a game in which all players receive a 1 

payoff corresponding to their actions and the sum of their payoffs is not zero. In non-2 

cooperative games under incomplete information, a player has inaccurate information about 3 

another player’s strategy (i.e., a game in a traditional environment where players make 4 

assumptions/predictions of each other’s actions).  5 

One of the shortcomings of earlier studies is the incomplete formulation of strategies. 6 

This study, in contrast, formulates a comprehensive list of strategies for both players, as shown 7 

in Table 1. The strategies for SV are merging and waiting, while FV has four strategies: 8 

accelerating, decelerating, doing nothing, and changing lane. Note that this study does not 9 

consider overtaking behaviour of SV, which is considered by Kang and Rakha (2017), because 10 

overtaking in a high density traffic is rare; in addition, overtaking is prohibited during merging 11 

manoeuvres in Queensland, Australia. Table 1 represents a merging game that can be either 12 

played in a traditional environment or in a connected environment. 13 

Table 1. Merging game for traditional and connected environments in the normal form 14 

FV 

SV  

Traditional environment Connected environment Probability 

for FV Merging (S1) Waiting (S2) Merging (S1) Waiting (S2) 

Accelerating/Forced 

merging (F1) 
P11, Q11 P12, Q12 S11, R11 S12, R12 

 ଵݕ

Decelerating/Courtesy 

yielding (F2) 
P21, Q21 P22, Q22 S21, R21 S22, R22 

 ଶݕ

Doing nothing (F3) P31, Q31 P32, Q32 S31, R31 S32, R32 ݕଷ 

Changing lane (F4) P41, Q41 P42, Q42 S41, R41 S42, R42 ݕସ
Probability for SV ݖଵ ݖଶ ݖଵ ݖଶ  

P and Q respectively denote the payoffs for SV, FV in the traditional environment and the corresponding payoffs 15 

in the connected environments are respectively S and R; y and z are probabilities of FV’s and SV’s action, 16 

respectively. 17 

The study adopts the Harsanyi transformation (Harsanyi, 1967), which transforms a 18 

game of incomplete information (that is, a game in a traditional environment) to a game of 19 

imperfect2 information (that is, a game in a connected environment). Furthermore, the Harsanyi 20 

transformation introduces “nature” as a player who chooses the type of each player. Nature’s 21 

role can be perceived as another player in the game with no payoffs. Nature’s choice can be 22 

represented by a game tree as shown in Figure 2. Edges coming from a nature’s choice node 23 

are labelled with the probability of the event that occurs. Without loss of generality, assume 24 

that nature selects the driver of SV who is playing a game in the traditional environment. 25 

Following the approach presented by Talebpour et al. (2015), the game can be transformed into 26 

an extensive form, as shown in Figure 2, which indicates that nature first selects the driver of 27 

SV in traditional environment with probability (p), and the driver of SV in the connected 28 

environment with probability (1‒p). (Note that nature can select driver of FV as well, however, 29 

for simplicity and explanation purpose, the case of SV is reported herein.) It should be noted 30 

that these probabilities are from FV’s perspective, and both players have similar information 31 

about these probabilities. However, SV perceives nature’s move and has information about the 32 

selection of strategy, whilst FV is unaware of nature’s move. After applying this 33 

transformation, and combining the transformed game into a normal form, SV will have four 34 

strategy, whilst FV will have 16 action sets, as it can be seen in the figure below (see Table 2 35 

for more details). 36 

                                                            
2 In an imperfect information game, players are simply unaware of actions chosen by each player; however, each 

player knows who the other player is in the game, his/her possible strategies, etc (Harsanyi, 1967). Such 

information is (directly or indirectly) provided by the connected environment. 
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 1 
Fig. 2. Transformed merging game in the extensive form; TE: Traditional environment; CE: 2 

Connected environment 3 

Table 2. Transformed merging game in the normal form 4 

Strategy SV 

FV 
 ࡱ࡯૛ࡿࡱࢀ૛ࡿ ࡱ࡯૚ࡿࡱࢀ૛ࡿ ࡱ࡯૛ࡿࡱࢀ૚ࡿ ࡱ࡯૚ࡿࡱࢀ૚ࡿ

F1 (Accelerate/ 

Forced yielding) 

ሺ݌ ଵܲଵ ൅ ሺ1െ ሻ݌ ଵܵଵ, ଵଵ൅ܳ݌ ሺ1 െ  ሻܴଵଵሻ݌

ሺ݌ ଵܲଵ൅ ሺ1 െ ሻ݌ ଵܵଶ, ଵଵ൅ܳ݌ ሺ1 െ  ሻܴଵଶሻ݌

ሺ݌ ଵܲଶ൅ ሺ1 െ ሻ݌ ଵܵଵ, ଵଶ൅ܳ݌ ሺ1 െ  ሻܴଵଵሻ݌

ሺ ଵܲଶ ൅ ሺ1െ ሻ݌ ଵܵଶ, ଵଶܳ݌ ൅ ሺ1െ  ሻܴଵଶሻ݌

F2 (Decelerate) 

ሺ݌ ଶܲଵ ൅ ሺ1െ ,ሻܵଶଵ݌ ଶଵ൅ܳ݌ ሺ1 െ  ሻܴଶଵሻ݌

ሺ݌ ଶܲଵ൅ ሺ1 െ ,ሻܵଶଶ݌ ଶଵ൅ܳ݌ ሺ1 െ  ሻܴଶଶሻ݌

ሺ݌ ଶܲଶ൅ ሺ1 െ ,ሻܵଶଵ݌ ଶଶ൅ܳ݌ ሺ1 െ  ሻܴଶଵሻ݌

ሺ ଶܲଶ ൅ ሺ1െ ,ሻܵଶଶ݌ ଶଶܳ݌ ൅ ሺ1െ  ሻܴଶଶሻ݌

F3 (Doing 

nothing) 

ሺ݌ ଷܲଵ ൅ ሺ1െ ,ሻܵଷଵ݌ ଷଵ൅ܳ݌ ሺ1 െ  ሻܴଷଵሻ݌

ሺ݌ ଷܲଵ൅ ሺ1 െ ,ሻܵଷଶ݌ ଷଵ൅ܳ݌ ሺ1 െ  ሻܴଷଶሻ݌

ሺ݌ ଷܲଶ൅ ሺ1 െ ,ሻܵଷଵ݌ ଷଶ൅ܳ݌ ሺ1 െ  ሻܴଷଵሻ݌

ሺ ଷܲଶ ൅ ሺ1െ ,ሻܵଷଶ݌ ଷଶܳ݌ ൅ ሺ1െ  ሻܴଷଶሻ݌

F4 (Changing 

lane) 

ሺ݌ ସܲଵ ൅ ሺ1െ ,ሻܵସଵ݌ ସଵ൅ܳ݌ ሺ1 െ  ሻܴସଵሻ݌

ሺ݌ ସܲଵ൅ ሺ1 െ ,ሻܵସଶ݌ ସଵ൅ܳ݌ ሺ1 െ  ሻܴସଶሻ݌

ሺ݌ ସܲଶ൅ ሺ1 െ ,ሻܵସଵ݌ ସଶ൅ܳ݌ ሺ1 െ  ሻܴସଵሻ݌

ሺ ସܲଶ ൅ ሺ1െ ,ሻܵସଶ݌ ସଶܳ݌ ൅ ሺ1െ ሻܴସଶሻ ௜்ܵ݌ ா ௝ܵ஼ா (i, j =1, 2) shows that SV performs mandatory lane-changing in the traditional or connected environments 5 

based on the nature’s move. 6 

The Harsanyi transformation can be applied to any problem where one phenomenon 7 

may have two or more options. Talebpour et al. (2015), for instance, applied Harsanyi 8 

transformation to lane-changing types, i.e., mandatory and discretionary lane-changing. The 9 

nature was introduced into the game and selected the mandatory lane-changing with probability 10 

(p) and discretionary lane-changing with probability (1-p).  11 

The Harsanyi transformation also states that an incomplete information game (i.e., a 12 

game in traditional environment) is Bayes equivalent to a game of imperfect information (i.e., 13 

a game in connected environment) if strategies space, and payoffs are the same; however, the 14 

attribute vectors are different, and the model needs to be reinterpreted. In the context of this 15 

study, connected environment data (obtained from the advanced driving simulator) contain 16 

additional attributes (i.e., additional advisory information); and merging decisions are 17 

obviously influenced by the connected environment, and will be used to reinterpret the 18 

LCD_CE model. 19 

In the connected environment, drivers receive an uninterrupted supply of information 20 

leading to more informed and safer merging decisions. The drivers in the connected 21 

environment also have the information about the nature of actions of the following vehicles 22 

(traditional environment game versus connected environment game). As such, the connected 23 

environment game in a normal form can be formulated as non-zero-sum non-cooperative game, 24 

and the structure of the game can be seen in Table 3. (Note that although connected 25 

Nature

Driver SDriver S

F2

F1

CE (1-p)
TE (p)

P31, Q31 P22, Q22 P32, Q32P11, Q11 P21, Q21 P12, Q12

S1
S2

F2F1
F2

S1 S2

F2 F3
F1

P41, Q41 P42, Q42 S31, R31 S22, R22 S32, R32
S11, R11 S21, R21 S12, R12

S41, R41 S42, R42

Driver F Driver F Driver FDriver F

F1
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environment provides information about the surrounding traffic, the game still remains non-1 

cooperative3 because the connected environment does not force the drivers to act in a 2 

cooperative way and decision is still at the discretion of drivers either to accept or ignore the 3 

information.) 4 

Table 3. A merging game in the connected environment in the normal form 5 

SV 

FV 

Accelerating/Forced yielding 

(F1) 

Decelerating/Courtesy yielding 

(F2) 

Doing nothing 

(F3) 

Changing lane 

(F4) 

Merging (S1) S11, Q11 or R11 S21, Q21 or R21 S31, Q31 or R31 S41, Q41 or R41

Waiting (S2) S12, Q12 or R12 S22, Q22 or R22 S32, Q32 or R32 S42, Q42 or R42

Each player selects one of the strategies to achieve the goal of a game (Kang and Rakha, 6 

2017). However, finding the entire set of optimal/best strategies remains an area of research in 7 

the field of economics (Talebpour et al., 2015). To determine the entire set of best responses, 8 

the concept of Nash equilibrium is utilised. This is a solution point where no player can 9 

unilaterally gain more than his/her expected payoff by changing his individual strategy to 10 

another. In a two-player game, consider that player a (i.e., SV) has two strategies – S = (S1, S2) 11 

– and player b (i.e., FV) has four strategies: F = (F1, F2, F3, and F4). This suggests that this 12 

game has eight possible sets of strategies, and the Nash equilibrium can be defined as: 13 ൜ܧଵሺܵ∗, ሻ∗ܨ ൒ 	 ,ଵሺܵܧ ,∗ଶሺܵܧ				ሻ∗ܨ ሻ∗ܨ ൒ 	 ,∗ଶሺܵܧ ሻܨ          (1) 14 

where, E1 and E2 represent the expected payoff at equilibrium, and S* and F* are the 15 

equilibrium set of strategies for SV and FV, respectively. The solution approach and solution 16 

of the game are presented in Section 5.  17 

3.2. Payoff formulations 18 

Earlier studies consider various motives for payoff formulations of players in a game. This 19 

leads to different units in the payoffs of different players (Liu et al., 2007, Talebpour et al., 20 

2015, Kang and Rakha, 2017), and results in trivial and unrealistic equilibrium solutions. 21 

Therefore, in this study, the payoffs of both players are formulated by using the same motive 22 

for acceleration. More specifically, the payoff for SV is defined as the acceleration required for 23 

merging or for waiting for the next available gap, while the payoff for FV is defined as the 24 

acceleration required to avoid a collision (i.e., forced yielding); showing courtesy (i.e., 25 

deceleration and changing lanes); or doing nothing in response to SV’s action. Moreover, in a 26 

typical merging scenario, the following assumptions are made: (a) prior to the merging event, 27 

FV and lead vehicle are in car-following mode; (b) both players (SV and FV) construct their 28 

respective payoffs as soon as SV appears on the acceleration lane; and (c) the distance between 29 

SV and FV is less than 60 m. Vehicles beyond this range are normally unaffected by each 30 

other’s decision (Toledo et al., 2003, Liu et al., 2007). The time when both players construct 31 

their respective payoff matrices is termed decision time (that is, the time when SV appears in 32 

the acceleration lane). 33 

                                                            
3 A key difference between cooperative and non-cooperative game is that in cooperative games, players can make 

binding agreements before playing the game, e.g., how to share payoffs. On the other hand, agreements are not 

binding in non-cooperative games. The individual players are the cornerstone in non-cooperative games whilst 

cooperative games consider coalition of players (d'Aspremont and Jacquemin, 1988, Dockner and Van Long, 

1993).  
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3.2.1. Payoffs for FV 1 

At decision time, FV needs to decide their action in response to SV’s action. For FV, who has 2 

the right-of-way over SV, the available strategies are: accelerating to avoid merging; 3 

decelerating or changing lane to show courtesy; and remaining unaffected by SV’s action (i.e., 4 

doing nothing). Similar to Talebpour et al. (2015) study, this study assumes that maintaining 5 

safety and minimising speed variations are FV’s two main motives. For the forced merging 6 

case, the driver of FV prioritises safety and adopts acceleration to avoid a collision with SV. 7 

To show courtesy (by decelerating and changing lanes), FV calculates the required deceleration 8 

or change in speed. 9 

Table 4 shows the payoff matrix for FV. In this table, ܿܿܣ	stands for acceleration; 10 

subscripts M and W represent merging and waiting, respectively; subscripts A, D, DN, and CL 11 

respectively indicate acceleration, deceleration, doing nothing, and changing lane; ܿܿܣி௏௅௏	்௅ is 12 

the acceleration required for FV, considering the lead vehicle in the target lane as a new leader; 13 ܿܿܣி௏ி௏	்௅ is the acceleration required for FV in the target lane, considering FV (i.e., lane-14 

changer) as the new lead vehicle in the target lane; ∆ܸ is speed change; G is the available gap 15 

in the adjacent lane; ߝ	&	ߜ represent the error terms that capture the unobserved variation, and 16 

are assumed to follow a standard normal distribution, N ~ (0,1); and ߙ	&	ߚ are parameters to 17 

be estimated. 18 

For the purpose of illustration, consider a case where SV decides to merge straight away 19 

and FV is accelerating; FV has to brake hard to avoid a collision with SV. The projected 20 

required acceleration is shown in Equation (2). The initial states and projected states are 21 

calculated using Newtonian equations, which are similar to those in Liu et al. (2007), and are 22 

explained in Appendix A. (Note that the formulae for calculating each variable [in the payoffs] 23 

are also explained in Appendix A.) 24 

Table 4. Payoff matrices for FV and SV 25 

 Players SV 

P
ay

o
ff

 f
o

r 
F

V
 

FV 

Strategies Merging (S1) Waiting (S2) 

Accelerating (F1) ܳଵଵ ൌ ଵଵ଴ߙ ൅ ଵଵଵߙ ெି஺′ܿܿܣ ൅ ଵଵ ܳଵଶߝ ൌ ଵଶ଴ߙ ൅ ଵଶଵߙ ௐି஺ܿܿܣ ൅  ଵଶߝ

Decelerating (F2) ܳଶଵ ൌ ଶଵ଴ߙ ൅ ଶଵଵߙ ெି஽ܿܿܣ ൅ ଶଵ ܳଶଶߝ ൌ ଶଶ଴ߙ ൅ ଶଶଵߙ ௐି஽ܿܿܣ ൅  ଶଶߝ

Doing nothing (F3) ܳଷଵ ൌ ଷଵ଴ߙ ൅ ଷଵଵߙ ெି஽ேܿܿܣ ൅ ଷଵ ܳଷଶߝ ൌ ଷଶ଴ߙ ൅ ଷଶଵߙ ௐି஽ேܿܿܣ ൅  ଷଶߝ

 Changing lane (F4) ܳସଵݎ݋ ܳସଶ ൌ ସଵ଴ߙ ൅ ସଵଵߙ ி௏௅௏ܿܿܣ ்௅ ൅ ସଵଶߙ ி௏ி௏ܿܿܣ ்௅ ൅ ସଵଷߙ ∆ܸ ൅ ସଵସߙ ܩ ൅  ସଵߝ

P
ay

o
ff

 f
o
r 

S
V

 

FV 

Accelerating (F1) ଵܲଵ ൌ ଵଵ଴ߚ ൅ ଵଵଵߚ ெି஺ܿܿܣ ൅ ଵଵ ଵܲଶߜ ൌ ଵଶ଴ߚ ൅ ଵଶଵߚ ௐି஺ܿܿܣ ൅  ଵଶߜ

Decelerating (F2) ଶܲଵ ൌ ଶଵ଴ߚ ൅ ଶଵଵߚ ெି஽ܿܿܣ ൅ ଶଵ ଶܲଶߜ ൌ ଶଶ଴ߚ ൅ ଶଶଵߚ ௐି஽ܿܿܣ ൅  ଶଶߜ

Doing nothing (F3) ଷܲଵ ൌ ଷଵ଴ߚ ൅ ଷଵଵߚ ெି஽ேܿܿܣ ൅ ଷଵ ଷܲଶߜ ൌ ଷଶ଴ߚ ൅ ൅ߚଷଶଵ ௐି஽ே൅ܿܿܣ  ଷଶߜ

Changing lane (F4) ସܲଵ ൌ ସଵ଴ߚ ൅ ൅ߚସଵଵ ெି௅஼ܿܿܣ ൅ ସଵ ସܲଶߜ ൌ ସଶ଴ߚ ൅ ସଶଵߚ ௐି௅஼ܿܿܣ ൅  ସଶߜ

Note that αଵଶଵ  ≠ αଶଶଵ  ≠ αଷଶଵ  as it is expected that FV places different weights to different scenarios. Similarly, 26 ߚଶଵଵ ସଵଵߚ≠ ଶଶଵߚ , ସଶଵߚ≠ ெି஺ܿܿܣ 27 . ൌ ଶ൫௑ᇲି௩ᇲಷೇ௧್൯௧మ್ ெି஺′ܿܿܣ 28 (2)          ൌ ݉ݑ݉݅݊݅݉ ൜ ,ெି஺ܿܿܣ ,				ଶݏ/݉	െ4.5		ி௏ݒ~ௌ௏ݒ	݂݅ ௌ௏ݒ	݂݅ ≪ ெି஽ܿܿܣ      (3) 29	ி௏ݒ ൌ ,ெି஽ܿܿܣሺ	݉ݑ݉݅݊݅݉ െ3	݉/ݏଶሻ       (4) 30 
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ெି஽ேܿܿܣ ൌ ൜ܿܿܣெି஺	, ܸܵ	݂݋	݀݁݁݌ݏ	 ൏  1 (5)     ݁ݏ݅ݓݎ݄݁ݐܱ																								,	ி௏ݒ	ܴܱ	ி௏ܿܿܣܸܨ	݂݋	݀݁݁݌ݏ

Where ݒᇱி௏ is the projected state (refer to appendix A) of FV; ݐ௕ is the time taken by 2 

FV to react (i.e., 2 s (AUSTROADS, 1993)); ܺᇱ is a gap between SV and FV when the former 3 

joins the through traffic. 4 

In the merging case, FV’s motion is governed by the leader in the current state of car-5 

following. Also, there are two existing conditions (Equation 3) based on the speed of SV: (a) 6 

if the speed of SV is equal or close to the speed of FV, FV will adopt an acceleration (ܿܿܣெି஺ሻ, 7 

using the projected states; and (b) if the speed of SV is slower than FV but SV wants to merge 8 

anyway, FV will need to brake hard to avoid a collision.  9 

Another option for FV is to show courtesy early by decelerating or changing lanes. For 10 

the deceleration case, the payoff of FV is ܳଶଵ,	as shown in Table 4. In this case, FV signals that 11 

SV can merge by adopting a comfortable deceleration (ܿܿܣெି஽), obtained from Equation (4). 12 

However, even if a lower deceleration rate is required to avoid a collision, FV would adopt a 13 

higher deceleration rate.  14 

Meanwhile, FV can also decide to remain unaffected by SV (i.e., do nothing), given 15 

that FV has the right-of-way. This leads to two situations (refer to Equation 5): (a) if the speed 16 

of SV is greater than the speed of FV, SV will merge without causing any disruption to FV; 17 

and (b) if the speed of SV is lower than the speed of FV, SV will cause FV to decelerate. In 18 

such a scenario, FV’s payoff will be ܳଷଵ,	as shown in Table 4.  19 

FV can also choose to change lanes in response to SV’s merging attempt. Then FV will 20 

need to calculate speed change (∆ܸ) and the available gap (G) in the target lane. The payoff 21 

for FV will be	ܳସଵ (Table 4).  22 

For the cases where SV decides to wait for the next available gap, possible scenarios 23 

and their corresponding payoff matrices can be obtained in a similar way. (Refer to Table 4 for 24 

details.)  25 

3.2.2. Payoffs for SV 26 

At the decision time, SV decides either to merge into the through traffic or to wait for the next 27 

available gap. Table 4 shows the payoffs for SV that are calculated according to the initial and 28 

the projected states of both vehicles. (For a detail description of payoffs, refer to Appendix B.) 29 

For the purpose of illustration, consider a case where SV decides to merge right away, 30 

and FV accelerates to avoid the merging. In this case, SV has to increase acceleration to reach 31 

the merging point prior to FV to avoid a collision (ܿܿܣெି஺, refer to SV’s payoff in Table 4). 32 

On the other hand, if FV shows early courtesy by decelerating, and SV still decides to merge, 33 

SV will merge with a comfortable amount of acceleration (ܿܿܣெି஽). As shown in Table 4, 34 

SV’s payoff will be ଶܲଵ. 35 

When SV has the right-of-way and FV is neither accelerating nor decelerating but 36 

continuing its current state as dictated by the leader (i.e., doing nothing), SV has a similar 37 

payoff to that achieved by acceleration. SV has to calculate the acceleration (ܿܿܣெି஽ே) needed 38 

to avoid a collision with FV, and its payoff will be ଷܲଵ. Another option for FV is to show 39 

courtesy by changing lanes. In this case, SV has to calculate the acceleration (ܿܿܣெି௅஼) 40 

required for the merge, and its corresponding payoff will be	 ସܲଵ. 41 

For the case where SV decides to wait for the next available gap, SV calculates their 42 

acceleration with respect to the remaining distance in the acceleration lane. The possible 43 

scenarios, and their corresponding payoff matrices, can be obtained in a similar manner. (For 44 
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more details, refer to Table 4.) 1 

4. Data sources and processing 2 

4.1 Data 3 

1) NGSIM Data 4 

The celebrated NGSIM data are used (FHWA, 2007) to calibrate and validate the LCD_TE 5 

model. This data contains vehicle speeds and positions for every 0.1 s. Montanino and Punzo 6 

(2015), however, report the inaccuracy of NGSIM data for microscopic models, and propose a 7 

methodology for reconstructing the data. They also applied the proposed methodology to 8 

reconstruct 15 minutes I-80 data-1 (from 4.00 pm to 4.15 pm). Thus, this study first uses the I-9 

80 reconstructed data (I-80-R hereon) to assess the behavioural soundness and consistency of 10 

the LCD_TE model. Later, the full I-80 (i.e., 45 mins) data (represented as I-80-F from here 11 

onwards), denoised by Zheng et al. (2013), is used for the LCD_TE model calibration and 12 

validation. Figure 3 shows the study site that features an on-ramp and an off-ramp, where many 13 

mandatory lane-changings are expected. For the specific purpose of this study, however, only 14 

lane-changings from the on-ramp merge to the freeway are considered. From NGSIM database, 15 

it can be determined when SV is not performing merging. Such instances are termed as 16 

“waiting” or “non-merging events” in this study. (Note that in such cases no merging point is 17 

observed, and model’s predictive capability is assessed against non-merging events.) 18 

 19 
Fig. 3. I-80 study site 20 

2) Data collected from the advanced driving simulator experiment  21 

As a powerful tool for collecting data in a controlled environment, driving simulators are 22 

regularly used to study traffic-related road issues. In this study, an advanced high-fidelity 23 

driving simulator experiment was designed and conducted for connected environment 24 

consisting of a mandatory lane-changing scenario. Seventy-eight participants of diverse 25 

backgrounds were recruited to drive in two randomised driving conditions: baseline (i.e., 26 

without driving aids), and connected environment (i.e., with driving aids). The mean age of the 27 

participants was 30.8 years, and 64.1% were male. Data were collected in the form of vehicle 28 

trajectories and advisory information at every 0.05 s. (More details of the participants and the 29 
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advanced driving simulator that were presented at the Centre for Accident Research and Road 1 

Safety-Queensland [CARRS-Q] can be seen in Ali et al. (2018).)  2 

a) Experiment design 3 

A four-lane motorway with two lanes in each direction was designed. It had a posted speed 4 

limit of 100 km/h, and was about 1 km in length. The experiment consisted of a mandatory 5 

lane-changing scenario where the current driving lane was closed. Following the game theory 6 

approach, SV needed to change lanes, whilst FVs were scripted to accelerate, decelerate, or 7 

remain unaffected by SV’s merging attempts. (Note that FVs are programmed for data 8 

collection purpose and their behaviour is treated as the same observed in NGSIM database and 9 

no prior information of programmed vehicles is used for LCD modelling.) Since the roadway 10 

segment consisted of two lanes in each direction to avoid complexity in designing vehicular 11 

interactions, the lane-changing manoeuvre of FV, when SV is merging, is very unlikely. Thus, 12 

this strategy is not observed in simulator data. The vehicular interaction and the design of 13 

connectivity are explained below. 14 

Baseline scenario: Each participant drove the simulator vehicle without driving aids, and faced 15 

a lane closure 750 m from the start of the scenario (Figure 4). A lead vehicle (LV1) in front of 16 

SV, and five FVs on the adjacent lane, surround SV. At point B (Figure 4a), LV1 changed lane 17 

due to the lane closure and, at this instant, following the game theory approach, SV faces five 18 

mandatory lane-changing opportunities. SV can choose any gap between FVs in the target lane 19 

to avoid the lane closure (Figure 4b), and FVs will then follow SV with a predefined speed.  20 

Fig. 4. Design of mandatory lane-changing events (not to scale) 21 

Connected environment scenario: The vehicular interactions in the connected environment 22 

scenario were the same as those in the baseline scenario; however, in the former scenario, 23 

participants were assisted with information about upcoming situations. After comprehensively 24 

reviewing the literature on in-vehicle information systems and how driving aids are currently 25 

(a) Vehicular interaction before lane closure 

(b) Vehicular interaction after lane closure 
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provided by major car manufacturers, participants in the connected environment scenario were 1 

provided with four types of assisted driving aids: fixed messages, warning messages, advisory 2 

messages, and lane-changing messages. (The design of some driving aids related to mandatory 3 

lane-changing is presented in Figure 5.) 4 

 
(a) Fixed and advisory messages 

 
(b) A warning message 

 
(c) A lane-change message 

Fig. 5. Driving aids presented on the windscreen 5 

Fixed messages continuously appeared on the left corner of the driving screen, and 6 

informed the driver of the speed and distance to LV on the current driving lane (Figure 5a; the 7 

leader is the blue car on the right lane). An advisory message, in text form – such as “Broken 8 

vehicle ahead” – was presented at the bottom of the screen (with a beep sound) to warn of any 9 

upcoming situation (Figure 5a). Warning messages flashed up (with three beep sounds) to flag 10 

a hazardous or critical situation, such as over-speeding (Figure 5b) of SV. To assist in 11 

mandatory lane-changing decision-making, a lane-changing image appeared on the left corner 12 

of the driving screen, and was accompanied by a beep sound (Figure 5c) whenever a lane-13 

changing opportunity was available in the adjacent lane. The suitability of these messages had 14 

been tested and confirmed during the pilot study. Furthermore, prior to driving in a research 15 

drive, the participants were briefed about the design of messages, and performed a practice 16 

drive to become familiar with the vehicle, the driving environment, and the information design. 17 

(The participant experiment protocol can be found in Ali et al. (2018).) 18 

To minimise the effect of any learning, the study implemented several strategies, such 19 

as randomising the order of the scenarios, and changing the surrounding environment (e.g., 20 

(SV) 

(FV) Information about gaps 

in the adjacent lane  

Warning message of over 

speeding (violating speed limit 

of 100 km/h) for upcoming 

situation) 

Fixed messages: 

Speed of the leader (blue car) in 

the current lane 

Spacing to the leader (blue car) in 

the current lane 

Advisory message (text message 

for upcoming situation) 
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colour of FVs, vehicle type, and nature of the road blockage) for each drive. In addition, after 1 

each drive, the participants were required to take a short break. (See Ali et al. (2018), for more 2 

information on this strategy.) 3 

4.1.1. Balance between merging and non-merging events  4 

To develop a mandatory lane-changing decision model, the data need to include both merging 5 

and non-merging events. The decision horizon for non-merging events needs to be carefully 6 

selected to avoid the dominance of non-merging events. Note that the decision horizon refers 7 

to the portion of trajectory prior to merging in which the merge decision process likely starts. 8 

For example, the decision horizon of 2 s indicates one merging and one non-merging events 9 

are selected, and as the decision horizon increases, more and more non-merging events are 10 

included. A balance between merging and non-merging events in the data is necessary for 11 

evaluating the behavioural soundness and consistency of mandatory lane-changing decision 12 

models because this balance impacts the model calibration and validation results. However, 13 

with the exception of Kang and Rakha (2017), existing studies ignore this important aspect. 14 

Thus, this study uses the first 5 s data immediately before the merging to maintain a reasonable 15 

proportion of both events (i.e., merging and non-merging). A sensitivity analysis is performed 16 

by varying the waiting period prior to the merging as 2 s, 5 s, 10 s, and the entire waiting period. 17 

Results show that 5 s data before the merging give reasonable prediction for both merging and 18 

non-merging events. It also reveals that: (i) a driver started to actively seek a merging 19 

opportunity in this 5 s period; and (ii) a driver’s decision time window was approximately 2 s. 20 

In modelling driving behaviour, this (latter) measure is widely adopted as the reaction time 21 

(Sagberg and Bjørnskau, 2006, Rakha et al., 2008), and is also consistent with the Australian 22 

Road Standards (AUSTROADS, 1993). See Section 7.1 for more detail. 23 

It is worth mentioning here that there may exist strong correlations between non-24 

merging events and merging events simply because of the time series nature of the data. 25 

However, there are two types of such correlation: genuine and false. The genuine correlation 26 

is the inherent similarity (to some extent) that may exist between how a non-merging decision 27 

and how a merging decision are made, because mandatory lane-changing is a sequential 28 

process where the decision at one time interval is likely to be influenced by the preceding 29 

decision. The false correlation is the correlation falsely created in the data by mislabelling a 30 

traffic situation responsible for merging as one for non-merging. This could be a consequence 31 

of selecting a decision horizon too short. The former should be considered and captured by a 32 

mandatory lane-changing model, while the latter should be avoided because it would only 33 

confound the analysis and lead to ambiguity.  34 

4.1.2. Decision of players in the game 35 

The decision of SV (i.e., to merge or wait) can be directly obtained from the trajectory data; 36 

however, to obtain data on FV’s decision, previous studies adopt subjective methods (including 37 

visual observation for selection of strategies, which could be tricky) that can induce a 38 

significant error, and produce biased results (Liu et al., 2007, Talebpour et al., 2015). To 39 

prevent such error and bias, this study utilises the speed segmentation algorithm (i.e., the 40 

Bottom-Up algorithm) to extract FV’s response/decision. The Bottom-Up algorithm uses a 41 

piecewise linear approximation of a time series data (Keogh and Pazzani, 1998), and often 42 

outperforms its counterparts (that are, Sliding window and Top-down) (Keogh et al., 2004). 43 

This algorithm has been successfully used to segment traffic data in the literature (Zheng et al., 44 

2011). 45 

The Bottom-Up algorithm results in segmented speed profiles, and in a matrix 46 

containing segment numbers and corresponding slopes. Ozaki (1993) proposes an empirical 47 

definition for the steady-state regime: if the acceleration or deceleration rate is within 0.05g 48 
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(“g” is acceleration due to gravity), then it can be termed as “the steady-state regime” (in our 1 

study, it is termed as the “doing nothing” response). Based on this definition (Ozaki, 1993), the 2 

obtained slopes are divided into three categories of FV responses, namely: acceleration 3 

(positive slope > 0.05g), deceleration (negative slope < -0.05g), and doing nothing (slope 4 

between 0.05g to -0.05g). Meanwhile, the changing lane strategy is traced by plotting the 5 

trajectory of FV in two lanes (i.e., the first lane where FV is following SV, and the second lane 6 

where FV takes lane-changing). 7 

As the merging scenario is a typical example of a mandatory lane-changing, the drivers’ 8 

intention is to merge into mainline traffic as soon as possible. However, there is no ground 9 

truth available about when SV wants to (or starts thinking about) merge into the mainline 10 

traffic. In an ideal situation, we require high-quality trajectory data along with drivers’ 11 

intentions informed by the driver him/herself in order to accurately decide the time when the 12 

decision-making process starts. Obviously, obtaining such merging intention is extremely 13 

challenging, if not impossible at all. Thus, we solely rely on the high-resolution trajectories to 14 

extract information about when merging action took place. At each decision interval (which is 15 

2 s, the lane-changing frequency or resolution) prior to the merging point, SV makes a non-16 

merging decision and the corresponding decision of the following vehicle is obtained using the 17 

segmentation algorithm. Similarly, at the last decision interval, the SV decides to merge 18 

(considered as the merging point), which is obtained from NGSIM database, the corresponding 19 

action of the following vehicle is extracted using the aforementioned approach. 20 

4.2. Empirical evidence of the strategies 21 

This study first formulates strategies based on theoretical knowledge, and then verifies them 22 

using field observations and the Bottom-Up segmentation algorithm. The strategies in the field 23 

observations are formulated on the basis of slopes obtained from the Bottom-Up algorithm. 24 

Consider the merging strategy as an example. The last point in SV’s trajectory (i.e., the merging 25 

point) is used to identify the corresponding point in FV’s trajectory. At the corresponding time, 26 

if the slope is positive/negative, FV’s strategy is classified as accelerating/decelerating; if the 27 

slope is between 0.05g and -0.05g, the FV strategy is doing nothing. FV’s strategies are 28 

similarly determined when SV is waiting. 29 

Table 5 shows empirical evidence of the strategies extracted from the I-80-F and 30 

simulator data. Note that the empirical evidence of the I-80-R data is not shown here to avoid 31 

redundancy with the I-80-F data. The data for the model evaluation (either NGSIM or 32 

simulator) properly indicates the game between the players. It can be seen that about 5.3% 33 

(4.1%) of the following vehicles (FVs) in the field (NGSIM data) accelerated (decelerated) in 34 

response to the merging action of the subject vehicle (SV), whilst about 14.3% of FVs remained 35 

unaffected by the merging attempt of SV. Similar proportions of FVs’ actions have been 36 

observed in the simulator data. The corresponding proportions of FVs’ actions (in NGSIM 37 

data) when SV is waiting for another gap are respectively about 4.5%, 8%, and 63.7%, 38 

corresponding to acceleration, deceleration, and doing nothing strategies. This clearly indicates 39 

that there exists a game between SV and the immediate FV. Table 5 also shows that 40 

merging/waiting and changing lane (the shaded rows) are rarely selected in the field for various 41 

reasons such as the high density in the road segment; hence, the changing lane strategy is not 42 

considered for further evaluation. Another reason for leaving this strategy out is that changing 43 

lane altogether becomes a new game for FV. Hence, our final (parsimonious) model contains 44 

three strategies for FV: acceleration, deceleration, and doing nothing. The revised payoffs for 45 

SV and FV are presented in Table 4 (the shaded rows of Table 4 are excluded from the original 46 

payoff matrix). 47 

 48 
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Table 5. Empirical evidence of strategies extracted from the I-80-F and the simulator data. 1 

Strategy 
I-80-F (NGSIM) Baseline (Simulator data) CE (Simulator data)

Count Percentage Count Percentage Count Percentage

S‒1 126 5.28 7 2.27 0 0 

S‒2 98 4.11 20 6.49 17 5.47 

S‒3 340 14.24 51 16.56 61 19.61 

S‒4 0 0 0 0 0 0 

S‒5 109 4.57 4 1.3 2 0.64 

S‒6 190 7.96 18 5.84 20 6.43 

S‒7 1522 63.76 208 67.53 211 67.85 

S‒8 2 0.08 0 0 0 0 

S‒1= Accelerating: Merging; S‒2 = Decelerating: Merging; S‒3 = Doing nothing:  Merging; S‒4 = Changing 2 

lane: Merging; S‒5 = Accelerating: Waiting; S‒6 = Decelerating:  Waiting; S‒7 = Doing nothing: Waiting; S‒8 3 

= Changing lane: Waiting; CE: Connected environment  4 

Note that the data processing procedure is the same for both sets of data (i.e., NGSIM 5 

and the simulator data). 6 

5. Model calibration and validation 7 

5.1. Calibration approach 8 

The calibration process determines a set of model parameters that can minimise the difference 9 

between the observed and the predicted merging decisions. For this purpose, this study adopts 10 

the calibration framework proposed by Liu et al. (2007), as shown in Figure 6. In this 11 

framework, which has also recently been used in Kang and Rakha (2017), the parameters are 12 

estimated by solving a bi-level programming problem. The upper level is a non-linear 13 

programming problem, to minimise the squared difference between the observed and the 14 

predicted actions as follows: 15 ݉݅݊ ∑ ሾ൫ܨ௜ െ ௜ሻ൯ଶݕሺ	෠௜ܨ ൅௡௜ୀଵ ሺܯ௜ െ  ௜ሻሻଶሿ      (6) 16ݖ෡௜ሺܯ

Where, i is an index of an observation; ܨ௜&	ܨ෠௜ 	are the observed and the predicted actions 17 

for FV (acceleration, deceleration, and doing nothing); ܯ௜&	ܯ෡௜ are the observed and the 18 

predicted actions of SV (i.e., merging and waiting); ݕ௜ & ݖ௜ are the probabilities of FV’s and 19 

SV’s choices, respectively, and the optimisers for the upper level programming. 20 

This study adopts the gradient descent method (Spiess, 1990) to minimise the objective 21 

function shown in Equation (6). The gradient descent, also known as “the steepest descent 22 

method”, is an iterative search algorithm that searches the optimal solution proportional to the 23 

negative of the gradient of the function at the current point. The convergence of gradient 24 

descent algorithm is compared with genetic algorithm, which is widely used for calibrating 25 

microscopic models, as shown in Figure 7. It can be seen that both algorithms perform 26 

reasonably well for the developed game theory-based mandatory lane-changing model. Genetic 27 

algorithm, due to its heuristic nature, takes a longer time to converge compared to gradient 28 

descent method. Given the model’s complexity, and the higher number of parameters to 29 

estimate, the gradient descent method is simple and computationally efficient (Mok et al., 30 

2005) and thus, adopted in this study for calibration purpose. 31 

 32 
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 1 

Fig. 6. Calibration framework for this study 2 

 3 

Fig. 7. Comparison of the convergences of the genetic and gradient decent algorithms 4 

The lower level programming seeks the solution for the Nash equilibrium. Obtaining 5 

the entire set of Nash equilibria is generally challenging (Talebpour et al., 2015), and the non-6 

uniqueness of Nash equilibrium makes it even more difficult (Liu et al., 2007). This study 7 

adopts the support enumeration method (Dickhaut and Kaplan, 1993) to determine the entire 8 

set of Nash equilibria. This approach uses graph theory (i.e., the homeomorphic nature of 9 
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graph) to determine Nash equilibria, and solves a system of linear equations corresponding to 1 

a set of strategies with a positive selection probability (Talebpour et al., 2015). The adopted 2 

calibration framework jointly estimates the parameters of payoffs and the probability of 3 

equilibrium selection to accommodate multiple equilibria. This framework is consistent with 4 

the probability of equilibrium selection method, originally developed by Kita et al. (2002). 5 

Table 1 defines the probabilities of different equilibrium strategies and Equation (6) shows the 6 

objective function of the game theory-based model incorporating these probabilities. This 7 

method does not require any priori selection criteria from their resultant actions (Kita et al., 8 

2002). In other words, this method does not require the realised equilibrium and the 9 

corresponding parameter estimates. 10 

The entire set of Nash equilibria are obtained from the nashpy package of python (Nisan 11 

et al., 2007), which is integrated with MATLAB to solve the bi-level optimisation problem.  12 

5.1.1. Calibration results 13 

a) NGSIM data  14 

For calibration of the LCD_TE model, the NGSIM I-80-R and I-80-F data are used. However, 15 

to avoid confusion between I-80-F and I-80-R, the calibration results for the I-80-R data are 16 

not presented in this paper. A total of 2385 observations were obtained for the I-80-F data. As 17 

a common practice in the literature (Liu et al., 2007, Talebpour et al., 2015), 70% of the data 18 

were randomly selected for calibration, while the remaining data were used for validation 19 

purposes. Three hundred and ninety-five (out of 564) merging events, and 1305 (out of 1821) 20 

non-merging events were used for calibration. Table 6 shows the calibration results for the 21 

LCD_TE model. The mean absolute error (MAE) for calibration is calculated using Equation 22 

(7). The MAE for the I-80-F data is 0.15––an error that implies that, on average, the developed 23 

model can accurately capture 85% of mandatory lane-changing decisions. A lower MAE was 24 

obtained for the I-80-R data. 25 ܧܣܯ ൌ 		 ଵ௡ ∑ ௜ݔ| െ ො௜|௡௜ୀଵݔ         (7) 26 

where ݔ represents the actual observation; ݔො	is the model predicted decision; n is the 27 

number of observations; and i is an index of the observations. 28 

Table 6. Model calibration results 29 

Strategy Payoff Parameter I-80-F Baseline CE Parameter I-80-F Baseline CE 

S‒1 

FV 

ଵଵ଴ߙ ଵଵଵߙ 0 1.60- 0.65-   0.29 0.58 0 

S‒2 ߙଶଵ଴ ଶଵଵߙ 0.61- 1.78- 0.13   -0.57 -1.63 -0.6 

S‒3 ߙଷଵ଴ ଷଵଵߙ 1.30 1.87 0.47   3.36 3.87 1.71 

S‒5 ߙଵଶ଴ ଵଶଵߙ 1.55 1.78 2.91   0.48 2.27 1.76 

S‒6 ߙଶଶ଴ ଶଶଵߙ 1.36 1.57 3.34   3.68 1.08 1.07 

S‒7 ߙଷଶ଴ ଷଶଵߙ 1.16 1.05 0.19   0.01 1.25 1.11 

S‒1 

SV 

ଵଵ଴ߚ ଵଵଵߚ 0 6.39 0.80   1.27 2.64 0 

S‒2 ߚଶଵ଴ ଶଵଵߚ 6.38 4.02 0.44   -1.19 -4.65 -0.82 

S‒3 ߚଷଵ଴ ଷଵଵߚ 2.18 5.91 3.20   -1.17 -5.99 -7.51 

S‒5 ߚଵଶ଴ ଵଶଵߚ 2.73 2.25 0.79   0.36 2.16 2.96 

S‒6 ߚଶଶ଴ ଶଶଵߚ 0.88 2.89 0.96   2.46 4.20 2.18 

S‒7 ߚଷଶ଴ ଷଶଵߚ 1.79 1.78 0.20   0.08 6.75 0.64 

 MAE (I-80-F) = 0.15; MAE (Baseline) = 0.15; MAE (CE) = 0.11 

For a description of strategies (S‒1, S‒2, etc.), refer to Table 4; Baseline and CE data are from the advanced 30 

driving simulator; CE: Connected environment 31 
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b) Advanced driving simulator data  1 

The data collected from the advanced driving simulator includes both the baseline (i.e., without 2 

driving aids, and similar to NGSIM) and connected environment scenarios (i.e., with driving 3 

aids). (See Section 4 for more details.) Note that the data used in this study are the same as in 4 

Ali et al. (2018). In the baseline scenario, 78 merging events and 230 non-merging events were 5 

obtained. Respectively, there were 55 and 162 merging events and non-merging events used 6 

for calibration purpose. Table 6 summarises the parameter estimates for the baseline scenario 7 

with the MAE of 0.15. In the connected environment scenario, the number of observations is 8 

the same as in the baseline, and a similar proportion of observations was used for calibration. 9 

However, in the connected environment scenario, the participants (i.e., SVs) avoided using the 10 

merging and acceleration strategy (see Table 5 for more details), perhaps considering it as an 11 

unsafe manoeuvre. Similar and consistent findings are reported in Ali et al. (2018) where 12 

drivers also tend to avoid selecting risky gaps in the connected environment. The parameter 13 

estimates are presented in Table 6. The MAE for this model is 0.11. 14 

5.2. Model validation 15 

This section presents the mandatory lane-changing predictive capability of the model based on 16 

the parameter estimates obtained from calibration. To assess the performance of the model, this 17 

study adopts the confusion matrix (Sun et al., 2018). This matrix consists of various 18 

performance indicators that provide valuable insights into a model’s predictive capability of 19 

mandatory lane-changing behaviour. (These indicators are highlighted by Zheng [2014] in his 20 

review study.) The adopted performance indicators include: true positive (cases where the 21 

model’s predicted decision matches the observed decision); false positive (cases where the 22 

model predicates a merging event, but the observed decision is a non-merging event); detection 23 

rate (the percentage of merging events that are correctly predicted by the model); and false 24 

alarm rate (the percentage of merging events that are falsely predicted by the model). The 25 

model’s performance is also assessed for each strategy so as to gain a more complete 26 

understanding of the performance of the proposed modelling approach. 27 

As Zheng (2014) notes, as well as using the confusion matrix, the performance of a 28 

mandatory lane-changing decision model can be further evaluated at a finer level by using the 29 

time and the location errors of a merging event that are predicted by the mandatory lane-30 

changing decision model. The time error is the time difference between the observed merging 31 

events and the model’s predicted merging events; the location error is the spatial difference 32 

between the observed merging events and the model’s predicted merging events. A mandatory 33 

lane-changing decision model’s time and location errors are two important performance 34 

indicators, as they directly indicate the readiness and suitability of a mandatory lane-changing 35 

decision model for integration into a car-following model in a microsimulation framework.  36 

Note that in some cases (although rare) the developed model is unable to predict a 37 

merging event during the entire simulation period. In such cases, a pragmatic yet reasonable 38 

strategy is adopted. At the end of the acceleration lane, all the merging vehicles would have to 39 

force their way into the through traffic; that is, we override the model’s decision to “merge” at 40 

the end of the acceleration lane, and then calculate these time and location errors accordingly. 41 

While there is no perfect solution to this problem, this approach seems more realistic than 42 

simply removing these vehicles from the simulation in a brute-force manner, as is done in some 43 

microsimulation packages (Zheng, 2014). 44 

 45 

 46 
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5.2.1. Validation results 1 

a) NGSIM data 2 

The LCD_TE model is validated using the NGSIM I-80-R and I-80-F. (Again, because of 3 

confusion, results are presented only for the I-80-F.) Table 7 summarises the validation results 4 

using the confusion matrix that provides information about overall predictive capability of the 5 

model; the prediction for mandatory lane-changing (merging) events and non-merging 6 

(waiting) events; and for each strategy separately. Note that Table 7 also shows the total number 7 

of events/instances that were validated. The overall detection rate of the LCD_TE model is 8 

88%. The model correctly predicts 114 mandatory lane-changing events and 489 non-merging 9 

events. The results imply that overall the LCD_TE model performs well in predicting the 10 

observed merging behaviour, and shows a good predictive capability for each strategy.  11 

Table 7. Model validation results using the confusion matrix 12 

Cases 

I-80-F 
Baseline data from 

simulator
CE data from simulator 

N TP FP 
DR 

(%)

FAR 

(%)
N TP FP 

DR 

(%)

FAR 

(%)
N TP FP 

DR 

(%) 

FAR 

(%)

Overall 685 603 82 88 12 91 81 10 89 11 91 82 9 90 10 

Merging 169 114 55 67 33 23 19 4 83 17 23 18 5 78 22 

Non-merging 516 489 27 95 5 68 62 6 91 9 68 64 4 94 6 

S‒1 42 25 17 60 40 5 2 3 40 60 0 0 0 0 0 

S‒2 28 10 18 36 64 2 2 0 100 0 4 2 2 50 50 

S‒3 99 79 20 80 20 16 15 1 94 6 19 16 3 84 16 

S‒5 29 26 3 90 10 1 1 0 100 0 1 1 0 100 0 

S‒6 31 29 2 94 6 6 6 0 100 0 5 4 1 80 20 

S‒7 456 434 22 95 5 61 55 6 90 10 62 59 3 95 5 

TP: true positive; FP: false positive; DR: detection rate; FAR: false alarm rate; CE: Connected environment 13 

To gain more insights into the model’s performance against different data and quality 14 

of data, the time and the location errors are calculated. The mean time and location errors for 15 

the I-80-F (Table 8) are 9.3 s and 155.4 m, respectively. The mean time error of 9.3 s implies 16 

that, on average, the time difference between the observed and the predicted merging decisions 17 

varies by 9.3 s. Similarly, the mean location error of 155.4 m indicates that the difference in 18 

location of the observed and the predicted merging decisions differs, on average, by 155.4 m.  19 

Table 8. The time and the location errors 20 

Error 
I-80-F Baseline CE 

Mean (SD) Mean (SD) Mean (SD)

Time (s) 9.3 (5.87) 0.42 (0.72) 0.011 (0.016) 

Location (m) 155.4 (47.97) 6.23 (4.93) 1.002 (1.37) 

Paired t-test for the time error 

Paired t-test for the location error 
 

p-value = 0.01 

p-value <0.001 

Using the I-80-R data, consistent results have been found for the confusion matrix and 21 

the time and the location errors. The time and the location errors are lower in the I-80-R than 22 

the I-80-F. At a 95% confidence level, this difference is also statistically significant. 23 

b) Advanced driving simulator data 24 

The baseline scenario data were utilised to validate the LCD_TE model, and the results are 25 

presented in Table 7. The model shows an overall detection rate of approximately 89%, with 26 
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83% and 89% detection rates respectively for merging events and non-merging events. The 1 

model has successfully predicted a higher number of mandatory lane-changings. The predictive 2 

capability of the model against each strategy is also higher, showing the capability of the 3 

developed model to replicate the observed merging behaviour. 4 

The data from the connected environment scenario were used for the LCD_CE model 5 

validation, and results are summarised in Table 7. Notably, the drivers have avoided the 6 

merging and acceleration strategy, which can be unsafe. The predictive capability of this model 7 

is relatively higher than the LCD_TE model using the baseline data. The model predicts the 8 

merging events and non-merging events, with the detection rate of 78% and 95%, respectively. 9 

Although the detection rate for merging events is lower in the LCD_CE model than in the 10 

LCD_TE model, it should be noted that there are no cases related to the merging and 11 

acceleration strategy in this data. This can be a reason for a higher detection rate in the LCD_TE 12 

model for the baseline. The predictive power of the model for validating each strategy is also 13 

found to be reasonable. 14 

The time and the location errors are also calculated for the baseline and connected 15 

environment data, and results show that the errors (i.e., time and location) in the LCD_CE 16 

model are lower than in the LCD_TE model. These errors are significantly different (p-value 17 

<0.001). Notably, the time error in the LCD_TE model is about 38 times higher than in the 18 

LCD_CE model, while the location error in the LCD_TE model is about 6 times higher than 19 

the LCD_CE model. These results imply that the LCD_CE model is able to more accurately 20 

capture the merging behaviour in the connected environment. 21 

In addition to validating the merging vehicle’s actions, this study also validates FV’s 22 

actions. The observed FV behaviour (in terms of acceleration) is compared to the model 23 

predicted actions of FV (accelerating/decelerating/doing nothing). Table 9 shows confusion 24 

matrix for FV. For NGSIM data (I-80-F), approximately 51% actions are successfully predicted 25 

by the model; notably 72% of FV actions during merging scenario are predicted by the model. 26 

The overall detection rates for the baseline and connected environment scenarios are 27 

respectively about 54% and 62%. Prediction accuracy of the model for FV’s action can be 28 

similarly interpreted as in the case of SV. For instance, 60% of FV’s decisions to accelerate 29 

during merging scenario in baseline condition (S-1) are successfully predicted by the model. 30 

The developed model shows a reasonable prediction accuracy in validating the FV actions 31 

during the merging event. 32 

Table 9. Confusion matrix for validating FV actions 33 

Cases 

I-80-F Baseline data from simulator CE data from simulator

N TP FP 
DR 

(%)

FAR 

(%)
N TP FP 

DR 

(%)

FAR 

(%)
N TP FP 

DR 

(%) 

FAR 

(%)

Overall 685 348 337 51 49 91 48 33 53 37 91 56 39 62 38 

Merging  169 121 48 72 28 23 11 12 48 52 23 17 6 74 26 

Non-merging 516 227 289 44 56 68 37 31 54 46 68 38 30 56 44 

S‒1 42 12 30 29 71 5 3 2 60 40 0 0 0 0 0 

S‒2 28 14 14 50 50 2 1 1 50 50 4 2 2 50 50 

S‒3 99 95 4 96 4 16 7 9 44 56 19 15 4 79 21 

S‒5 29 22 7 76 24 1 0 1 0 100 1 0 1 0 100 

S‒6 31 25 6 81 19 6 2 4 33 67 5 3 2 60 40 

S‒7 456 180 279 39 61 61 35 26 57 43 62 35 27 56 44 
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6. Comparison of the models 1 

This section compares the developed LCD_TE and LCD_CE models (collectively referred to 2 

as AZHW models) with the two existing game theory-based mandatory lane-changing models: 3 

Liu’s model for traditional environment (Liu et al., 2007), and Talebpour’s model for 4 

connected environment (Talebpour et al., 2015). In both these models, the two SV strategies 5 

are: merging (or changing lane) and waiting (or not changing lane). Two common strategies 6 

for FV are: yield (i.e., decelerate), and do not yield (i.e., accelerate). Changing lane is an 7 

additional strategy considered by Talebpour et al. (2015).  8 

To compare these existing models with our AZHW models, we remove the third 9 

strategy (i.e., doing nothing) from the AZHW models as it is not considered by the other two 10 

models. We also remove the changing lane strategy of FV in Talebpour’s model, as this strategy 11 

is not observed in the simulator data.  12 

Hence, the previous models and the AZHW models contain two strategies for SV 13 

(merging, and waiting), and two strategies for FV (acceleration, and deceleration). 14 

Furthermore, the payoffs for Liu’s model are calculated based on the equations provided in the 15 

original work (Liu et al., 2007). However, the original work of Talebpour et al. (2015) does not 16 

provide a detailed information about the formulation of payoffs and how accelerations 17 

corresponding to different payoffs were calculated. For a fair comparison of the models, we 18 

need to calculate payoffs for the Talebpour’s model. A simple and pragmatic strategy is to 19 

calculate payoffs using Newtonian equations both for the Talebpour’s and our models. For 20 

example, the payoff for the subject vehicle when it is merging, and the following vehicle is 21 

accelerating in the Talebpour’s model consists of accelerations: (1) with respect to the leading 22 

vehicle in the target lane; (2) with respect to the following vehicle in the target lane; and (3) 23 

change in speed. It is unclear in the original work that how variables like acceleration with 24 

respect to the leader and the follower within the payoffs are calculated whether they are directly 25 

observed from the data or derived using basic variables. Thus, using the Newtonian equations, 26 

we determined above accelerations and used for the model comparison purpose. (Details of 27 

these calculations are presented in Appendix C.)  28 

To fully assess the performance of the AZHW models, we also compare a three-strategy 29 

and a two-strategy AZHW model for FV. (Note that the three-strategy and two-strategy are 30 

two variations of the AZHW models.) 31 

6.1. Comparison results for the traditional environment 32 

For calibration using the I-80-F data, 153 (out of 223) merging events and 140 (out of 199) 33 

non-merging events were utilised. Table 10 shows the calibration results for both models. Note 34 

that we recalibrated the AZHW model by removing the doing nothing strategy for FV. The 35 

MAEs of the AZHW model and Liu’s model are respectively 0.19 and 0.21. 36 

Table 11 presents validation results for both models, using the confusion matrix. It can 37 

be observed that the detection rate of the Liu’s model is 35%, while the corresponding rate for 38 

the AZHW model is 71%. This shows that the AZHW model predicts the mandatory lane-39 

changing actions significantly more accurately than Liu’s model. 40 

Table 12 shows the time and the location errors calculated for both models. The results 41 

depict that the time and the location errors are lower in the AZHW model than in Liu’s model. 42 

More specifically, the time and the location errors in Liu’s model are respectively 3 and 2.5 43 

times higher than in the AZHW model. This indicates the behavioural soundness and 44 

consistency of the AZHW model in predicting the observed merging behaviour. The statistical 45 
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analysis (a paired t-test) further confirms that these errors are statistically significant. 1 

Consistent results have been found for the I-80-R data. 2 

Table 10. Calibration results for the Liu, Talebpour, and AZHW models 3 

Model 
Data 

source 
Player 

Strategies 
MAE 

S-1 S-2 S-5 S-6 

AZHW  
I-80-F 

(NGSIM) 

FV 
ଵଵ଴ߙ ଵଵଵߙ 3.41- =   = 1.28 

ଶଵ଴ߙ ଶଵଵߙ 5.19 =   = -0.43 

ଵଶ଴ߙ ଵଶଵߙ 1.85 =   = 3.70 

ଶଶ଴ߙ ଶଶଵߙ 1.93 =   = 0.82 

0.19 

SV 
ଵଵ଴ߚ ଵଵଵߚ 2.04 =   = 2.01 

ଶଵ଴ߚ ଶଵଵߚ 4.33 =   = -2.52 

ଵଶ଴ߚ ଵଶଵߚ 2.25 =   = -2.47 

ଶଶ଴ߚ ଶଶଵߚ 2.01 =   = 0.70 

Liu 
I-80-F 

(NGSIM) 

FV 
 ଶ = 0.82ߚ ଵ = -1.83ߚ

   ଷ = 3.63ߚ

0.21 

SV 
 ହ = 0.96ߚ ସ = 3.25ߚ

 ଻ = 4.45ߚ ଺ = -1.31ߚ

 ଵ଴ = 0.73ߚ ଽ = 2.81ߚ 2.80 = ଼ߚ

 ଵଷ = 3.07ߚ ଵଶ = -2.17ߚ ଵଵ = -1.36ߚ

AZHW  

CE 

(Simulator 

data) 

FV 
ଵଵ଴ߙ ଵଵଵߙ 0 =   = 0 

ଶଵ଴ߙ ଶଵଵߙ 4.32 =   = -2.80 

ଵଶ଴ߙ ଵଶଵߙ 0.81 =   = 5.29 

ଶଶ଴ߙ ଶଶଵߙ 2.80 =   = 0.63 

0.14 

SV 
ଵଵ଴ߚ ଵଵଵߚ 0 =   = 0 

ଶଵ଴ߚ ଶଵଵߚ 3.25 =   = -2.44 

ଵଶ଴ߚ ଵଶଵߚ 2.60 =   = -3.77 

ଶଶ଴ߚ ଶଶଵߚ 1.20 =   = 0.38 

Talebpour 

CE 

(Simulator 

data) 

FV 
ଵଵ଴ߙ ଵଵଵߙ 0 =   = 0 

ଶଵ଴ߙ ଶଵଵߙ 0.62 =   = -0.53 

ଵଶ଴ߙ ଵଶଵߙ 0.81 =   = 1.66 

ଶଶ଴ߙ ଶଶଵߙ 0.36 =   = 0.75 

0.19 

SV 

ଵଵ଴ߚ ଵଵଵߚ 0 =  ଵଵଶߚ 0 =  ଵଵଷߚ 0 =  = 0

ଵଶ଴ߚ ଵଶଵߚ 1.09 =  ଵଶଶߚ 0.34- =  ଵଶଷߚ 0.53 =  = 0.44

ଶଵ଴ߚ ଶଵଵߚ 0.83 =   = -3.77 

ଶଶ଴ߚ ଶଶଵߚ 0.04 =   = 0.38 

 4 

Table 11. Model comparison using the confusion matrix 5 

Data I-80-F CE 

PI 
 

N TP FP DR 

(%)

FAR (%) N TP FP DR (%) FAR 

(%)

Model A L A L A L A L A T A T A T A T

Overall 129 92 45 37 84 71 35 29 65 12 10 7 2 5 83 58 17 42 

Merging  70 55 17 15 53 79 24 21 76 5 3 2 2 3 60 40 40 60 

Non-

merging 

59 37 28 22 31 63 47 37 53 7 4 5 2 2 100 71 0 29 

S‒1 33 23 9 10 24 70 27 30 73 0 0 0 0 0 0 0 0 0 

S‒2 37 32 8 5 29 86 22 14 78 5 3 2 2 3 60 67 40 33 

S‒5 30 17 15 13 15 57 50 43 50 1 1 0 0 1 100 0 0 100

S‒6 29 20 13 9 16 69 45 31 55 6 3 5 0 1 100 83 0 17 

PI: Performance indicator; A: the AZHW model; L: the Liu’s model; T: the Talebpour’s model 6 

Table 12. Comparison of the time and the location errors 7 

Data source I-80-F CE from the advanced driving simulator

Error 
AZHW model Liu’s model AZHW model Talebpour’s model

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Time (s) 2.3 (4.17) 6.69 (7.55) 0.004 (0.008) 0.012 (0.015)

Location (m) 14.31 (21.86) 34.54 (22.44) 0.569 (1.073) 1.51 (1.38)

Paired t-test for the 

time error 

 p-value <0.001 p-value <0.001 

Paired t-test for the 

location error 

p-value <0.001 p-value <0.001 
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6.2. Comparison results for the connected environment  1 

Table 10 also presents calibration results for the selected strategies using the connected 2 

environment scenario data. Note that 12 (out of 17) merging events, and 15 (out of 22) non-3 

merging events were used for calibration purpose. The MAEs for the AZHW and Talebpour’s 4 

models are respectively 0.14 and 0.19. Table 11 shows validation results for both models. The 5 

overall detection rates for the AZHW and Talebpour models are respectively 83% and 58%. 6 

The AZHW model also shows a high accuracy in validating each strategy.  7 

Table 12 also presents the time and the location errors of both models, and it is observed 8 

that both the errors (i.e., time and location) are lower in the AZHW model than in Talebpour’s 9 

model. The comparison analysis indicates that the time and the location errors in Talebpour’s 10 

model are respectively approximately 3 and 2.65 times higher than in the AZHW model, 11 

indicating that the AZHW model predicts the observed merging behaviour more accurately 12 

than the Talebpour’s model. The differences in the time and the location errors are also found 13 

to be statistically significant (Table 12). 14 

6.3. The three-strategy AZHW model and the two-strategy AZHW model: A comparison 15 

Since earlier LCD_TE models formulate the mandatory lane-changing game with two 16 

strategies for FV, this study extends the strategy space to capture the actual driving behaviour; 17 

therefore, using NGSIM and the simulator data, we compare the AZHW model with three 18 

strategies for FV with a two-strategy AZHW model. Using the I-80-F data, the detection rates 19 

for the model’s overall performance (88% versus 82%), merging events (77% versus 61%), 20 

and non-merging events (99% versus 95%) were higher for the three-strategy AZHW model 21 

than for the two-strategy AZHW model. This suggests that the three-strategy AZHW model 22 

more accurately captures the driving behaviour. In addition, the time and the location errors 23 

are significantly less in the three-strategy AZHW model; a paired t-test further confirms that 24 

this difference is statistically significant.  25 

More importantly, the third strategy – that is, doing nothing – cannot be ignored because 26 

it has a high percentage occurrence in the real-world (see Table 5 for empirical evidence). 27 

Moreover, the advanced driving simulator data were also used to justify the need for the three-28 

strategy AZHW model. In terms of the detection rate, and the time and the location errors, 29 

results confirm the better performance of the three-strategy AZHW model when compared with 30 

its two-strategy counterpart. With the exception of the baseline, the time and the location errors 31 

are also found to be statistically different. Consistent results have also been found when using 32 

the I-80-R data. 33 

7. Discussion and Conclusion  34 

7.1 Discussion 35 

The AZHW models address the shortcomings of existing game theory-based mandatory lane-36 

changing models such as improperly defined strategies, no empirical evidence of strategies, 37 

evaluating model performance using conventional measures and etc (Liu et al., 2007, 38 

Talebpour et al., 2015, Kang and Rakha, 2017). In a game theory-based mandatory lane-39 

changing model, the consideration of strategies for each player and their presence in the 40 

field/real data play a significant role in replicating the observed mandatory lane-changing 41 

behaviour. Although frequently observed in the field, the ‘doing nothing’ strategy was ignored 42 

by prior research in mandatory lane-changing models, which can lead to unrealistic estimates 43 

of observed mandatory lane-changing behaviour. To overcome this issue, this study considers 44 

a comprehensive set of strategies for FV based on a thorough literature review and theoretical 45 

knowledge. Such theoretical strategies are carefully defined using Newtonian equations of 46 

motion to mathematically translate the real driving behaviour. The considered strategies are 47 
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then verified using the real data to determine whether all of the strategies exist in the real data 1 

and how frequent drivers adopt such strategies. Using the Bottom-Up segmentation algorithm, 2 

empirical evidence for different mandatory lane-changing decision strategies was extracted, 3 

and the results suggested that changing lane strategy is rarely selected by drivers in response 4 

to drivers’ merging actions. In addition, changing lane action of FV would become a new game 5 

for FV, which requires separate formulation of discretionary lane-changing by FV in the 6 

adjacent lanes. Thus, changing lane strategy was not further considered.  7 

Calibration of lane-changing (more specifically, mandatory) models is an important 8 

step to assess the performance of the developed models. The selection of lane-changing 9 

frequency is critical in model calibration. This is a common challenge existing in the lane-10 

changing modelling literature, that is, “the lane-changing frequency depends on the number of 11 

times that the decision-making process has been evaluated; this indicates that the duration of 12 

the time step becomes a parameter of the model” (Zheng, 2014). Due to rare merging events, 13 

without a careful and a proper consideration the number of non-merging events can easily 14 

become dominant in the data. We implemented a strategy to minimise its consequence in 15 

mandatory lane-changing modelling. More specifically, since there is no guideline in the 16 

literature on how to tackle this problem and select the appropriate proportion of merging and 17 

non-merging events, a sensitivity analysis has been carried out by varying the decision horizon 18 

(i.e., increasing number of non-merging events). Figure 8 shows the results of sensitivity 19 

analysis of the LCD_TE model using NGSIM data (i.e., I-80-F). It can be seen that when the 20 

decision horizon is 2 s prior to merging, the model shows approximately equal detection rates 21 

for each of the cases (i.e., overall model performance, merging, and non-merging). Three 22 

noteworthy observations in our sensitivity analysis, when the decision horizon increases from 23 

2 s to the entire trajectory, are: (a) the overall detection rate tends to increase; (b) the detection 24 

rate of merging events drastically decreases; and (c) the detection rate of non-merging events 25 

increases. However, the detection rate, when the entire trajectory is considered, does not truly 26 

reflect the model’s performance because the sample is dominated by non-merging events, and 27 

consequently the model tends to over-emphasise non-merging events in order to increase its 28 

detection rate. As such, considering the entire trajectory results in biased estimates of the 29 

model.  30 

Furthermore, it can be seen that when the decision horizon is about 5 s prior to merging, 31 

the detection rate for each case (that is, overall model performance, merging, and non-merging) 32 

are well above than 50%, which is reasonable. Meanwhile, the decision horizon of 2 s shows 33 

better results compared to other decision horizons. But we prefer the decision horizon of 5 s 34 

over 2 s mainly for three reasons: (1) the decision horizon of 2 s gives a 1:1 merging vs non-35 

merging ratio, which is the fewest decision events we can get, and thus contains less 36 

information useful for distinguishing these two types of events; (2) as the 5 s situation before 37 

the merging may have a strong correlation with the situation that suits for merging decision, 38 

traffic conditions within 2 s prior to the merging event may strongly resemble those that lead 39 

to merging events, thus, it would be difficult for a model to meaningfully distinguish these two 40 

types of events using the data in the 2 s decision horizon; and (3) the decision horizon of 5 s is 41 

also consistent with many studies in the literature (Thiemann et al., 2008, Doshi and Trivedi, 42 

2008, Doshi and Trivedi, 2009, Beck et al., 2017).  43 

 44 
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 1 

Fig. 8. Results of sensitivity analysis of LCD_TE model using NGSIM 2 

Empirical evidence shows that observations for different strategies obtained from either 3 

NGSIM or simulator data are unbalanced (refer to Table 5). Such unbalanced representation 4 

across strategies may have some implications on the model performance in the calibration 5 

process, which is a topic for future research. 6 

To assess the mandatory lane-changing models’ performance that generates discrete 7 

outcome, prior research has used conventional measures such as mean absolute error or root 8 

mean square error, which provide little or no information into predictive power and behavioural 9 

soundness of models. As such, this study used the confusion matrix to assess the model’s 10 

performance consisting of the true and false positive, and the detection and false alarm rates. 11 

The confusion matrix is an excellent tool for rigorously and objectively assessing a decision 12 

model’s performance. To further evaluate models’ performance at a micro level, the time and 13 

locations errors are calculated to measure temporal and spatial difference between the observed 14 

and predicted outcomes. The time and the location errors were also used to assess the model’s 15 

ability to estimate the merging occurrence time and location. This ability can be helpful in 16 

improving the realism of microsimulation tools where a mandatory lane-changing decision 17 

model is one of the building blocks. Using these performance indicators, the predictive 18 

capability of the model in general, and for each strategy in particular, has been thoroughly 19 

examined.  20 

 As game theory incorporates decisions of two players, all of the existing studies (to the 21 

best of authors’ knowledge) only validated the actions of merging vehicles while ignoring the 22 

following vehicle actions. This is understandable because the focus of a mandatory lane-23 

changing model is to replicate mandatory lane-changing decision-making behaviour, however, 24 

it does not fully utilise the game theory approach’s efficacy in describing actions of both 25 

players in a merging scenario. Thus, this study also validates FV actions by using confusion 26 

matrix and results show a satisfactory performance of the developed model. A lower prediction 27 

capability of model for FV actions can be attributed to discrete nature of the game theory-based 28 

model whereas FV actions are continuous (such as acceleration, deceleration, etc.).  29 

One of the issues with game theory-based models is the large number of parameters, 30 

which can make model calibration challenging. As such, a simple minimisation algorithm, i.e., 31 

gradient descent method, was used for calibrating all the parameters in this study. However, 32 

the performance of gradient descent method has been questioned in the literature. Thus, genetic 33 
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algorithm was also used for comparison purpose. Both the algorithms showed similar 1 

performance, however, gradient descent method was selected and used in this study due to its 2 

simplicity and computational efficiency.  3 

Another issue with game theory-based models is its scalability. It is already very 4 

complicated to formulate the game for two players. In reality, there can be interaction with 5 

more than two players, especially in the connected environment. Such work is left for future 6 

research. 7 

Since connected vehicular data are not readily available, researchers mainly rely either 8 

on NGSIM or numerical simulations to investigate driving behaviour in a connected 9 

environment. However, neither NGSIM data nor numerical simulations have the realism of 10 

connected environment, and the impact of connected environment on human factors is unlikely 11 

to be represented or approximated by such data. Thus, the data collected from the advanced 12 

driving simulator in this study can be a valuable data source for evaluating and driving 13 

behaviour under a connected environment. Such (simulator) data has been used previously to 14 

record the car-following behaviour of distracted drivers (Saifuzzaman et al., 2015). 15 

Furthermore, the model developed using the driving simulator data has been used to 16 

successfully extract traffic characteristics (e.g., hysteresis) that are observed in NGSIM data 17 

(Saifuzzaman et al., 2017).  18 

The current simulator system is deterministic in nature, and all the information are 19 

programmed. In our study, we intentionally controlled the complexity of the connected 20 

environment for the purpose of ensuring that the workload of a participant is reasonable, the 21 

collected data are reliable, and also the simulated connected environment is consistent with the 22 

state-of-the-practice in the automobile industries on how major car manufacturers have 23 

designed their driving aids (e.g., Adell et al. (2011); Saffarian et al. (2013)). The connected 24 

environment has the potential to provide more dynamic information. However, to ensure 25 

connected environment’s safety, security, and public acceptance (and user friendliness), it is 26 

very unlikely the connected environment in the real life would adopt any complicated 27 

information dissemination strategy, especially for safety-critical events like lane-changing. 28 

Finally, in the advanced driving simulator experiment, we hired a professional 29 

programmer to carefully program FVs’ movements by considering car-following, safety rule, 30 

and SV’s movement. FV’s actions were triggered corresponding to the action of SV by tracking 31 

the steering wheel angle of SV. In our experiment design, FVs were programmed to maintain 32 

the same speed as SV’s to ensure that all the participants face similar vehicular interactions at 33 

the same simulation point. Due to driver heterogeneity, it is difficult to define a representative 34 

speed for FVs in the simulator. As such and to realistically mimic the field conditions, FVs 35 

were scripted to accelerate, decelerate or remain unaffected by the mandatory lane-changing’s 36 

action of SV; these actions mimic how drivers react to mandatory lane-changing attempt in the 37 

real data or NGSIM. Such information of experiment design was not used during the data 38 

processing and game theory model evaluation to avoid favourable but biased evaluation results 39 

of our model. In contrast, we employ the segmentation algorithm to extract the strategies from 40 

the simulator data rather than using the designed interactions.  41 

7.2 Conclusion 42 

As one of the first studies, this study has developed comprehensive mandatory lane-changing 43 

models (i.e., the AZHW models) for modelling drivers’ merging behaviour (a typical type of 44 

mandatory lane-changing) both for the traditional environment and the connected environment. 45 

The connected environment provides information about surrounding traffic conditions that can 46 

be useful for efficient mandatory lane-changing decision-making, and in assisting drivers to 47 
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avoid hazards caused by inaccurate mandatory lane-changing decisions. However, the 1 

mandatory lane-changing decision modelling in the connected environment is still in its early 2 

stages. Thus, by focusing on merging behaviour, this paper develops comprehensive mandatory 3 

lane-changing decision models for the traditional environment and for the connected 4 

environment. The developed models show a high accuracy in replicating observed mandatory 5 

lane-changing behaviour and outperforms the existing models. 6 

The study also compared the developed LCD_TE and LCD_CE models with the Liu’s 7 

model (Liu et al., 2007) and the Talebpour’s model (Talebpour et al., 2015). Using the 8 

confusion matrix, the comparison analyses indicate that our models (the AZHW models) have 9 

consistently performed better than the Liu and the Talebpour models. It has also more 10 

accurately predicted the merging occurrence time and location. This implies that it is more 11 

consistent with the observed merging behaviour, and more suitable for integration into a 12 

microscopic simulation package. Furthermore, the two-strategy AZHW model was compared 13 

with the three-strategy AZHW model to justify the inclusion of the ‘doing nothing strategy’. 14 

This result was consistent with the empirical evidence from the field observations. 15 

Note that the driving behaviour in the real world can be different from that observed in 16 

the simulated environment. Thus, in this study, the LCD_TE model using NGSIM is not 17 

compared with the LCD_CE model using the advanced driving simulator data. Instead, to 18 

capture the relative behavioural differences between traditional and connected environment, 19 

the baseline and connected environment scenario data collected from the advanced driving 20 

simulator experiment are utilised to compare the performance of the LCD_TE and LCD_CE 21 

models. This is because both the driving conditions and the environment are the same in both 22 

scenarios.  23 

This study focusses on modelling mandatory lane-changing behaviour in the connected 24 

environment using game theory approach, and solves the game by using the Nash equilibrium 25 

concept; however, it would be interesting to analyse the impact of different equilibria concepts 26 

on the game outcome, as suggested by Dixit and Denant-Boemont (2014). A similar modelling 27 

framework could be developed for discretionary lane-changing decision-making in a connected 28 

environment. Furthermore, Sharma et al. (2018) highlight the importance of human factors in  29 

microscopic driving behaviour. With the emergence of connectivity, the urgency to incorporate 30 

human factors into LCD models increases; such enhancement/extension of the models will 31 

make them more realistic. 32 
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Appendix A. Calculation of the payoffs for FV 40 

To calculate the projected accelerations, basic equations of motion are utilized to predict future 41 

states. Initial states at the decision time are: ݒௌ௏ = Initial speed (m/s) of SV; ݒி௏ = Initial speed 42 

(m/s) of FV; ܽௌ௏ = Initial acceleration (m/s2) of SV; ܽி௏ = initial acceleration (m/s2) of FV; 43 

RD = remaining distance (m) on the acceleration lane for FV; X = initial gap (distance in m) 44 

between SV and FV. 45 
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The definition of projected time is adopted from Liu et al. (2007) i.e., “the time at which 1 

FV anticipates SV to enter in through traffic”. The projected/final states from FV’s perspective 2 

are: ݒ′ௌ௏ = projected speed (m/s) of SV; ݒ′ி௏ = projected speed (m/s) of FV; ݐ′ௌ௏ = the time 3 

duration (s) that FV anticipates SV would need to complete the remaining distance (RD) on 4 

the acceleration lane; X’ = gap distance (m) between FV and SV when SV joins freeway. 5 ݒ′ௌ௏ ൌ ඥሺݒௌ௏ሻଶ ൅ 2ܽௌ௏ܴݐ ; ܦ′ௌ௏ ൌ ௩ᇱೄೇି௩ೄೇ௔ೄೇ ி௏′ݒ ;  ൌ ி௏ݒ ൅ ܽி௏ݐ′ௌ௏   6 

Calculation of gap (distance between the front bumper of the leader to the front 7 

bumper of the follower) between SV and FV is based on the difference of speed and RD. 8 ܮ௡	indicates the length of vehicle (m) under consideration.  9 

ܺᇱ ൌ ܦܴ ൅ ܺ െ ௡ܮ െ ൫௩ᇲಷೡ൯మିሺ௩ಷೇሻమଶ௔ಷೇ ஽ିெܿܿܣ ;  ൌ ௩ೄೇି௩ಷೇ௧ᇱೄೇ ்௅	ி௏௅௏ܿܿܣ ;  ൌ ௩ಽೇ	೅ಽି௩ಷೇ௧ᇲೄೇ ்௅	ி௏ி௏ܿܿܣ 10 ;  ൌ ௩ಷೇି௩ಷೇ	೅ಽ௧ᇱೄೇ  ்௅ is speed of FV in 11	ி௏ݒ ,்௅ is the speed of LV in the target lane	௅௏ݒ ,

the target lane;  ∆ܸ ൌ ௟௔௡௘	௖௨௥௥௘௡௧	௜௡	௅௏ݒ	 െ ܩ ;௟௔௡௘, which is change in speed	௧௔௥௚௘௧	௜௡	௅௏ݒ ൌ12 ݀ܽ݁ܮ	݌ܽ݃ ൅  which is the available gap.      13 ,݌ܽ݃	݃ܽܮ

   14 

Appendix B. Calculation of the payoffs for SV 15 ܿܿܣெି஺ ൌ ଶሺோ஽ି௩ೄೇ௧ಾషಲሻ௧ಾషಲమ ெି஺ݐ ;  ൌ ඥ௩ೄೇమାଶ஺௖௖೘ೌೣோ஽ି௩ೄೇ஺௖௖೘ೌೣ , which is the waiting time that SV has 16 

to wait on the acceleration lane before merging; ܿܿܣெି஽ ൌ ଶሺோ஽ି௩ೄೇ௧ᇲಾషವሻ௧ಾషವᇲమ ெି஽ݐ ;  ൌ17 ට௩ೄೇమାଶ஺௖௖೎೚೘೑೚ೝ೟ோ஽ି௩ೄೇ஺௖௖೎೚೘೑೚ೝ೟ , which is waiting time that SV has to wait on the acceleration lane 18 

before merging and comprehend the signal of merging from FV.  19 ܿܿܣெି௅஼ ൌ ଶሺோ஽ି௩ೄೇ௧ᇲೄೇሻ௧ೄೇᇲమ ௐି஺ܿܿܣ ;  ൌ 	 ௩ᇱೄೇି௩ೄೇ௧ೈషಲ ௐି஺ݐ ;  ൌ ሺ௩ೄೇି௩ಷೇሻାඥሺ௩ೄೇି௩ಷೇሻమାଶ௔ಷೇ௑௔ಷೇ , which 20 

is the waiting time SV has to wait till FV overpasses it; ܿܿܣௐି஽ ൌ ଶሺோ஽ି௩ೄೇሺ௧ᇱೄೇା௧ೈషವሻሻ௧ೄೇᇲమ  ; 21 

ௐି஽ݐ ൌ ට௩ೄೇమାଶ஺௖௖೎೚೘೑೚ೝ೟ሺோ஽ି௩ೄೇ௧ᇱೄೇሻି௩ೄೇ஺௖௖೎೚೘೑೚ೝ೟ , which is the waiting time SV has to wait to 22 

recognize the invitation of FV; ܿܿܣௐି஽ே ൌ 	 ௩ᇱೄೇି௩ೄೇ௧ೈషವಿ ௐି஽ேݐ ;  ൌ ሺ௩ೄೇି௩ಷೇሻାඥሺ௩ೄೇି௩ಷೇሻమାଶ௔ಷೇ௑௔ಷೇ , 23 

which is the waiting time for SV till FV overpasses it; ܿܿܣௐି௅஼ ൌ 	 ௩ᇱೄೇି௩ೄೇ௧ᇱೄೇ  24 

Appendix C. The payoffs for the Talebpour’s model   25 ்ܿܿܣ௔௥௚௘௧஼ ൌ ௩ᇱೄೇି௩ᇱಷೇ	೅ಽ௧ᇲೄೇ ௅௘௔ௗ஼ܿܿܣ			 ; ൌ ௩ᇱಽೇ	೅ಽି௩ᇱೄೇ௧ᇱೄೇ  ; ∆ܸ ൌ ௟௔௡௘	௖௨௥௥௘௡௧	௜௡	௅௏ݒ	 െ  ௟௔௡௘ 26	௧௔௥௚௘௧	௜௡	௅௏ݒ
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