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A Game Theory-Based Energy Management System
Using Price Elasticity for Smart Grids

Kun Wang, Member, IEEE, Zhiyou Ouyang, Rahul Krishnan, Lei Shu, Member, IEEE,

and Lei He, Senior Member, IEEE

Abstract—Distributed devices in smart grid systems are decen-
tralized and connected to the power grid through different types
of equipment transmit, which will produce numerous energy losses
when power flows from one bus to another. One of the most effi-
cient approaches to reduce energy losses is to integrate distributed
generations (DGs), mostly renewable energy sources. However, the
uncertainty of DG may cause instability issues. Additionally, due
to the similar consumption habits of customers, the peak load
period of power consumption may cause congestion in the power
grid and affect the energy delivery. Energy management with DG
regulation is considered to be one of the most efficient solutions
for solving these instability issues. In this paper, we consider a
power system with both distributed generators and customers, and
propose a distributed locational marginal pricing (DLMP)-based
unified energy management system (uEMS) model, which, unlike
previous works, considers both increasing profit benefits for DGs
and increasing stability of the distributed power system (DPS).
The model contains two parts: 1) a game theory-based loss reduc-
tion allocation (LRA); and 2) a load feedback control (LFC) with
price elasticity. In the former component, we develop an iterative
loss reduction method using DLMP to remunerate DGs for their
participation in energy loss reduction. By using iterative LRA to
calculate energy loss reduction, the model accurately rewards DG
contribution and offers a fair competitive market. Furthermore,
the overall profit of all DGs is maximized by utilizing game theory
to calculate an optimal LRA scheme for calculating the distributed
loss of every DG in each time slot. In the latter component of the
model, we propose an LFC submodel with price elasticity, where a
DLMP feedback signal is calculated by customer demand to reg-
ulate peak-load value. In uEMS, LFC first determines the DLMP
signal of a customer bus by a time-shift load optimization (LO)
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algorithm based on the changes of customer demand, which is
fed back to the DLMP of the customer bus at the next slot-time,
allowing for peak-load regulation via price elasticity. Results based
on the IEEE 37-bus feeder system show that the proposed uEMS
model can increase DG benefits and improve system stability.

Index Terms—Demand response, feedback control, game
theory, loss reduction, optimization theory, price elasticity, smart
gird.

NOMENCLATURE

DG Distribution generation.

DPS Distribution power system.

DLMP Distribution locational marginal price.

DUC Distribution utility company.

uEMS Unified energy management system.

LMP Locational marginal price.

PDR Price demand response.

SE Self-elasticity.

CE Cross-elasticity.

ECS Energy control system.

ECD Energy consumption device.

LRA Loss reduction allocation.

LFC Load feedback control.

PDF Probability density function.

LO Load optimization.

I. INTRODUCTION

T HE SMART grid is seen as the best approach in modern-

ization of electric power systems [1], and the DPS is one

of the most significant parts [2]. The decentralized devices in

the DPS will produce high system loss, while power flow trans-

mit from one bus to another through the branch or some power

devices such as substation, and the similar power-consuming

habit of customer, which is the main reason to cause peak-load

period of power consumption, may aggravate the loss reduction

problem. Thus, energy management system should be designed

to dynamically adapt to DPS by controlling and regulating dis-

tributed devices to make power systems more effective and

reliable. As for the application of energy management, using

load forecasting to regulate energy distribution in microgrid is

very hot in recent research. The authors in [3]–[5] presented an

electric load forecast architectural model to integrate distributed

renewable sources. This is to balance the power generation of

companies and demand of customers.

Integration of DGs in DPS could greatly enhance the com-

petitiveness power of distributed companies in a competitive

environment and provide benefits for energy loss reduction and
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improve stability in the grid [6], [7]. The benefit of DGs in

this paper is mainly considered as the net profit of DGs. Nodal

pricing is one of the most effective mechanism in a DPS [8]

to reduce losses and regulate DG generation, and the LMP is

the most studied and developed method to detect nodal prices

[9]–[12]. Generally, LMP is originally used in transmission sys-

tems. However, if this term is applied in the case of DPS, it

is referred as DLMP. In this paper, we take the original node

price calculated by the wholesale market price as LMP. Then,

the node price calculated by uEMS after integrating LFC signal

is seen as DLMP.

LMP in DPS consists of three parts: 1) cost related to pro-

viding energy (LMP energy); 2) cost of congestion (LMP

congestion); and 3) cost burden to the system due to losses

(LMP losses) [7], [9], [10], such as line losses and substation

consumption. Moreover, congestion is generally not consid-

ered because of the radial topology of a DPS, which commonly

feeds from one point [7]. Consequently, LMP in a DPS mainly

includes energy price and distributed losses, and the energy

price is commonly decided by the reference bus; hence, the

key factor to provide fair competition environment is to fairly

allocate the distributed losses among market participants.

LMP can provider an efficient economic signal for DG own-

ers and investors to regulate their produced amount of energy

with a pretty reasonable perspective [7]–[10]. The authors in

[7] proposed that DLMP signal can be used to regulate DGs

and used for LRA with game theory. In [13], DLMP signal

was also used to control loads and energy storage devices.

In addition, using demand response as a price signal to sta-

bilize a DPS is well studied in several works [14]–[18]. In

[14], demand response used to generate DLMP signal as feed-

back was discussed. Using demand response to reduce peak

demand was studied in [15]. In [16], the management of energy

system in smart grid was introduced to improve energy effi-

ciency by demand response. The authors in [17] focused on

smoothing energy consumption and reducing peak demand.

Demand response in a real-time balancing market clearing with

pay-as-bid pricing was studied in [18].

In the above-mentioned works, the common goals of energy

management in DPS are to solve problems including loss reduc-

tion, benefit increasing, reduced losses allocation, feedback

control, and system stability. The general user scenario for

DPS with DGs and consumption devices connected can be

summarized in Fig. 1.

In this paper, a DLMP-based uEMS is proposed, which opti-

mizes both loss reduction for maximum DG benefit and load

feedback for system stability. The features of uEMS are as

follows:

1) using price signals as communication and control tools;

2) using DLMP with LRA to calculate and allocate system

losses;

3) employing game theory to allocate DG in order to reduce

system loss considering the DLMP and DG’s cost func-

tion;

4) considering LFC with price elasticity to stabilize the

system and reduce peak load and price.

To this end, the major contribution of our work is summa-

rized that it is the first time to propose a uEMS considering both

Fig. 1. User scenario in a DPS.

LRA and LFC. This paper uses DLMP as an economic signal

to control and regulate DPSs.

This paper is organized as follows. In Section II, the the-

oretical approaches for uEMS are reviewed. In Section III, a

system model is presented. In Sections IV and V, game theory-

based LRA and DLMP feedback control using price elasticity

are described in detail. In Section VI, the uncertainty in uEMS

is investigated and results based on a modified IEEE 37-bus

feeder system are provided. In Section VII, we conclude this

paper.

II. REVIEW OF THEORETICAL APPROACHES

A. Existing LRA Method

In this section, the existing LRA method for DPS is briefly

reviewed. In [7], a novel distributed class LMP method for LRA

using game theory was proposed to increase the total DG ben-

efit by clearly calculating energy loss reduction. In [8], a novel

LRA method was proposed for a DPS connected with DGs,

which shows that the contribution of a DG resource can sig-

nificantly reduce energy losses. All these works are based on

the distributed losses for each bus using LMP. The proposed

nodal price for a DPS at time t can be described as follows:

dt = ut

(

1 + ut

∂Losst
∂Pt

)

(1)

where u represents the price at reference bus and d is the

price at nonreference buses. Loss denotes the energy loss

and P represents the active power. Shapley, Aumann–Shapley,

and nucleolus-based methods are the most common methods

of game theory approaches in solving LRA in DPS. In this

paper, Shapley value method has been chosen for solving LRA

problem due to its good performance and simplicity of imple-

mentation [7]. According to [7], the Shapley value of a game v
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is the average of the marginal vectors and can be represented as

follows:

ϕi(v) =
∑

i∈s

W (|s|)× [v(s)− v(s− i)] (2)

W (|s|) =
(n− |s|)!× (|s| − 1)!

n!
(3)

where i represents the DG player taking part in reduced amount

of losses, |s| is the number of members within each coalition,

and n is the total number of players in the game. v(s− i) is

the reduced amount of losses related to coalition s when player

i does not participate. W (|s|) is the weighting factor of the

Shapley value.

B. Existing Demand Response Method

It is challenging for a DPS to balance energy supply and

load, because both may change rapidly and unexpectedly from

different factors such as customer demand. The pricing signal

is considered as one of the dominant approaches for energy

flow control and energy management [14] that uses demand-

side response to operate the system due to the price elasticity

mechanism. In [19], the demand-side management to reduce

peak-to-average ratio was introduced in smart grid. The elastic-

ity of the load demand was discussed extensively in [20] and

can be defined as follows in a DPS:

E =

(

∆L

L0

)(

LMP0

∆LMP

)

(4)

where ∆L is the change of load while L0 is the nominal

operating level of load, LMP0 is the nominal price of energy

(cents/kWh), and ∆LMP is the change in LMP. Assuming that

the change in LMP is small and the demand response is linear,

then for a given E, the demand response model can generate a

corresponding load response according to the change in LMP.

In terms of load response, two kinds of elasticity are consid-

ered: 1) SE; and 2) CE [14]. SE is the part of load response

due to concurrent change in price, whereas CE denotes the load

response due to preceding change in price. In a realistic scenario

for a DPS, some price-incentive devices have the capability

to detect nodal prices and schedule power consumption cor-

respondingly, which could be considered as SE. On the other

hand, customers may change the consumption behavior only

after they receive the bill or are told about a different pricing

scheme, where the load response (called CE) may arrive after

the load changes. Therefore, the total demand response can be

calculated as follows:

∆Lt = L0SEt

∆LMPt

LMPt

+
i<t
∑

i=1

LtCEt,i

∆LMPj

LMPj

(5)

where ∆Lt and Lt are the change in load and nominal load at

time-slot t, respectively. SE is the self-elasticity and CE is the

cross-elasticity.

In [13], an energy management model using DLMP as a con-

trol signal in a DPS was proposed. The change in load is seen

as a control signal that is fed back to the DLMP, allowing for

Fig. 2. uEMS model.

an updated DLMP to improve system stability. The closed-loop

calculation of the DLMP can defined as follows:

DLMP = LMP+ s+B∆L (6)

where s is a small perturbation signal in price (cents/kWh) and

B is the gain of control system.

III. SYSTEM MODEL

We consider a DPS that consists of a set of customers U
and DGs G, where customers and DGs are the representa-

tives of energy consumer and provider. Other devices (e.g.,

capacitor bank unit) can be seen as customers that consume

energy or DGs that mainly provide energy. Each customer

Um ∈ U(0 < m ≤ M) is equipped with an ECS and owns a

number of ECDs, where M indicates the total number of cus-

tomers. The ECS in each customer can communicate with the

DPS as well as the ECDs within it. Through the ECS, each cus-

tomer can control the consumption scheduling of each ECD.

Each DG Gk ∈ G(0 < k ≤ K) consists of cooperative genera-

tors, and DUCs can control the DG Pk by demand, where K is

the number of DG that is controlled. Here, only active power is

considered to simplify the calculation procedure.

In this paper, we present a model named uEMS as shown

in Fig. 2, which controls the DGs and customer consump-

tion to improve the system stability and reduce system losses

while maximizing DG benefits. Here, we consider 24-h sample

period to study the model and the entire sample period interval

(e.g., 1 day) is divided into T time-slots with equal duration,

whose set is denoted by t = 1, 2, . . . , T (e.g., 24 time-slots

each of which has 1-h duration). We assume that the samples

of energy consumption are determined at the beginning of the

entire scheduling interval (e.g., 0:00 A.M.).

Fig. 2 shows the system model of uEMS for the DPS, where

red lines represent data transfer links and black lines indicate

algorithm processing steps. As shown in the figure, the whole-

sale market provides the DPS with stable energy power and

dynamically changed uniform price. As for DGs, LRA is used

with game theory to regulate DG according to its DLMP price

and cost function, which guarantees that the total DG benefit is

maximized due to game theory mechanism. As for customers,

LFC is used to calculate a price signal to feedback to the



1610 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 11, NO. 6, DECEMBER 2015

DLMP calculation according to the current trend of customer

demand. Then, uEMS can regulate the DLMP price of each bus

accordingly. As a result, customer demand is under control and

system stability is improved. Sections IV and V will give the

description of uEMS in detail.

IV. GAME THEORY-BASED LRA

This section introduces the game theory-based LRA, which

determines the DLMP of each DG and customer in a DPS,

and calculates the generation and involved distribution loss of

each DG.

A. Loss Reduction Allocation

To achieve a fairly competitive electricity market environ-

ment, a game theory-based loss allocation is proposed to calcu-

late system total losses and distributes them to each DG fairly.

Although system losses are inevitable in a DPS, regulating DG

can reduce the amount of system total losses. Specifically, the

benefit from the reduced amount of system losses is allocated

to each DG as a reward, which will encourage DGs to supply a

more effective power system. This method is much better than

allocating system losses directly to DG in proportion, because

individual DGs can regulate their own generation by obtaining

rewards or punishments in loss allocation.

A DPS without any connected DGs is defined as a base sys-

tem, so that the reduced system losses can be calculated, as

more DGs are connected to it. Equations (7) and (8) are defined

by system loss v(s)

v(s) = Lossbase − Loss(s) (7)

v(s− k) = Lossbase − Loss(s∩k̄) (8)

where s is a set of different DGs, v(s) is the loss reduction of

s, and s∩k̄ is the set of s without Gk.

Since each DG may influence system total losses, optimal

DG will minimize system total losses. In this model, each DG

can be seen as a player in a cooperative game, where each

player (generation is larger than zero) may influence system

total losses, and the reduced amount of losses can be considered

as the benefit of a game theory coalition and its allocation strat-

egy. In this way, the LRA problem can be solved by the Shapley

value method of game theory and LRA can be obtained by

LRAk(v) =
∑

k∈s

W (|s|)× [v(s)− v(s− k)] (9)

W (|s|) =
(K − |s|)× (|s| − 1)!

K!
. (10)

Equation (9) is the utility function of game theory used to

solve the loss reduction problem. LRAk denotes the reduced

loss belonging to Gk due to its participation, n is the number of

DG, and |s| is the number of DG in set s. Then, the DLMP

deviation ∆d of the kth DG to calculate its next iteration

DLMP can be obtained by

(∆d)it,k =
LRAi

t,k × ut

P i
t,k

. (11)

B. Iterative Method for LRA Calculation

In uEMS, the status of both the DG and customer is needed,

including the generation, DLMP, loss, and benefit of DG, as

well as consumption and DLMP of customer. However, because

of the private agents in a DPS, the status information in each

time-slot is unknown for DUCs. To this end, an iterative method

is introduced to obtain status information of DG and customer

in uEMS.

In this iterative method, we set an initial time-slot t = 0
and calculate status information of each time-slot by iteration.

In LRA, the cost Ct,k of each DG Gk in time-slot t can be

obtained by

Ct,k = akP
2
t,k + bkPt,k + ck (12)

where Pt,k is the generation of Gk and ak, bk, and ck are the

coefficients of Gk. Initially, all DLMP dt,k of DG and customer

equal to the uniform price u0 of wholesale market, and the

generation P0,k of each Gk is set to a fixed value that meets

C0,k = u0 in (12). DG and DLMP of each bus at all time-slots

can be calculated by

P i+1
t,k =

dit,k − bk

2ak
(13)

di+1
t,k = ut + (∆d)it,k +B × feedback

t,k (14)

where i denotes the ith iteration, dt,k is the DLMP of kth DG

in t time-slot, ∆d is the deviation of DLMP in the ith iteration,

B indicates the gain of load feedback DLMP signal [e.g., B =

0.033, which could be obtained by performance evolution as

the similar process as in [14], where the optimal value of B is

accessed by integral square error (ISE)], and dfeedback indicates

the feedback of DLMP signal, which is calculated by LFC with

price elasticity of uEMS.

Equations (12)–(14) can be used to calculate the optimal DG

and DLMP. However, because of the interaction of DG, DLMP,

and shared reduced loss, it is difficult to calculate the accurate

value of each other by some equations directly. Hence, an iter-

ative method for LRA calculation is proposed to deal with this

challenge. The pseudocode of LRA is described in Algorithm

1. It should be mentioned that LRA will be run in each time-slot

t of samples.

Algorithm 1. Implementation of LRA using game theory

Inputs: u0, Load[] (energy consumption load of consumers)

Outputs: LRA[], d[], P []

1. LRA(){
2. d[] = u0 // Initialize DLMP of each bus to wholesale

market price u0

3. P [] // compute DG generation using equation (13)

4. PPrevious[] = P [] //initialize previous generation to cal-

culate deviation

5. ∆P [] = P [] //initialize generation deviation

6. WHILE(max ∆P [] < ε) DO{//terminal criterion

7. FOR s ∈ S DO{

8. Loss[] // calculate loss with DG coalition connected

9. }ENDFOR
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10. LRA[] // calculate shapley value using Loss[] by

equation (9–10)

11. ∆LMP [] // calculate LMP deviation using LRA[] by

equation (11)

12. d[] = d[] + ∆LMP []
13. ∆dfeedback[] // run LFC with d[], Load[]
14. d[] = d[] + ∆dfeedback[]
15. P previous[] = P []
16. P []//compute DG generation using equation (13)

17. ∆P [] = P []− PPrevious[]
18. }ENDWHILE

19. }ENDLRA

Remark: The iterative method for LRA of uEMS can con-

verge to a given terminate criterion ε that satisfies the following

condition:

max{P i+1
DG,t,k − P i

DG,t,k} ≤ ε.

The iterative convergence is analyzed in Section VI-C.

LRA operates until the maximum of deviation of each DG is

less than a given terminal criterion ε.

In each loop cycle, LRA first calculates the generation P [] of

each DG by each DG’s DLMP d[], then the optimal coalition

s and the reduced loss of DG due to the coalition are detected.

This reduced loss of each DG is considered as the benefit to

remunerate DG and allocated to its nodal price, which is indi-

cated by the deviation of LMP (∆LMP[]). Considering that DG

is modeled as a constant power factor that is regulated by nodal

price according to its cost function, the increment of nodal price

for DG bus will affect its generation in return. Therefore, the

new generation of each DG is calculated by ∆LMP[], and the

maximum is used as a terminal criterion.

Meanwhile, the benefit of the DUC for a base system is

represented as follows:

benefitt,base = utDemandt − dt(Demandt + Losst,total)
(15)

where Demandt denotes the total demand of all customers in

time-slot t and Losst,total represents the total loss of all buses

for DPS without any DG.

The benefit of DUC for a DPS with DLMP at DG-connected

busses is shown in (16)

benefitt,dps = utDemandt − dt(Demandt + Loss′t,total)

−

K
∑

k=1

Pt,k(dt,k − ut) (16)

where Loss′t,total represents the total losses of all buses in DPS

with DGs connected. The deviation of DUC’s benefit can be

calculated by subtracting (15) from (16)

∆benefitt = dt(Losst,total − Loss′t,total)−
K
∑

k=1

Pt,k(dt,k− ut)

(17)

where K is the number of DGs, and the term Losst,total −
Loss′t,total is the reduced loss due to the contribution of con-

nected DGs.

Fig. 3. Roles of time indexes t and h for CE.

V. LFC WITH PRICE ELASTICITY

By utilizing price elasticity, a load controller is designed

to analyze the changes in the load, and a DLMP feedback

price signal will be obtained. This feedback will influence the

nodal price, which will have an impact on DG and customer

consumption allowing for the system load to stabilize.

A. LO Algorithm

In actual demand response system, as the adjusting extent for

customer demand varies widely for different DPSs and at differ-

ent time-slots, CE factor needs to be determined up-to-date due

to the trend of load changes and LMP changes. Thus, a mecha-

nism called LO algorithm is employed in uEMS to calculate the

real-time CE factor. It should be noted that for each time-slot t,
the DLMP and load of the previous time-slot t− 1 are known,

and the DLMP and load for future time slots are the variables

to be determined. According to [21], FCE,t is used to illustrate

the CE factor of demand response. FCE,t is only affected by a

part of previous time-slots, i.e., the price change may delay a

period of time to affect the load change. In this paper, we use

parameter h to indicate this delay, and the CE mechanism can

be described by a function with a variable between t− h and t,
as shown in Fig. 3.

Thus, CE factor vector FCE,t in time-slot t can be defined as

follows:

FCE,t = LO(Lt−h, Lt−h+1, . . . , Lt). (18)

LO algorithm can calculate updated FCE,t according to

real-time changes of price and load, and parameter h could

dynamically change due to consumption behavior. To simplify

LO algorithm calculation for illustration, however, a predicted

array is used to calculate FCE,t. Predicted array is a circular

queue including 24 elements for each time-slot t, and elements

from t− h to t are used to calculate FCE,t, as shown in Fig. 4.

This 24-element predicted array is used to calculate the

CE factor vector using cross-product with load change vector,

and then load feedback signal is calculated by this CE factor

vector.

B. Price Elasticity Improvement Description

The block diagram of LFC for uEMS is shown in Fig. 5, in

which linear control theory is used instead of nonlinear control

theory because of the usage of small signal analysis.

In Fig. 5, the change in load demand is detected by price

elasticity. The load elasticity signal E is generated by a LO

algorithm and is used to feedback the DLMP signal. LFC
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Fig. 4. Predicted array for CE factor calculation.

Fig. 5. LFC with price elasticity model diagram.

obtains the nodal price LMP of customers, while the system

load is obtained via LRA. The LO algorithm acts as a policy that

detects the load changes and generates related CE factors for

demand response. The LFC then generates an updated DLMP

signal, which is sent to LRA and is used to calculate a load

value for the DPS. Furthermore, the DLMP signal is sent to the

DG, so that the DG can regulate its generation.

In a DPS, load elasticity E can be defined in (4). Considering

that the change of DLMP is small in a short-time period, we

assume that the load response remains linear. For a given value

of E, the model creates a load response to a change in the

DLMP according to (4). In this paper, both the SE and the CE

of load response are considered and the combination of them

can be defined in (5). To simplify the study, we consider the

SE and CE as constants, which are calculated by analyzing the

24-h historical data in an actual DPS.

As a result, the total load response can be defined as follows:

∆Lt = Lt,0FSE,t

∆LMPt

LMPt

+

i<t
∑

i=t−h

FCE,tLt

∆LMPi

LMPi

,

(0 ≤ h ≤ t) (19)

where FSE,t and FCE,t indicate the SE factor and CE factor of

time-slot t, respectively. Generally, FSE,t is the same value for

all time-slot while FCE,t is the tth element calculated by LO

algorithm as described in Section V-A.

Thus, (11), (14), and (19) show the new DLMP value at each

bus of uEMS. The pseudocode of LFC is shown in Algorithm 2.

It should be noted that LFC is called by LRA as a subfunction

as shown in Fig. 2. LFC is designed to calculate a load feedback

price signal with the input of LMP and load of each bus in (19).

The SE factor FSE and CE factor vector FCE[] are calculated

by previous load and newest LMP.

Algorithm 2. Implementation of LFC with price elasticity

Inputs: Load[], d[]
Outputs: ∆dfeedback

1. LFC(){
2. LMP [] // initialize with input LMP parameter

3. L[] // initialize with input load parameter

4. FSE // calculating self-elasticity factor using previous

load and LMP

5. FOR i = 0:1:h DO{

6. FSE // calculate cross-elasticity vector using LO array

and L[]
7. }ENDFOR

8. ∆L // calculating load deviation using equation (19)

9. ∆dfeedback = B ∗∆L
10. return ∆dfeedback

11. }ENDLFC

Load[] and d[] are two input parameters that contain cus-

tomer demand and LMP of each bus. A DLMP deviation is

calculated and returned to the caller LRA function. In LFC

function, LMP of each bus is initialized as an input parame-

ter LMP array and the load of each bus is stored in L[], which

is used to calculate SE and CE factors. A predicted LO circu-

lar queue is used to calculate the CE factor vector as shown in

Fig. 4.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

In this section, the proposed uEMS model is simulated and

analyzed in modified IEEE 37-bus feeder system with DGs con-

nected to buses 6, 9, and 15, which are mostly the center of the

test system, as shown in Fig. 6. The coefficients (a and b) of

DG’s cost function are shown in Table I from Proposition 1. It

should be mentioned that coefficient c is related to fixed costs.

Therefore, this parameter does not have influence on output.

Proposition 1: Coefficients of DG can be calculated by two

given marginal price (d1, d2) and marginal product (PDG,1,

PDG,2) of DG by the following equations:

a =
d1 − d2

2(PDG,1 − PDG,2)
(20)

b = d1 − PDG,1
d1 − d2

PDG,1 − PDG,2
. (21)

Proof: For a given DLMP dt of DG at time-slot t, from

(12) and (15), we have

Benefit(PDG,t) = dt · PDG,t − (aP 2
DG,t + bPDG,t + c).

(22)



WANG et al.: GAME THEORY-BASED EMS USING PRICE ELASTICITY FOR SMART GRIDS 1613

Fig. 6. Modified IEEE 37-bus feeder system.

TABLE I

COEFFICIENTS OF DG’S COST FUNCTION

To maximize the DG’s benefit, the above-mentioned equation

can be solved as follows:

PDG,t =
dt − b

2a
. (23)

Given two set of marginal price (d1, d2) and marginal product

(PDG,1, PDG,2), we have

PDG,1 =
d1 − b

2a
(24)

PDG,2 =
d2 − b

2a
. (25)

Then, coefficients a and b can be obtained. �

To analyze the performance of uEMS from the viewpoint of

loss reduction, DG, DG benefit, and load stability for an actual

DPS, the uncertainty in spot price, and demand scenarios must

be modeled. Price and demand are defined by two different pdfs

[22]. To describe their stochastic features, the processes of spot

price and demand scenarios need to be statistically analyzed

making the pdf of spot price and load approach real DPS. To

this end, load and wholesale market price in ISO New England

[23] are used to generate the wholesale market price and system

total load in every 5 min for 24 h, with an active power demand

peak of 124 WM.

B. Simulation Results Analysis

In this section, the uEMS performance is analyzed and

compared to existing related algorithm. The simulation con-

sists of two different parts: 1) LRA performance; and 2) LFC

performance.

The performance of the game theory-based LRA algorithm

in uEMS is analyzed and compared to the existing uniform

price method (UNIF) and LMP method (LMP) in loss reduc-

tion, DG’s benefit, and DG’s DLMP price [7]. To find out how

uEMS regulate DG and how DG combinations infect the DPS,

three different DGs’ combination scenarios are employed to

analyze the uEMS model.

1) Base case (BASE) is an IEEE 37-bus feeder power system

without any connected DGs.

2) Single DG case (SD) is the base case with a DG connected

at bus 6, 9, or 15: SD#1 stands for DG#1 connected at bus

6, SD#2 stands for DG#2 connected at bus 9, and SD#3

stands for DG#3 connected at bus 15.

3) Multiple DG case (MD) is the base case with all three

DGs connected to their respective buses, as shown in

Fig. 6.

Fig. 7 shows the system losses for a 24-h time-slot of the SD

and the MD scenarios. Fig. 7(a)–(c) compares system losses

when UNIF, LMP, and uEMS are used in SD#1, SD#2, and

SD#3, respectively. Fig. 7(d) compares system losses using

UNIF, LMP, and uEMS for the MD case. It is obvious that

uEMS significantly decreases system losses compared to UNIF

and LMP. This improvement in system loss reduction is due to

LRA, which regulates each DG to the optimal level. In uEMS,

cooperation among DGs is considered. In the UNIF and LMP

methods, a global optimal solution is hard to obtain, because of

the complex coaffection between DGs, which causes total sys-

tem losses to increase. As shown in Fig. 7(d), the system losses

of BASE are significantly larger than that of SD and MD, which

illustrates that integrating DG in a DPS can effectively reduce

system losses.

Fig. 8(a)–(c) shows the DG benefits for different methods

(UNIF, LMP, and uEMS) of DG#1, DG#2, and DG#3 for SD#1,

SD#2, and SD#3, respectively. From the figures, we can see that

in SD#1 and SD#3, DG benefits are increasing but DG bene-

fit in SD#2 is decreasing. This is because the employed game

theory-based LRA regulates DGs to obtain maximum total ben-

efit. Fig. 8(d) illustrates the MD case with three connected DGs

and shows that although the benefit for a single DG may be

decreased, the total benefit of all the three DGs with uEMS

significantly increases the incremental benefit.

The customer LMP of uEMS with and without LFC is shown

in Fig. 9. It can be seen that the fluctuation of customer LMP in

uEMS with LFC is much smaller because the LFC can generate

a feedback signal from the impact of price on load and regu-

late the nodal price of customer buses, which makes customer

demand stable.

The energy consumption for customers with and without

LFC is shown in Fig. 10. Clearly, uEMS with LFC can reduce

the energy supply of wholesale market in peak load period.

When customer load increases, a positive DLMP will be gen-

erated to increase the nodal price of customer buses, which

stimulates DGs in the DPS to make generation.

C. Iterative Convergence Analysis

To fairly allocate distributed loss to each DG, an iterative

method is used to calculate the deviation of distributed losses in
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Fig. 7. System loss for uniform price, LMP, and uEMS. (a) System losses in SD 1 case. (b) System losses in SD 2 case. (c) System losses in SD 3 case. (d) System

losses in MD case.

Fig. 8. DG benefit for uniform price, LMP, and uEMS. (a) DG benefits in SD 1 case. (b) DG benefits in SD 2 case. (c) DG benefits in SD 3 case. (d) DG benefits

in MD case.

Fig. 9. Customer load for uEMS with and without LFC (price regulation for

load shift: peak value of LMP reduces 5.6% and valley value of LMP increases

about 15%).

uEMS. In this part, the convergence process of iterative LRA is

analyzed. As shown in Fig. 11, three curves show different sys-

tem losses with DG, each of which can be seen as a parabolic

curve with only one minimum value P optimal
DG,1 , P optimal

DG,2 , and

P optimal
DG,3 for DG1, DG2, and DG3, respectively. It should be

noted that the minimum value is the optimal status for loss

reduction, where DG has optimal generation and system loss

is minimum.

When the wholesale market price is 34.5 ($/kWMh) obtained

in an iterative time-slot, the convergence process of LRA is

shown in Fig. 11, where P i
DG,k indicates the system loss with

generation for the kth DG in the ith iteration.

Fig. 10. Comparison of energy consumption for customers (energy regulation

for load shift: peak value of energy consumption reduces 6% and valley value

of energy consumption increases about 2%).

In this iterative method, each DG initially sets its DLMP to

wholesale market price and its generation as P 1
DG,1, P 1

DG,2, and

P 1
DG,3, respectively. The DG hence can be calculated accord-

ing to (13) when the DG’s marginal cost is set to equate

its DLMP. Then, incremental DG (from zero to P 1
DG,1 as

for DG1) may reduce the system loss and lead to an incre-

mental of DLMP due to (11). Thus, DG may also change

to a new value as P 2
DG,2 (P 2

DG,1 and P 2
DG,3 are not labeled

because they are exactly the same as P 1
DG,1 and P 1

DG,3, respec-

tively) because the DG intends to maximize its benefit. LRA

iterative method thus loops around to calculate generation

and reduces loss due to DG participant and DLMP until the
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Fig. 11. System loss with DG generation (Here ε = 0.05, convergence out-

puts: P i
DG,1 ≡ 20, P

i(1,2,3,4)
DG,1 = {16.9, 18, 18.2, 18.201}, P i

DG,3 ≡ 0.).

terminal condition is satisfied by ∆P i < ε as P 4
DG,2. As a

result, LRA achieves maximum benefit of DG and reduces

system loss.

Additionally, the speed of convergence for the proposed iter-

ative method is also recorded within the per-5-min simulation

of 24-h (total 288 times). 98.1% simulations converged after

only one or two loops. Specifically, 87.4% of the simulations

converged after one loop, 10.7% after two loops, and only 1.9%

after more than two loops. It is shown that this iterative method

in LRA has a high speed of convergence.

VII. CONCLUSION

In this paper, we proposed a unified energy management

model called uEMS to realize loss reduction and maintain

stability for a power system in a smart grid. The key fea-

ture in uEMS is using a price signal to regulate distributed

devices throughout the whole DPS. Additionally, game the-

ory is employed in a loss reduction algorithm to fairly allocate

the losses reduced due to DG participation, and an iterative

method is used to approximate the optimal generation scheme

for DGs to obtain maximum benefits. Furthermore, a demand

response mechanism is used to generate a DLMP signal as

feedback to regulate the DLMP price for each bus. Both LRA

and LFC are well integrated using a DLMP signal for the

DPS. Simulation results based on a modified IEEE 37-bus

system show that uEMS can lead to a more fairly competi-

tive environment for DGs, where the model can increase DGs’

benefits, reduce system losses, and improve stability. In the

future, potential cooperative incentives [24] and communica-

tion requirements [25], [26] will be considered in this uEMS

system.

APPENDIX

GLOSSARY

See Table II.
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