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Abstract

Background: The convolution approach to thyroid time-activity curve (TAC) data

fitting with a gamma distribution convolution (GDC) TAC model following bolus

intravenous injection is presented and applied to 99mTc-MIBI data. The GDC model is

a convolution of two gamma distribution functions that simultaneously models the

distribution and washout kinetics of the radiotracer.

The GDC model was fitted to thyroid region of interest (ROI) TAC data from 1 min per

frame 99mTc-MIBI image series for 90 min; GDC models were generated for three

patients having left and right thyroid lobe and total thyroid ROIs, and were contrasted

with washout-only models, i.e., less complete models. GDC model accuracy was tested

using 10 Monte Carlo simulations for each clinical ROI.

Results: The nine clinical GDC models, obtained from least counting error of counting,

exhibited corrected (for 6 parameters) fit errors ranging from 0.998% to 1.82%. The range

of all thyroid mean residence times (MRTs) was 212 to 699 min, which from noise

injected simulations of each case had an average coefficient of variation of 0.7% and a

not statistically significant accuracy error of 0.5% (p = 0.5, 2-sample paired t test). The

slowest MRT value (699 min) was from a single thyroid lobe with a tissue diagnosed

parathyroid adenoma also seen on scanning as retained marker. The two total thyroid

ROIs without substantial pathology had MRT values of 278 and 350 min overlapping a

published 99mTc-MIBI thyroid MRT value. One combined value and four unrelated

washout-only models were tested and exhibited R-squared values for MRT with the GDC,

i.e., a more complete concentration model, ranging from 0.0183 to 0.9395.

Conclusions: The GDC models had a small enough TAC noise-image misregistration

(0.8%) that they have a plausible use as simulations of thyroid activity for querying

performance of other models such as washout models, for altered ROI size, noise,

administered dose, and image framing rates. Indeed, of the four washout-only models

tested, no single model approached the apparent accuracy of the GDC model using only

90 min of data. Ninety minutes is a long gamma-camera acquisition time for a patient,

but a short a time for most kinetic models. Consequently, the results should be regarded

as preliminary.
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Background

The use of technetium-99m hexakis-methoxy-isobutyl-isonitrile (99mTc-MIBI) as a

thyroid and parathyroid imaging agent was first proposed in the late 1980s [1]. Since its

inception, 99mTc-MIBI scintigraphy has been shown to be more accurate and sensitive

than comparable imaging techniques and is currently used to detect and localize differen-

tiated thyroid cancer [2, 3], parathyroid adenoma [1, 4], parathyroid hyperplasia [5, 6],

and parathyroid carcinoma [4, 7].

Several 99mTc-MIBI image acquisition protocols and analysis techniques have been

devised over the last quarter century to aid in the detection of abnormal thyroid and

parathyroid tissue, these include dual-phase scintigraphy [8], factor analysis of a dynamic

scan [9], and time-activity curve (TAC) analysis of a dynamic scan [10]. TAC analysis

provides a means of differentiating between normal and abnormal tissues by comparing

of radiotracer uptake and washout in different regions of interest (ROIs). 99mTc-MIBI does

not undergo significant chemical changes in the body and therefore is passively taken up

in the thyroid and parathyroid tissues and is cleared rapidly from the blood [11]. TAC

analysis also has the potential to provide detailed pharmacokinetic information from

ROIs. Pharmacokinetic parameters, such as the tracer mean residence time (MRT) and

elimination half-life can be used to quantify and characterize disease states, which

ultimately may aid in the diagnosis of thyroid and parathyroid disease.

It is a common practice to inject a bolus of a drug into a vein, but to take images or

venous samples elsewhere. Before the time of first arrival of activity in the sampling re-

gion, there is no drug and no signal in that remote site. Most pharmacokinetic bolus

models ignore this initial mixing and are washout-only models having a maximum

amplitude initially. Thus, at the earliest times following a bolus, there is a severe mis-

match between a washout model and the signal it models. Consequently, most of the

routinely used pharmacokinetic models, e.g., classic compartmental washout models,

do a poor job of fitting early-time organ activity [12, 13]. Thus, washout functions do

not fit concentration or time-activity curves well enough to serve as accurate simula-

tion study models. To model the entire TAC accurately, it is necessary to use a math-

ematical model that includes at least some of the drug arrival and organ drug

distribution effects. Convolutions of two functions as an impulse response model can

approximate the entire TAC accurately [14, 15]. Of these two functions, the first or fast

function can be thought of as an organ feed or stimulus function consisting of rapidly

changing blood pool background within the organ. The second can be thought of as

the response or result of bathing the parenchyma of an organ with drug [16, 17].

While there has been some work on the biodistribution and pharmacokinetics of
99mTc-MIBI [18, 19], to the best of our knowledge, there has been no presentation of a

gamma distribution convolution (GDC) model application in the nuclear or pharmaco-

kinetic literature. GDC models have been applied elsewhere for ecological water storage

I/O, waiting times in queueing theory, and in the evaluation of aggregate economic risk

of portfolios [20]. Another possibility would be to construct a convolution model from

observed input and organ functions using multiple ROIs as has been done for the

kidney [16, 21, 22]. However, the advantages of finding a closed form convolution

solution for TAC use, like the GDC model, are that only a single organ ROI is used,

and that long-term data collection, as needed for washout-only modelling, becomes a

shorter term requirement. Finally, unlike convolution methods using observed input
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functions, a closed form convolution is self-contained and thus useful as a surrogate

for otherwise impossible to perform exhaustive testing while still maintaining a degree

of realism.

In this context, we aim to demonstrate that following a peripheral intravenous bolus

injection, the thyroid has a TAC that can be modelled accurately using the closed form

convolution of two gamma distribution (GD) functions. The first GD of the GDC

approximates thyroid gland marker arrival and distribution, and the second GD, the

thyroid marker washout. We apply this model to TAC’s from dynamic 99mTc-MIBI

scans, and show how it can be used to calculate organ statistics, especially MRT values.

Next, we perform a surrogate test example, Monte Carlo simulation of self-consistency

of the GDC algorithm to check the accuracy of modelling. Finally, we compare the

GDC, a more complete model of concentration, to four of the best available washout-

only models for our 90-minute data.

Theory

A convolution of two random variables can be used to form an impulse response model of

time activity of an imaged organ’s radioactivity [14]. The first, fastest random variable is the

impulse or blood pool that feeds the organ, and the second, slower random variable is the

washout of activity from that organ. Note (1) that random variables are modelled as density

functions and add by convolution, (2) that the total area of any density function is one, and

(3) that any convolution of density functions is itself a density function with a total area of

one [23, 24]. Closed form convolutions that model both arrival and washout have also long

been used as pharmacokinetics models as originally inspired by Bateman’s treatment of

radioactive density functions of parent (be− bt) and daughter species (βe− βt) [25]. This latter

is perhaps best written as the exponential density function convolution (EDC)

EDC b; β; tð Þ ¼ be−bt⊗ βe−βt

¼ gbβ e
−βt

−e−bt
b−β

; b≠β

b2t e−bt ; b ¼ β
t≥0

0 gt < 0

:

8

>

>

<

>

>

:

ð1Þ

The amount of daughter (or time activity) at time zero, i.e., the initial EDC func-

tional height, is zero in this particular non-negative-valued Bateman equation.

However, when taken out of the parent-daughter decay context, Eq. (1) becomes

only approximate. Generally, whatever an exponential distribution (ED) can model

is typically better modelled by a gamma distribution (GD) [26]. Exponential distri-

butions are not the preferred shapes to explain organ bolus input function shapes,

for which GDs or other functions are more useful [27–29]. To model the pro-

longed washout kinetics, which models are only fit following peak organ activity, GDs,

one of several possible generalizations of EDs, have better fidelity than mono- and bi-

exponential models [12, 13, 30–33]. One reason for this is that GD washout models imply

zero initial drug volume with no initial mixing [33]. Thus, a GD convolution (GDC)

should better fit an organ TAC than Eq. (1), as both the organ delivery and organ washout

are more realistically modelled using GDs than EDs. The b = β solution to Bateman Eq.

(1) can be written as a gamma density; GD(2, b; t) and its nth convolution as GD(n, b; t).

However, b = β is statistically implausible, and n is only ever an integer, thus despite claims
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to the contrary [34], GDs do not derive from serial EDCs. Rather, Eq. (1) is a special case

GD convolution–see the text following Eq. (5), and a derivation of the GD appears

elsewhere [35].

The arrival of the 99mTc-MIBI within the thyroid is not instantaneous. The fast signal

or blood-pool activity within the thyroid is approximated here using a gamma distribu-

tion (GDfast) density function that for time t (min) is time-offset by tΑ ('A' for arrival)

and zero before tΑ by letting τ = t − tA, and setting

GDfast a ; b; τð Þ ¼
ba

Γ að Þ τ
a−1 e−b τ; τ ≥ 0

0 ; τ < 0

;

8

<

:

ð2Þ

where, if the dimensionless shape parameter a > 1 would yield a skewed bell curve and

if a < 1 a decaying saw tooth or spike, and where b is the rate scalar (per min).

Washout functions are the impulse response to an instantaneously distributed signal

and strictly washout. A washout function can be modelled as a gamma distribution,

GDWO α; β; τð Þ ¼
βα

Γ αð Þ τ
α−1e−β τ; τ ≥ 0

0 ; τ < 0

;

8

<

:

ð3Þ

where α < 1 is the shape parameter condition for washout, i.e., a monotonic decrease

of functional height in time. Next, the GDC model is created by convolving GDfast and

GDWO,

GDC a ; b; α; β; τð Þ ¼ GDfast a; b; τð Þ⊗GDWO α; β; τð Þ; ð4Þ

Substitution of Eqs. (1) and (2) into Eq. (4) leads to

GDC a ; b ; α; β; τð Þ ¼
baβα

Γ aþ αð Þ e
−bτ τaþα−1

1F1 α; aþ α; b−βð Þτ½ �; τ > 0

0 ; τ ≤ 0

;

8

>

<

>

:

ð5Þ

which is a density function consisting of a gamma variate multiplied by 1F1(A; B; Z),

where the latter is a confluent hypergeometric function of the first kind1 [36, 37]. For

a = 1 and α = 1, Eq. (5) reduces to Eq. (1), which in turn demonstrates that Eq. (5) is

more general than Eq. (1). That is, in practice, the GDC would reduce to a Bateman

density if a = 1 and α = 1 were plausible parameter values. For b = β, Eq. (5) reduces to

GD(a + α, b; τ), a statistically implausible simplification used nonetheless [34]. Although

serial GD convolution is known [20, 26], the easily recognizable simple closed form for

the two GD convolution of Eq. (5) is a recent development [see [20], Eq. (2)].

Mean residence time, MRT, is independent of any TAC scaling, and its value can be

calculated directly from a density function, f(t), as follows:

MRT ¼
Z

∞

0

t f tð Þdt: ð6Þ

MRTs are additive [15]. That is, the mean residence time of the sum of random vari-

ables is the sum of the mean residence times of the random variables.
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MRTGDC→tA þMRTfast þMRTWO ¼ tA þ a

b
þ α

β
: ð7Þ

However, tracer residence within the thyroid starts at the time of tracer first arrival within

that organ, such that tA is unrelated to thyroid residence time. Moreover, MRTfast ¼ a
b

quantifies the delivery and uptake of tracer in the thyroid, and only MRTWO ¼ α
β

relates to how the thyroid washes out of tracer activity once that activity is distributed

within the thyroid. That is, MRTWO characterizes the response of thyroid tissue to an

instantaneous signal.

Methods

Patient population

The data from three patients were acquired at the Hacettepe University Medical School

and were processed blindly at the University of Saskatchewan. The 99mTc dosages were

740 MBq. Patients 1 and 3 underwent 99mTc-MIBI scanning for metastatic screening,

and were negative. Patient 2 underwent parathyroid scanning for chemical hyperpara-

thyroidism. On scanning, there was 99mTc-MIBI retention in the lower part of the right

thyroid lobe ROI found on histological examination to be a parathyroid adenoma

measuring 11 × 11 mm. The GDC curve analysis was performed blindly and without

knowledge of the region drawing, the scanned images, or the clinical presentation and

results. Clinical correlation was performed only after the quantitative GDC results were

obtained.

Data processing

Following a peripheral intravenous bolus injection, 89 one-minute per frame dynamic
99mTc-MIBI gamma camera images were obtained. Regions of interest (ROIs) were

drawn over the right and left thyroid lobe in each frame, and the regional counts per

minute were then used to construct time-activity curves (TACs). The TACs were then

least Poisson noise model fit with the decay simulated GDC model, Eq. (5)—see the

Appendix section—in a separate institution using Mathematica 10.3 programs using an

algorithm stop condition of a 10-20 relative difference between successive iterations.

Caution was taken to find global minima by including reasonable initial parameter

range, starting values, but there is no absolute guarantee that global minima will be

found with the Nelder-Mead (simplex) regression used. Poisson model noise cal-

culations, regression fitting for Poisson models, corrected fit error quantification,

and an algorithm for finding TAC starting-time values, tA, can be found in the

Appendix section.

Time-activity curve simulations

Monte Carlo simulations were performed for the purpose of estimating how accurate

and precise the GDC results were. The Monte Carlo simulations of each case without

decay correction were performed using each case’s GDC parameters as starting values

to generate TACs. The TACs were then randomized ×10 by injecting pseudorandom

Poisson noise and refit with GDC models using estimated Poisson loss functions to

recover the altered (test) parameters. Unlike for the clinical data, the simulations had

no injected misregistration. Radioactive decay was not simulated in order to (1) partly
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compensate for the lack of injected misregistration by increasing the noise to larger

levels due to generating Poisson model noise from larger, not decay-diminished signals

(2) crosscheck the accuracy of the decay-corrected GDC model used for the clinical

cases, (3) simulate drug assay when decay is not a factor, and (4) provide an example of

how simulations studies can be used to model variations of experimental conditions

and validate techniques.

Washout model analysis with comparison to GDC models

Comparisons of GDC MRTWO results were made to four washout models; two different

regression methods of fitting biexponentials, and two different regression methods of fitting

single gamma variates. One of these latter, Tk-GV; the Tikhonov regularized gamma variate

herein adaptively minimizes the relative error of β or alternatively the minimum relative

error of plasma clearance [12, 13, 32]. Briefly, Tk-GV is an approximate inverse solution to

Eq. (4). That is for C(t) = GDfastTk-GVWO, then Tk-GVWO =GDfast
(−1)

⊗C(t), and Tk-GV fits

an inverse (virtual) function, not concentration itself, C(t).

Results

A representative example of a 99mTc-MIBI scintigram from a right thyroid lobe ROI is

shown in Fig. 1a, while the corresponding TAC for the entire dynamic scan is shown in

Fig. 1b. Figure 1c shows the same TAC with time on a logarithmic scale to display the

rapidly changing curve at early times. Superimposed is the fit of the gamma distribution

convolution (GDC) scaled (S) to the TAC. Figure 1d shows graphical representations of

the fast vascular gamma distribution (GDfast), the washout gamma distribution (GDWO)

and GDC; the convolution of GDfast and GDWO.

Figure 2 shows the data and fits of the GDC for all nine TAC’s for the three patients.

The parameter values obtained from fitting the GDC to the TACs and the GDC fit

errors are summarized below in Table 1. The GDC parameters from Table 1 were used

to calculate mean residence times (MRT) for the thyroid ROIs shown in Table 2. Note

in Table 2 that the GDfast, a.k.a., thyroid vascular mixing times, the MRTfast values,

averaged only 0.807 min or 0.2% of the 367.4 min MRTWO, i.e., washout times. MRTfast is

the ratio of the 'a' and b values in Table 1, and is stable even though the shapes

('a' values) of the GDfast distributions are quite variable due to the 'a' and b values

being highly correlated (r = 0.99935). The MRTWO values ranged from 211.6 to

699.0 min. Note that the left lobe, case 2L in Table 2, had the shortest MRT of

only 211.6 min, whereas the same patient’s right lobe, 2R, had the longest MRT

value, 699.0 min.

In addition to the variability of parameters due to divergent kinetics between clinical

cases, there is a lesser amount parameter variability for each case, a.k.a., within case

variability. In order to crosscheck the case-wise accuracy and precision of the fitting

algorithm, Monte Carlo simulations of activity were performed using the observed

clinical parameters values with injected simulated counting (Poisson) noise without

modelling radioactive decay or misregistration. As a result, although there was an

overlap of the fit errors for the simulations versus clinical data, the simulations and

clinical data had borderline significantly different fit error (p = 0.036, from paired

sample two-tailed t testing of Fisher transformed r values). Comparison of the clinical
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GDC parameters to the noise injected recovered parameters allowed for an independ-

ent (if simplistic) measure of accuracy and precision of recovery of the parameters as

listed in Table 3. The recoveries of the start times for simulation, tA, averaged an

insignificant 0.035% error (p = 0.98) suggesting that the start time algorithm of the Ap-

pendix section, Eq. (12), functioned adequately. The mean decay corrected thyroid

washout MRT values went from 367.4 min from the 9 clinical regressions to 369.1 min

from the average of 90 simulations for an absolute error of 0.46%. Note in Table 3 that

none of the GDC simulation MRT values or other parameters (apart from the fit errors

mentioned above) were significantly different from their corresponding clinical

parameter values. Finally, α-shape values were never close to one in the 99 simula-

tions and clinical cases (absolute range from 0.8528 to 0.9445), such that the use

of EDWO = βe− βt in the Bateman Eq. (1) above rather than GDWO would introduce

severe non-linear misregistration into the data fitting.

From the preceding, the 90 min of data may be sufficient for obtaining a complete

concentration model, the GDC. Next, we tested to see if 90 min was a long enough

time to obtain stable washout-only model MRT values. Table 4 shows a comparison of

the 1st through 89th minute TAC GDC models with 5th through 89th minute TAC

washout models. Two of the four 5th through 89th minute washout models are

Fig. 1 The top left panel (a), shows a region of interest (ROI) drawn over a right thyroid lobe of an example

one-minute image from a 99mTc-MIBI gamma camera image sequence. The top right panel (b) shows the

ROIs time-activity curve (TAC). Panel (c) shows the same right thyroid lobe TAC as in panel (b) with time on a

logarithmic scale to better display the rapidly changing curve at early times. Superimposed is the fit of a gamma

distribution convolution (GDC, solid red line) scaled to the TAC showing a good fit to the TAC (open circles).

Panel (d) shows graphical representations of the GDfast, the fast vascular gamma distribution (F, orange); GDWO,

the washout gamma distribution (W, green) and the GDC; the convolution of GDfast and GDWO (G, blue). For clarity,

the vertical axis has an arbitrary scale to superimpose the GDfast function with the other two functions on one

graph. Note that although the GDWO eventually converges to the GDC model, this takes a long time to occur
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Fig. 2 Shown below are unmodified data and decayed gamma distribution convolution fit results for three patients

their left thyroid lobesⓁ, right thyroid lobesⓇ, and the total summed kilo counts per min for the whole thyroid

glandsⓉ. The small circles are the ROI counts in each one-minute frame for minutes 1 through 89. The solid lines are the

GDC fits of the text. Note the quality of fit, as quantified below (as Fit err % in Table 1). a patient 1 b patient 2 c patient 3
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ordinary least square (OLS) models; biexponential OLS E2 and gamma variate OLS

GV. The other two models are not concentration models. Those are 1/C(t)2 weighted

least squares E2, and the Tk-GV model minimized for least relative error of β; WLS E2

and Tk-GV. For each method, how well the L and R MRT values produced interpolated

total thyroid MRT values was calculated as a coefficient of variation as shown in

Table 4. These CV(interpolation) varied from a high value of 51.9% for OLS E2 to a

low value of 15.9% for GDC. Note that due to patient variation a CV(interpolation) of

zero is not expected. The MRTWO values for OLS E2 were of significantly shorter dur-

ation than those from the GDC model (Wilcoxon, p = 0.004).

As can be seen in Table 4, the smallest and only statistically not significant R2 value

(0.0183, p = 0.7) was between OLS E2 and GDC. The parathyroid adenoma (2R) was

not identified by its MRTWO using OLS E2 and WLS E2, but was the longest MRTWO

for all of the GV-based models and for the GDC model. Although the GV washout

models; OLS GV, Tk-GV, and the average of OLS GV and Tk-GV were superior to E2

models for the single-case lesion detection, the highest R2 value with the GDC of

0.9395 for those washout models occurred for the average MRTWO values of OLS GV

and Tk-GV. This averaged model MRTWO value corresponded to a 10.8% coefficient of

Table 1 Parameters for the GDC fit model

Pt thyroida tA (min) a b (min−1) α β (min−1) S (106 cts)b Fit err %c Noise % 1 − R2 (%)d

1L 0.195 0.846 0.909 0.8577 0.001849 3.529 1.713 1.174 0.534

1R 0.334 3.733 5.211 0.8661 0.004081 2.319 1.914 1.094 0.350

1T 0.277 1.631 2.060 0.8645 0.003106 5.222 1.421 0.800 0.271

2L 0.340 1.351 1.692 0.9408 0.004445 2.027 1.690 1.183 0.630

2R 0.282 0.995 0.928 0.8668 0.001240 6.510 1.353 1.022 0.395

2T 0.307 1.127 1.203 0.8998 0.002652 6.625 1.019 0.773 0.239

3L 0.306 7.878 11.644 0.8918 0.002029 3.201 1.801 1.225 0.818

3R 0.425 3.082 4.520 0.8942 0.002863 3.296 1.026 1.060 0.189

3T 0.374 6.470 9.842 0.8947 0.002554 6.287 0.988 0.801 0.224

aPatient numbers 1,2,3 plus L left thyroid lobe, R right thyroid lobe, T total thyroid TACs, e.g., 1L, 2L
bS is the scale factor used to equate AUCTAC = S AUCGDC. The AUC of the GDC is one, as it is for all density functions. The
AUC of a TAC is the total counts collected in the ROI from time is zero to infinity
cThe fit error was increased to offset for the effect of using 6 fit parameters in the GDC model—see Eq. (10)
dFrom correlation of the TAC with the GDC model for the 89 one-minute sample times

Table 2 Decay-corrected MRT values in min for thyroid delivery and washout from 9 GDC models

Patient MRTfast MRTWO

Thyroid Delivery Washout

a/b α/β

1L 0.931 463.9

1R 0.716 212.2

1T 0.792 278.3

2L 0.798 211.6

2R 1.073 699.0

2T 0.937 339.3

3L 0.677 439.5

3R 0.682 312.4

3T 0.657 350.3

Wesolowski et al. EJNMMI Physics  (2016) 3:31 Page 9 of 19



variation of root mean square error, CV(rmse), agreement with GDC MRTWO. This

compares to the Monte Carlo testing of the GDC MRTWO, with a 0.69% (CV) for pre-

cision and 0.46% for accuracy—see Table 3.

For the results listed, we processed the TACs as supplied. These neither represented

the values for single thyroid lobes nor for whole thyroid glands but rather a mixture of

Table 3 Poisson noise simulations and accuracy of recovery of generating parameters following

regression

Parameters tA a b α β S a MRTWO

Units min none min−1 none min−1 106 counts min

Clinical mean values 0.316 3.013 4.223 0.8863 0.00276 4.335 367.4

Simulation mean valuesb 0.316 3.314 4.588 0.8859 0.00275 4.342 369.1

Units Percentage (%)

Mean simulation CV errorc 2.4 0.23 1.6 0.26 3.1 2.6 0.69

Absolute error in percentd 0.035 10.0 8.6 −0.038 −0.38 0.15 0.46

Units Probability

Probability of no differencee 0.98 0.44 0.52 0.32 0.38 0.73 0.51

aThe scale factors S, used to scale GDC, are the total counts collected in the ROI from time is zero to infinity
bEach set of clinical parameters for 9 cases was used to generate 10 different noisy data sets. The simulation mean
values are from all 90 simulations
cThis is the mean value of 9 coefficients of variation (CV), where each CV is from 10 simulations
dError is 100 times mean simulation minus clinical values divided by mean clinical value time
eNo significant differences to the 0.05 level from two-tailed t tests for zero difference between 9 paired samples using
mean values of 10 simulations for each clinical result and the clinical parameter results themselves

Table 4 Mean residence time (MRTWO in minutes) results for simple washout models fit from the

5th to 89th minute ROIs and compared to the gamma distribution convolution (GDC) MRTWO of

the texta

aRegressions used were ordinary least squares (OLS), weighted least squares [WLS; 1/C(t)2 weighting], and an inverse method;

Tk-GV. These were applied to biexponential (E2) and gamma variate (GV) functions. The longest MRT value for each method is in

red. IQR is interquartile range. How well the total (T) thyroid interpolated the L and R MRT values was calculated as a coefficient

of variation of interpolation, CV(interpolation), from the standard deviation of the distances to interpolation, d =MRTTotal −

min{MRTL, MRTR}, divided by the mean of their interpolation interval, ii = |MRTL −MRTR|. The CV of the root mean square error

CV(rmse) was calculated for method M ≠MRTGDC as
X

n

i¼1

MRTM ið Þ−MRTGDC ið Þ½ �2
n

( )1
2
X

n

i¼1

MRTGDC ið Þ
n

" #

−1

. The median of

differences was taken pair-wise. Note that the errors for OLS GV and Tk-GV appear to be, on average, in opposite directions
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those values. For GDC models of whole thyroid glands listed in Table 4, the IQR of

MRT values was 72 min. The GDC IQR from the given mixture of regions was

206 min, and for thyroid lobes without whole thyroid MRT values, the IQR value was

311 min (via Excel PERCENTILE.EXC subtraction or equivalent algorithm).

Discussion

The quality of the fit results illustrated in Fig. 2 and listed in Table 1 suggest that

gamma distribution convolutions, GCDs, can be used to form scaled models that

accurately follow TACs of 99mTc-MIBI activity in the thyroid. A GDC implies two

gamma distributions, GDs: a GDfast delivery to the thyroid function and a slower

GDWO washout from the thyroid function. Note that these separate gamma distribu-

tions were not observed directly, but rather were implied by the thyroid ROI data and

the GDC fitting parameters. To illustrate these behaviours, the individual GDfast,

GDWO, and GDC density functions are displayed in Fig. 1d. That figure shows that the

effect of the GDfast on the GDC dissipated in time, so that eventually the GDWO curve

converges to the path of the data (after ~1 hr). This, and the results in Table 4, confirm

that washout-only models are only indirectly related to TAC or concentration models

[14, 15], and that, in turn explains why washout models appear to require more extended

time-sampling than the GDC model. For example, the GDC residuals were homoscedastic

over the entire sampling space, which is never the case for washout-only models as wash-

out models are at a maximum value initially, when actual concentration is zero. It has

been shown in other systems that washout models, even with a 10 min start time, statisti-

cally significantly mismatched early data and agreed better with late data [12].

Most pharmacokinetic models are thought of as successful when their curve fit

errors average 10% or less [as rmse in 38]. More important than curve fitting

error is how precise the models are for the parameter of interest, or in our case,

MRTWO. We note that no washout model for predicting GDC MRTWO had less than a

10% precision error measured as CV(rmse)—see Table 4—to unequivocally suggest its

use with only 90 min of 99mTc-MIBI data. The average MRTWO for OLS GV and Tk-GV

correlated best to GDC MRTWO. The OLS GV is a direct fit to concentration and Tk-GV

is an inverse solution, virtual concentration fit, and which methods have errors in opposite

directions when applied to only 90 min of data. This combined MRT measurement had

an error of 10.8% compared to the GDC model, i.e., it was almost good enough for clinical

use. Thus, the GDC model may find use as a standard for investigating simpler washout

models. Herein, each OLS model (OLS E2 and OLS GV) was outperformed for

MRTWO R2 with GDC by its corresponding weighted alternative; WLS E2 and Tk-GV.

Alone amongst the methods tested, MRTWO OLS E2 did not (statistically significantly)

regress or correlate to MRTWO GDC (or to Tk-GV). Better correlated was WLS E2. The

1/C(t)2 least squares weighting fits biexponential washout models favour fitting the later

data to obtain more accurate half-lives [39]. Although some researchers have, without much

discussion, used WLS E2 rather than OLS E2 in their patient series [13, 40, 41], direct

numerical evidence of improved correlation against better or more complete models, such

as that in Table 4, is currently limited. From the Monte Carlo testing—see Table 3—the

GDC MRTWO had a 0.69% (CV) precision and 0.46% accuracy, so that comparison to

GDC as a measure is not obviously error prone.
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No area normalized background subtraction using a second ROI outside of the

thyroid ROI was performed for our analysis. For the current work, background was

considered to be the blood pooling within the thyroid region as modelled by the fast or

delivery function activity, whose short time-duration (MRTfast in Table 2) agrees in a

general way with the short time that 99mTc-MIBI is known to remain in the blood [11].

The background adjustment herein was to treat the blood pooling in the thyroid ROI

as the delivery vehicle to the extravascular tissue within the same ROI for later

washout. This is similar to the fast decaying quasi-exponential functional treatment of

background for 99mTc-MAG3 renal scintigraphy by the recently developed blood-pool

compensation and modified Patlak-Rutland methods both of which do not use classical

background regions [17, 42–44]. The shape of the fast curve, GDfast, i.e., the individual

'a' values in Table 1 were variable and implied shapes sometimes heavier tailed than

exponential distributions (a < 1), and sometimes lighter-tailed, i.e., closer to normal

distributions (a > 1). It would be remiss to imply that the GDfast curve shape is

accurately captured, i.e., the GDfast shape coefficient, 'a' was quite variable—see Table 1.

The difficulty in quantifying the GDfast shape is likely due to the unavoidable sparseness

of nuclear decay data. Using faster framing rates to capture the shape of the fast

function better would likely increase both misregistration and noise as these measures

covaried (r = 0.77 see Misregistration in the Appendix section). However, the mean

MRTfast times from patient studies, numerically a/b, were quite stable as the 'a' and b

values were highly correlated (r = 0.99934). From the simulations, the mean standard

deviation MRTfast time was only 1.0 s (within cases), where the population standard

deviation (between cases) was 0.137 min (8.2 s) suggesting that two parameter GDfast

functions are adequate for calculating MRTfast values. The washout function, GDWO,

has a shape parameter, α < 1, which yields a curve that is monotonically decreasing

(washing out), with very stable shapes herein [CV(α) = 2.9% from patient studies, 2.6%

from simulations between cases, and 0.26% from simulations within cases]. The rate

scalar (β) of the GDWO is much smaller (i.e., slower) than the rate scalar (b) of the fast

curve. Combined with concentration curves, washout models are used for predicting

clearance, as they conserve mass. However, washout models do not form accurate

models of early time TACs—see Fig. 1d—and [45], and that is a good motive for creat-

ing more complete models, i.e., that better fit the data, with the alternatives being (1)

to ignore the early data, extend the data collection for hours, and to use models whose

misregistration magnifies substantially outside of fit range—see [12, 45], or (2) include

the early data and suffer significant, large misregistration within the fit range—see [12].

Despite the pleomorphic shapes of an assumed fast function, and the noise problem,

the resulting GDC functions’ misregistration of the TACs counts was only 0.80% with a

total fit error of 1.44% (see Misregistration in the Appendix section). Using our thresh-

old measure of goodness-of-fit for curve fit errors of 10%, the GDC TAC error was an

order of magnitude better fitting than most models [38].

MRT values were obtained here without performing absolute uptake calculations,

drawing more than one ROI per thyroid lobe, or acquiring data for a long time, e.g.,

6 h, see [18]. The GDCs models’ decay corrected mean residence times (MRTWO) of
99mTc-MIBI in the thyroid TACs ranged from 211.6 to 699.0 min. However, not all of

our results were from region drawing over normal tissue. We observed considerable

differences between the left and right thyroid lobe MRTs, even in our sample of only
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three cases. Patients 1 and 3 had neoplastic disease elsewhere and no thyroidal meta-

static disease detected on scanning. However, patient 2 (2R) had an inferior pole of

right lobe of thyroid region 11 × 11 mm parathyroid adenoma. In diseases such as

hyperparathyroidism and parathyroid adenoma/carcinoma, thyroid metabolism is

presumed normal while the parathyroid tissue is abnormal and typically hyperplastic

hypometabolic (containing enlarged, slow to washout parathyroid glands). Indeed, the

MRT for that entire right lobe was the slowest in this series at 699 min even though

the adenoma was much smaller than the whole ROI. When the patient with thyroid

pathology was excluded, the two remaining total thyroid MRTs had values of 278 and

350 min, or not dissimilar to the published thyroid MRT of 314 min obtained using a

monoexponential washout model and 6 h of imaging data [18]. This blinded study may

have unintentionally detected an adenoma using the GV models. All of the GV models

had their longest values associated with the parathyroid adenoma containing thyroid

lobe TAC. Usually far outliers (>3 IQR) should receive some comment, and this was

the case for OLS GV for the parathyroid adenoma containing thyroid lobe. That GDCs

MRTs are proper measurements is evidenced by (1) the adenoma lobe’s MRT being the

longest GDC-MRT time, (2) having lowest total (T) thyroid MRT value interpolation

error between L and R thyroid lobes,—see Table 4—and (3) the very low misregistration

of the GDC model. However, as the interpatient variation of hot spot MRT values is

unknown this case series is far too small to the established clinical utility for any MRT

calculation. We also perceive a need to establish robustness of the GDC fit algorithm

in the clinical setting and to establish any potential applicability to myriad other thyroid

pathologies for which the visual clues on scanning are not as obvious as for hot spot

imaging. On the other hand, Table 4 shows that the biexponential, OLS E2 and WLS

E2, values (1) failed to identify the adenoma containing thyroid lobe, (2) had poor

quality interpolation results of L and R thyroid lobe MRTs, and (3) had large modelling

errors. Thus, this case series was large enough to demonstrate that the OLS E2 and

WLS E2 models can be problematic for identifying hot spots with only 90 min of data.

Our hypothetical explanation for this failure is that the MRTWO values were

significantly, spuriously, and similarly shortened due to the instant-mixing property of

biexponential models. Instant-mixing range-restricts quantifying redistribution, and

biexponential models borrow from the physical redistribution to make inflated mass

elimination estimates [33]. Moreover, redistribution is the predominate cause of

concentration dilution at early times following bolus delivery [33]. We hypothesize that

physically, redistribution is generalized and similar for L, R, and T and that redistribu-

tion contamination makes the biexponential MRT values too fast and too similar, and

thereby not properly interpolative and consequently non-diagnostic.

In prior works, the kinetic behaviour of 99mTc-MIBI in the thyroid and parathyroid glands

has been extensively explored using semi-quantitative parameters or visual examination of

images acquired at different times [8–10]. Although severely limited by the retrospective na-

ture of the current study, the GDC model should nonetheless allow for a prospective pre-

cise quantitative assessment of disease states using only 90 min of data for pharmacokinetic

parameters such as the MRT, or at very least provides a model of concentration/counting

for simulation studies for the evaluation of washout models of MRT. This case series was

large enough to demonstrate that GDC functions can be of sufficiently high fidelity of fit to

imply the use of GDC functions as templates for pharmacokinetic simulation studies, and
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in that capacity one can consider the results as demonstrating a proof of principle for simu-

lation studies. Indeed, we checked the self-consistency of the clinical decay correction algo-

rithm by comparing its results to the results from simulated data without drug decay.

For washout-only models, one should wait for at least several minutes before starting

the fit of polyexponential washout models, and hours before fitting monoexponential

washout models, and the fitted data should be collected for as many hours as possible.

One alternative to such a fitting strategy is not to attempt to fit concentration itself,

but to fit a different regression target, for example, minimum relative error of the rate

scalar (β), or weighting toward the later time samples. However, we did not have

enough elapsed time for sampling to do this accurately—see the Results section and

Table 4. Our other strategy was to use the GDC; a more complete model from the

addition of random variables, where chained random variables add by convolution. The

use of convolution to create concentration models inclusive of early and late data is

hardly new [15]. However, this has usually been done using sums of exponential terms

for the washout models, which latter are less accurate and precise washout models than

gamma distribution models see Table 4 and [13, 31, 46]. The current work is possibly a

first application of a GDC radioactivity (or concentration) model. Many drugs follow

GD washout curves [31]. GD washout models extrapolate to late time better than

biexponential functions [12], and in their adaptively obtained form from Tikhonov

regularization, as Tk-GV, are less affected by altered body fluid states than exponential

models [32, 47, 48]. Thus, GDC model simulations with altered count rates or injected

noise levels could be used to inspect the effects of altered 99mTc-MIBI dosage, ROI size,

framing rates, or start times for fitting models and regression targets including those

for various washout functions and the GDC models themselves.

The Table 3 summary of Monte Carlo noise simulations illustrates the parameter ac-

curacy one can expect from GDC modelling. The Appendix section Eq. (12) was used

to estimate start times and appears to have functioned properly with very little error on

simulation. The GDfast parameters 'a' and b were somewhat inaccurately recovered fol-

lowing simulation. However, the most important MRTWO results proved to be both ac-

curate (0.46% mean error) and precise (mean CV 0.69%). An accurately determined

parameter was α with a within case accuracy error of −0.038%. This parameter deter-

mines the shape of the washout curve, which is the predominant shape determinant of

the GDC model. This explains the relative superiority of GD washout models to sums

of exponential terms, as the latter have a rigid assumed shape and lack a shape param-

eter. Thus, it should also be possible to use the GDC model to test for the optimal time

to first fit a washout model to a TAC, which given the disagreement between early

activity and the typical washout model functional height, is generally thought to be ≥ 5

min for gamma variate washout model adaptive fitting or polyexponential model fitting

[12, 13, 32] and > 1 h to 6 h, for monoexponential washout model fitting, which latter

cannot be directly compared to the time limited gamma camera data herein [18]. In

summary, what sample times are needed for fitting a washout model to data so that the

parameters obtained are accurate has not been systematically examined, but the

methods herein provide a model that should be useable for that purpose.

One of the limitations of the current retrospective study was that the gamma camera

acquisitions in the parent series were started after tracer first arrival in the thyroid.

However, for the studies processed and for our simulations, a minor delay in the
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acquisition start time proved to be somewhat forgiving—see the Appendix section for

details. Nevertheless, further work on calculating the time of first arrival of activity in the

target organ and examination of a larger patient series may be useful. The GDC model

was processed using 90 min of data, and although the GDC model MRTWO results ap-

peared to be meaningful thyroid/parathyroid measurements, the GDC model as applied

to longer imaging times remains untested. Thus, the conclusions are preliminary.

Conclusions

By using thyroid 99mTc-MIBI scintigraphy data from 3 patients, we generated 9 TACs and

90 Monte Carlo TAC simulations using gamma distribution convolution (GDC) models.

The GDC models fit the TAC data with high fidelity and small enough TAC noise-image

misregistration (0.8%) that they have a plausible use as simulations of thyroid activity for

querying performance of other models, such as washout models, for altered ROI size,

noise, administered dose and image framing rates. Monte Carlo accuracy testing results

for all of the GDC model parameter values were good with a GDC MRT accuracy of

0.46%, despite fitting only 90 min of data. Since the GDC model is an actual concentration

model, it does not have to decay several half-lives in order to obtain model parameters or

validate the methodology. The 4 washout-only models applied to the same data all

exceeded 10% precision error compared to the GDC, with the apparent excess error sus-

pected to be from having insufficient temporal data for washout modelling.

Endnote

1The fast computation of this relies on 1F1 A; B; Zð Þ ¼ Γ Bð Þ
Γ B−Að ÞΓ Að Þ

Z 1

0

eZ tuA−1 1−uð ÞB−A−1du,

where A, B, and Z are variables and where the function is finite for all finite values of those

variables. Also, we set GDC(⋅⋅⋅⋅; τ = 0) = 0 to replace the 00indeterminacy of τa + α− 1 at

a + α = 1, τ = 0 with its limiting value of 0.

Appendix

Expected Poisson noise calculation, fitting to minimize the noise of counting, and cal-

culation of fitting error

The expected (Poisson model) noise (N, noise percent, Table 1) from counting increases

as the square root of the number of counts per frame in the ROI, which as a percentage

for the n frames of the TAC is calculated from its root mean square (RMS) value

N ¼ 100

n

X

n

i¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TAC tið Þ
p : ð8Þ

To scale amplitude of the GDC to the AUC of a TAC, a scale factor S (total counts col-

lected in the ROI from time is zero to infinity, here) is used during the fitting process.

Due to decay, the AUC of total counts is not an AUC of concentration. The fitting param-

eters were found by minimizing a norm of fit error for modelled counting noise

Minfit ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TAC tið Þ
p

−S e−λ ti
GDC ti−tAð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TAC tið Þ
p

�

�

�

�

�

�

�

�

�

�

; ð9Þ

where i = 1 − 89 represent each of the 89 one-minute time samples, and the 99mTc

decay rate [49] is λ = ln(2)/[60(min/h) ⋅ 6.0067 (h)] ≈ 0.00192326. Decay correction
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using was performed on the fitted model in order to preserve the noise characteristics

of the observed data during regression analysis. To express Eq. (9) as a goodness-of-fit

containing error that includes that from noise, modelling error of fitting, gamma cam-

era nonlinearity, and patient motion, one computes

F ¼ 100
n

ffiffiffiffiffiffiffiffiffiffi

n−m
p X

i¼1

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TAC tið Þ
p Minfit; ð10Þ

where F, the fit error percent in Table 1, from minimization has been augmented to

correct for the m = 6 parameters of the GDC model (five GDC variables and one curve

matching start time) by multiplying by
ffiffiffi

n
p

=
ffiffiffiffiffiffiffiffiffiffi

n−m
p

and collecting terms.

Misregistration

Assuming counting error of a Poisson noise type, misregistration, an imaging term is

defined graphically as the standard deviation vertical misalignment on a square root of

count rate TAC plot, which latter is, indeed, an image. Misregistration standard

deviation, σM = 0.79943%, was calculated from the well-known equation for correlated

variances

σM
2 ¼ σF ;N

2 ¼ σF
2
−σN

2
−2ρF;NσFσN ; ð11Þ

where the variance of misregistration, σM
2 , is σF,N

2 , the variance of the difference between

fit error, σF = 1.44164% [from the standard deviation from Table 1 of Eq. (10)], and

noise error, σN = 1.02864% [Eq. (8)], where ρF,N = 0.76531 is the correlation coefficient

of F and N.

Calculation of a stable starting times (tA) for gamma distribution convolutions

The fit parameters a, b, and tA are interrelated making a grid search for tA poorly be-

haved. In practice,tA starting values even a fraction of a minute away from the correct

value can convert the GDfast into a degenerate normal distribution (ND) of the type

lim
a→∞

GD ¼ ND with either tA→ −∞ or b→∞. This occurs because as the shape par-

ameter 'a' of the fast gamma distribution of Eq. (2) increases, the GDfast mean time in-

creases faster than its standard deviation, i.e., for a > 1; a=b >
ffiffiffi

a
p

=b , and that

produces either a shift of the GDfast curve to later time, or a large negative curve fit tA

start time (an ND starts at t = −∞ and not at t = 0). To avoid this instability, an inde-

pendent method of calculating start times was used. Herein we borrowed an algorithm

from prior work, which suggested that the start time of a rapidly changing in time aor-

tic signal can be calculated from back extrapolation to the activity is zero axis using the

maximum slope of the aortic signal’s 0 to t integral (or more accurately its cumulative

0 to ti sum) [16, 21]. This is because such an integral is monotonically increasing,

which approximately linearizes its early slope, which slope is at a maximum value at

very early times when the activity in the ROI is non-trivial. Using the first two available

samples of the thyroid cumulative sum allow for the calculation of a start time from

m ¼ ðy2þ y1Þ−y1
t2−t1

→y−y1 ¼ y2

t2−t1
ðtA−t1Þ→tA ¼ t1−y1

t2−t1

y2
; ð12Þ

which requires that y1 be non-trivial; it must be selected after tA occurs, and that

y2 > y1, that is, y1 should occur before peak organ activity. For an investigation of

the Eq. (12) algorithm’s precision and accuracy see the Results section Table 3.
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Note that the tA values of Table 1 are framing rate offset. That is, the cumulative

counts during the first minute are nominally assigned an occurrence time of 1 min,

whereas the physical time of occurrence for a linear rate of change of counting during

that minute would occur ½min sooner. That means that the physical start times

occurred at tA − 0.5 min, and the gamma camera acquisitions were begun approxi-

mately 11 s after tracer first appearance in the thyroid. Whereas this guaranteed y1

values to be non-trivial, as required for use of Eq. (12), the second condition for use of

that equation, that y1 should occur before peak organ activity, would be problematic

for a delayed gamma camera start time late by much longer than a few seconds.
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