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ABSTRACT Imbalanced time series are universally found in industrial applications, where the number of
normal samples is far larger than that of abnormal cases. Traditional machine learning algorithms, such
as support vector machine and convolutional neural networks, are struggling to attain high classification
accuracies for class-imbalanced problems, because they tend to ensure the accuracy of the majority
class. Hereby, this paper proposes a novel anomaly detection approach based on generative adversarial
networks (GAN) to overcome this problem. In particular, an encoder-decoder-encoder three-sub-network
generator is trained involving the elaborately extracted features from normal samples alone. Anomaly scores
for anomaly detection are made up of apparent loss and latent loss. Without having any knowledge of the
abnormal samples, our approach can diagnose faults by generating much higher anomaly scores when a fault
sample is fed into the trained model. Experimental studies are conducted to verify the validity and feasibility
of our approach, including a benchmark rolling bearing dataset acquired by CaseWestern Reserve University
and another rolling bearing dataset which is acquired by our laboratory. Our approach can distinguish
abnormal samples from normal samples with 100% accuracies on both datasets.

INDEX TERMS Anomaly detection, generative adversarial networks, imbalanced industrial time series,
rolling bearings.

NOMENCLATURE

AUC The area under curve of the receiver
operating characteristic.

B Faults at the rolling element.
CNN Convolution neural networks.
CWRU Case Western Reserve University.
DCGAN Deep convolutional generative adversarial

networks.
DBN Deep belief network.
IR Faults at the inner raceway.
GAN Generative adversarial networks.
LSTM Long short term memory networks.
OR Faults at the outer raceway.
RNN Recurrent neural networks.
ROC Receiver operating characteristic.
SVM Support vector machine.
SMOTE Synthetic minority oversampling technique.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yungang Zhu .

SNR Signal to noise ratio.
R The set of real numbers.
Dtrain Training set.
Dtest Testing set.
Dvtest Testing set under normal conditions.
Dutest Testing set under abnormal conditions.
Xi A time series sample recorded by sensor.
M The trained model.
F Original feature matrix.
F̂ Regenerated feature matrix.
fi An extracted feature.
Z Original latent vector.
Ẑ Regenerated latent vector.
Ge The first encoder in generator.
Gd The decoder in generator.
Ĝe The second encoder in generator.
Lf Fraud loss.
La Apparent loss.
Ll Latent loss.
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σ Binary cross entropy loss function.
A Anomaly score.
λ Weighted parameter of the anomaly score.

I. INTRODUCTION

Anomaly detection is of utmost importance for the relia-
bility and safety of modern industrial systems [1]. Timely
and accurate anomaly detection can help to prevent fatal
accidents and increase manufacturing efficiency [2]. How-
ever, class-imbalanced observed data, where samples under
normal conditions are much more prevalent than those under
abnormal conditions, set tremendous obstacles in diagnosing
industrial faults precisely [3]. In addition, industrial systems
always feature nonlinearities and uncertainties [4], which
poses great challenges to model training.
Generally, industrial anomaly detection is based on phys-

ical signals recorded by diversified sensors over a certain
duration, such as current and temperature, which is also
known as time series. For industrial anomaly detection [5],
time series usually acts as the input data with which to train
models. Taking the time series as input, a common anomaly
detection framework often consists of two stages: feature
extraction and fault recognition [6], [7]. Through feature
extraction algorithms [7], time series is preprocessed to low
dimensional feature vectors, which are fed into fault detector
for fault detection. As a powerful pattern recognition tool
for anomaly detection, machine learning algorithms have
become the focus of attention [1], including Bayesian classi-
fier [8], support vector machine (SVM) [9], [10], neural net-
works [10], [11], and deep learning methods [12]. However,
above methods are all struggling to attain high classification
accuracies for imbalanced data because they are based on a
class-balanced hypothesis [13].
With the exception of the class-balanced hypothesis on

datasets, labeled data are essential for machine learning algo-
rithms in training stage. However, in many practical industrial
systems, samples from abnormal operating conditions are
often of insufficient size. In addition, when a system runs
under the normal condition for a long period followed by a
sudden abnormality, it is extremely hard to precisely locate
the starting time of the abnormality. Consequently, inaccurate
abnormal labels will also have an adverse impact on the for-
mer imbalanced situation. When normal and abnormal labels
are imbalanced, classifiers of machine learning methods will
ensure the accuracy of the majority classes by sacrificing the
minority classes [13], which means the diagnostic results will
bias towards normality for all testing samples. However, for
anomaly detection in industrial systems, our focus should be
specifically on those minority classes.
Recently, the development of generative adversarial net-

works (GAN) proposed by Goodfellow et al. offers a new
perspective for the class-imbalanced problem. It was ini-
tially proposed in [14] for image recognition. The basic idea
of GAN is that it generates prototypical samples through
a generator with random data points that satisfy a cer-
tain distribution (e.g. Gaussian distribution). In the field of

image anomaly diagnosis, some competitive GAN-based net-
work architectures have been designed accordingly, such as
AnoGAN [15], BiGAN [16], and GANomaly [17]. These
GAN-based methods train models only with normal images,
distinguishing the abnormal images according to the distri-
bution difference between the normal and abnormal. In this
sense, these GAN-based models are effective for unbalanced
datasets to prevent diagnostic results bias towards normal-
ity. However, regarding industrial applications, GAN-based
methods for anomaly detection are rarely seen. [18], [19]
propose GAN-based networks for mechanical faults. [20]
proposes a GAN-based method for imbalanced fault diag-
nosis. [21] demonstrates the feasibility of using GAN-based
networks to detect cyber-attacks for cyber-physical systems.
Above researches inspire us to further investigate the effec-
tiveness of GAN regarding the problem of industrial fault
detection, especially for the cases without anomalous data.
Therefore, based on GANomaly [17], we place emphasis
on the characteristics of industrial time series, and improve
the overall generator loss to achieve high accuracy for
class-imbalanced scenarios.

In this work, specifically for the imbalanced industrial data,
we propose a GAN-based approach to address the problem
of intelligent anomaly detection. A generator and a discrim-
inator are trained for diagnosis. The generator employs an
encoder-decoder-encoder three-sub-network, based on deep
convolutional generative adversarial networks. To reduce
training time and increase diagnosis performance, a feature
extractor is inserted between the original data and GAN.
Experiments on rolling bearing datasets are conducted to
verify the validity and feasibility of the approach.Meanwhile,
comparison results with another three networks, and clas-
sic algorithms for solving class-imbalanced problems reveal
that our approach has the superior anomaly detection perfor-
mance.

The main contributions of this paper are as follows: 1) For
the imbalanced time series in an industrial field, a novel
GAN-based approach for anomaly detection is proposed.
2) To reduce data dimension and computing time, a well-
designed feature extractor is designed to help train the whole
network. 3) The proposed network only requires normal sam-
ples. This is a more realistic network than other existing ones,
as abnormal samples are often of insufficient size in real
industrial scenarios. 4) Our idea is the first to promise diag-
nosis performance on a rolling bearing benchmark dataset.
Additionally, a new rolling bearing dataset acquired by our
own laboratory is employed to further verify its effectiveness.
Both diagnosis results show that our approach achieves the
best performance compared to another three networks, and
classic algorithms for solving class-imbalanced problems.

II. RELATED WORKS

Anomaly detection has long been a question of great interest
in industrial systems. A considerable amount of works have
been published to propose efficient theories and algorithms.
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A. DEEP LEARNING FOR INTELLIGENT FAULT DIAGNOSIS

With the increasingly dynamic, complex and huge quantity of
time series streams generated in various systems of industrial
production, many anomaly detection techniques used in deep
learning have been well developed [22]. They are purpose-
free, which means that they are not clear about what the final
output features will be. These feature black box modes are
aimed to extracting specific patterns for specific datasets,
such as long short term memory networks (LSTM) [23],
recurrent neural networks (RNN) [24], convolution neural
networks (CNN) [25], and autoencoders [26]. Althoughmany
state-of-the-art anomaly detection performances have been
acquired by above deep learning models, their performances
are still not satisfactory when faced with imbalanced datasets.
In addition, due to differences in data representations (images
and time series), many deep learning models are applicable
to image fields while they are often difficult to apply in the
industrial fields.

B. CLASS IMBALANCED PROBLEMS

Based on imbalanced time series for anomaly detection,
two key methods are usually considered: data-level and
algorithm-level methods [3]. Data-level methods [27], [28]
utilize sampling policies to change imbalanced data distri-
bution, where under-sampling and over-sampling [29] have
been widely used. Algorithm-level methods [27] are used
to change the classifier to fit imbalanced data, where bag-
ging and boosting ensemble-based methods [27] are com-
monly applied. More specifically, EasyEnsemble [3] and
BalanceCascade [30] algorithms are proposed to deal with
the problem of class-imbalance problem. The synthetic
minority oversampling technique (SMOTE) [31], [32] is a
synthetic technique that can add newminority class examples.
To overcome both binary and multi-class imbalance prob-
lems, [3] proposes the Easy-SMT ensemble algorithm based
on synthesizing SMOTE-based data augmentation policy and
EasyEnsemble algorithm.

C. GAN AND GANOMALY

Recently, adversarial training, especially GAN, occupies
an increasingly pivotal position for anomaly detection of
class-imbalanced images. GAN, initially introduced by
Goodfellow et al. and viewed as an unsupervised machine
learning algorithm, has achieved outstanding application
effects in the field of image recognition. Based on GAN,
various kinds of adversarial algorithm have emerged. For
further details, we refer interested readers to [33], which gives
a very comprehensive summary of GAN and its variants.

In the industrial field, Lim et al. proposes a novel
GAN-based anomaly detectionmethod combining GANwith
LSTM-RNN to detect cyber-attacks for cyber-physical sys-
tems; a data augmentation technique based on GAN and
focused on improving performances in anomaly detection
is put forward [34]. Moreover, a generic anomaly detection
architecture called GANomaly put forward by Akcay et al.

FIGURE 1. Overview of GAN.

in [17] shows superiority and efficacy compared with pre-
vious state-of-the-art approaches over several benchmark
image datasets, which prompts us to adopt the technique
for anomaly detection in the industrial field. The follow-
ing is a brief introduction to GANomaly. Samet et al.
employs an encoder-decoder-encoder sub-network in a gener-
ator network to train a semi-supervised network; this architec-
ture uses deep convolutional generative adversarial networks
(DCGAN) [35] and employs three loss functions in the gen-
erator to capture distinguishing features in both input images
and latent space. One of the features of the algorithm is that
it considers no negative samples, and it achieves state-of-the-
art performances for anomaly detection in some benchmark
image datasets.

The rest of the paper is organized as follows. Section III
proposes our GAN-based anomaly detection framework.
Experimental setup and results are described in Section IV
and Section V respectively. Finally, conclusion and future
work are drawn in Section VI.

III. METHODOLOGY

A. PROBLEM FORMULATION

Given a time series dataset D = [X1,X2, . . . ,Xn] ∈ R
t×n,

where Xi = [x1i, x2i, . . . , xti]T ∈ R
t (for i = 1, . . . , n)

represents a sample recorded by sensors over a period of
time t . The proposed model is trained with a subset of the
dataset Dtrain ∈ R

t×b with only normal samples, where b is
the number of training samples. Corresponding samples for
testing are Dtest = [Dvtest ,D

u
test ] ∈ R

t×(v+u), where v and u
are the number of normal and abnormal samples, respectively,
and n = b+ v+ u. For imbalanced time series data, the size
of normal samples is much greater than that of abnormal
samples, i.e. b+ v≫ u.

In the training stage, a GAN-based model M is trained
with Dtrain. The objective of training process is to minimize
the output ofM for each Xi ∈ Dtrain. After training,Dtest will
be fed into the trained model M. The trained generator will
encode and decode fault and normal samples accordingly.
Since the trained network only explores possible represen-
tation modes of normal data, with abnormal samples Dutest as
inputs, the outputs ofM will deviate largely compared to the
outputs with normal inputs Dvtest . This deviation ultimately
help us to determine the existence of abnormal samples.
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FIGURE 2. Overview of our proposed training procedure. In the training stage, only normal samples are taken
into consideration. We use feature extractor to extract useful features which are carefully selected to avoid
directly feed large dataset into the network. The generator which adopts encoder-decoder-encoder
three-sub-network and the discriminator are based on DCGAN. In the testing stage, abnormal samples can be
discriminated by higher anomaly scores compared to normal samples.

B. TRAINING PIPELINE

As shown in Figure 2, the network structure of our approach
consists of three parts: a feature extractor, a generator, and a
discriminator. The basic network architecture is denoted by
DCGAN.
In the design of the generator, an encoder-decoder-encoder

three-sub-network is developed. Prior to feeding data into the
generator, a well-designed feature extractor is designed to
extract distinguishing features and to help reduce the training
time. All extracted features originate from [36]–[39]. Based
on the principle of universality, we elaborately select 16 most
representative features which any time series can be encap-
sulated into. During the training process, we first extract
features of the time series just under normal conditions, and
then obtain data distributions and potential representative
modes of these features by our designed anomaly detector.
In the testing phase, anomalies will be diagnosed by higher
scores from the trained anomaly detector.

1) FEATURE EXTRACTOR

With the given training dataset Dtrain, which also can be
written into the following matrix form:

Dtrain = [X1,X2, . . . ,Xb] =









x11 x12 . . . x1b
x21 x22 . . . x2b
. . . . . . . . . . . .

xt1 xt2 . . . xtb









. (1)

To reduce the size of Dtrain and save computational
time, feature extractor is employed to explore the most

representative q features fromDtrain, featurematrixF is given
by:

F = [f1, f2, . . . , fb] =









f11 f12 . . . f1b
f21 f22 . . . f2b
. . . . . . . . . . . .

fq1 fq2 . . . fqb









, (2)

whereF ∈ R
q×b, and each element in fi represents a extracted

feature.

2) GENERATOR AND DISCRIMINATOR

For the generator, the two encoders Ge and Ĝe learn to
acquire representations of original features F and regenerated
features F̂ respectively. The decoder Gd tries to reconstruct
F̂ at the same time. The whole process is as follows:

a) Ge consists of convolutional layers followed by
batch-norm layers and leaky ReLU activation layers.
Ge downscales F into latent representation Z (usually
h < q)

Z = Ge(F),Z ∈ R
h×b, (3)

where h is the dimension of latent vector Z .
b) Gd adopts convolutional transpose layers, ReLU acti-

vation layers and batch-norm layers.
Gd uses Z to recreate F̂

F̂ = Gd (Z ), (4)

where the dimension of F̂ is the same as F .
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c) Finally, the architecture of last encoder Ĝe is the same
asGe but with different parametrization, and the dimen-
sion of output Ẑ is the same as Z

Ẑ = Ĝe(F̂). (5)

The generator guarantees that both the characteristics of
the original feature setF , and the pattern of the latent vector Z
can be learned at the same time.
The discriminator C adopts the standard discriminator net-

work introduced in DCGAN, which is used to distinguish
whether input data is real or generated.
Having defined our overall network architecture, we now

continue to discuss how we define loss functions for training.

3) OBJECTIVE FUNCTIONS

In the training phase, because only the normal set Dtrain is
considered, the model M only obtains normal patterns. But
in the testing phase, M needs to determine fault samples by
outputting higher abnormal scores. That means Gd and Ĝe
will decode Z and re-encode F̂ similar to the patterns acquired
in the training stage. F̂ and Ẑ will inevitably deviate from the
original F and Z , so that help us identify faulty.
Since the encoder-decoder-encoder three-sub-network is

adopted in the generator, the final loss function of the gen-
erator consists of three parts: fraud loss, apparent loss, and
latent loss.
Fraud Loss : The fraud loss Lf is aimed to induce the

discriminator to misjudge generated samples from generator
as real industrial samples. We compute the fraud loss Lf on
the discriminator output by feeding the generated samples
into the discriminator, and the formula is as follow:

Lf (F) =
N

∑

i=1

σ (C(F̂), α), (6)

where σ is the binary cross-entropy loss function, andC(F̂) is
the probability that the sample i is predicted to be real. To fool
discriminator and to promote the generator to generate fake
samples as real samples as possible, we define α = 1.

Apparent Loss : It is not enough for the generator to learn
potential patterns under normal conditions and to reconstruct
generated samples as realistic as possible, so we define the
apparent loss La by measuring L1 distance between the real
and generated samples, and the formula is as follow:

La(F) =
N

∑

i=1

∥

∥

∥
F − F̂

∥

∥

∥
. (7)

Latent Loss : In addition to the fraud loss and the apparent
loss, we also define the latent loss to minimize the distance
between latent representations of real samples and encoded
bottleneck features of generated samples. This loss can help
to learn latent representations both in real and fake examples.
Moreover, the latent loss will form final abnormal scores in

the testing phase with the apparent loss

Ll(F) =
N

∑

i=1

‖Ge(F)− G(F)‖2 . (8)

In summary, the loss function of the generator is:

Lg(F) = ωf ∗ Lf (F)+ ωa ∗ La(F)+ ωl ∗ Ll(F), (9)

where ωf , ωa and ωl are used to adjust the importance of Lf ,
La and Ll in generator loss.
For the discriminator, a feature matching loss L is adopted

for adversarial learning, which is proposed by Salimans et al.
[40] to reduce the instability of GAN training

Ld (F) =
N

∑

i=1

‖L(F)− L(Gd (Ge(F)))‖ . (10)

We use Adam [41] optimizer to update equations (9)
and (10) using backward propagation.

C. TESTING STAGE

In the testing phase, our model uses the latent loss and the
apparent loss for scoring the abnormality of a given sample.
Anomaly score is defined as

A(F) = λ ∗ La(F)+ (1− λ) ∗ Ll(F). (11)

In this part, we use the ratio of ωa to ωl which per-
forms the best training result (i.e., with the smallest gen-
erator loss and discriminator loss) as the suitable weighted
hyper-parameter λ. Because we only train our anomaly detec-
tor on normal data, our anomaly detector will only capture
normal latent patterns and data distributions, A(F) will be
close to 0 for a normal sample, while it will be abnormally
large for a fault sample. Then, we can easily find abnormali-
ties by the value of A(F).

D. GENERAL PROCEDURE OF THE PROPOSED APPROACH

The general outline of our approach for anomaly detec-
tion of imbalanced industrial datasets are summarized in
Algorithm 1.

IV. EXPERIMENTAL SETUP

In order to evaluate the feasibility and effectiveness of
our approach, we first test it on rolling bearing data from
Case Western Reserve University (CWRU) [42], and then
further validate it by using a rolling bearing dataset collected
from our laboratory [43].

A. DATASET DESCRIPTION

Rolling bearing data from CWRU [42]. This is a bench-
mark bearing anomaly detection dataset measuring a vibra-
tion signal using an accelerometer on a 2 hp reliance elec-
tric motor. Motor bearings were seeded with faults using
electro-discharge machining. Faults ranging from 0.007
to 0.028 inch in diameter were created respectively at the
inner raceway (IR), the rolling element (i.e. ball) (B), and
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Algorithm 1Outline of Our Approach for Imbalanced Indus-
trial Dataset
Input: Training set Dtrain (only normal samples).
Initialize: Initialize all parameters of the whole network.
Output: Trained modelM.
Training :

1: Ftrain← Input Dtrain into feature extractor.
2: Forward Propagation as following:
2.1: Z← Downscale Ftrain using Eq. (3).
2.2: F̂← Upscale Z using Eq. (4).
2.3: Ẑ← Downscale F̂ using Eq. (5).
2.4: Lg← Use Eq. (6)-(9).
2.5: Ld← Use Eq. (10).

3: Backward Propagation:
Update network parameters using Adam [41] optimizer.

4: Trained model M← Repeat Step 2 and Step 3 until Lg

and Ld converge.
Testing :

1: Ftest← Input Dtest into feature extractor.
2: La and Ll← Input Ftest into trained generator ofM.
3: A← Use Eq. (11).

FIGURE 3. Testing bed of CWRU.

the outer raceway (OR). Fault bearings were reinstalled
into the test motor and vibration data was recorded for
motor loads from 0 to 3 horsepower (motor speeds from
1720 to 1797 rpm). Datasets were collected at 12 kHz and
at 48 kHz, respectively. Each dataset file consists of three
types of signal, namely the accelerometer signal at the drive
end, the accelerometer signal at the fan end, and the base
accelerometer signal. Testing bed of CWRU is shown in
Figure 3.
Rolling bearing data from our laboratory [43]. Our

experiment uses normal and faulty bearings installed into
the testing motor whose voltage signals are acquired. Fault
bearings with a 0.055 inch fault diameter are damaged
using electro-discharge machining. As in the CWRU dataset,
faults are introduced to B, OR and IR respectively. Signals
are collected with 50 kHz sampling frequency undergoing
three motor speeds (i.e., 600 rpm, 800 rpm, and 1000 rpm).
To ensure the validity of the recorded experimental data, each
operational condition is repeated three times with the same
experimental setting. Our test rig is shown in Figure 4.

Details of two datasets are summarized in Table 1.
To examine the robustness of our proposed GAN-based

FIGURE 4. Our experimental test rig.

TABLE 1. Details of two rolling bearing datasets.

method against environment noise, a small load is applied to
the bearing on our testing bed to obtain lower signal to noise
ratio (SNR) signals for evaluation.

B. DATA PRE-PROCESSING

We divide normal samples into a training set and a testing
set respectively. For rolling bearing dataset from CWRU,
the sample dimension is set to t = 3136. And for the rolling
bearing dataset from our lab, t = 12000.
To make our results comparable to most published results

for the benchmark CWRU dataset, we use the original data
without feature extraction for comparison. For the CWRU
dataset, we use b = 400 samples under normal operation
condition to train the anomaly detector. v = 541 and u = 384
samples without labels are used in testing set.

For the rolling bearing data from our lab, sixteen distin-
guishing features are extracted (q = 16). Expressions of these
features are listed in Table 2. We use b = 100 samples under
normal operation condition to train the anomaly detector.
v = 375 and u = 225 samples without labels are used in
the testing set.

C. IMPLEMENTATION DETAILS

1) COMPARE WITH DBN, ANOGAN, AND BIGAN

For comparison, other three networks are employed: namely
deep belief network (DBN) [44], AnoGAN [15], and bidi-
rectional generative adversarial networks (BiGAN) [16].
Specifically, DBN is a multilayer generative model which
is composed by Restricted Boltzmann Machines (RBMs),
which is efficient for extracting high-dimensional temporal
datas. AnoGAN uses an anomaly score to indicate how sam-
ples fit the learned distribution. Anomalous data can be cor-
rectly identified with a high probability by using this method.
BiGAN learns the inverse mapping which means the data
is projected back into the latent space. The learned feature
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TABLE 2. Extracted features.

TABLE 3. Network architecture of our approach.

representation is widely used for anomaly detection. We train
DBN under the condition that the ratio of the number of
normal samples to abnormal samples is 5:1, while AnoGAN
and BiGAN are trained only with normal samples.
We implement our approach in PyTorch [45] by optimizing

the networks using Adam [41]. Initial learning rate lr =
1e−4, and momentums β1 = 0.5, β2 = 0.999 are used.
Each model is trained 50 epochs with 16 batch-size for both
datasets. Detailed network architecture of our approach is
shown in Table 3. And, detailed network architectures of
AnoGAN and BiGAN, are presented in Table 6 and Table 7 in
Appendix. In addition, for hyper-parameters in equation (9),
we first consider grid search and cross validation using the
method of GridSearchCV [46]. Afterwards, we made fine
adjustments with trial and errormethod based on the results of
GridSearchCV, and determined the best parameters according
to the minimum generator loss value Lg.

FIGURE 5. Confusion matrix.

2) COMPARE WITH CLASSICAL ALGORITHMS FOR SOLVING

UNBALANCED DATASET

Different from our approach, classic algorithms for solving
unbalanced dataset, such as SMOTE [28] and ADASYN [47],
aim to obtaining a balanced samples by various sampling
strategies. To further verify the feasibility, AUC acquired
by classic algorithms including SMOTE [28], Borderline
SMOTE [48], ADASYN [47], SMOTEENN [49], SMOTE-
Tomek [49], and RandomOverSample [50] are compared
with that of our proposed method. Conveniently, we selected
the most common SVC and random forest as classification
methods.

In addition, to measure imbalance degree, an unbalanced
factor is defined as the ratio of the number of normal sam-
ples to abnormal samples. The larger the unbalanced factor,
the smaller the number of abnormal samples in both the train-
ing and testing sets. We implement above classic algorithms
under two different unbalanced factors (5:1 and 20:1) and get
AUC results.

D. EVALUATION METRICES

To verify if the proposed approach will achieve good perfor-
mance, the anomaly scores of testing set will be calculated.

After calculating anomaly scores, the overall performance
will be compared by using the area under curve (AUC) of
the receiver operating characteristic (ROC). In ROC, the true
positive rate (TPR) is as a function of the false positive rate
(FPR). TPR and FPR are defined as follows,

TPR =
TP

TP+ FN
, (12)

FPR =
FP

FP+ TN
, (13)

where TP is the number of positive samples predicted to be
positive. FN is the number of positive samples predicted to
be negative. FP is the number of negative samples predicted
to be positive, and TN is the number of negative samples
predicted to be negative. Above four numbers also construct
the confusionmatrix (Figure 5), which is one of the evaluation
indexes of various classification models.

V. EXPERIMENTAL RESULTS

A. RESULTS OF THE TWO DATASETS

1) RESULTS OF ROLLING BEARING DATASET FROM CWRU

Scores of CWRU dataset of the propsoed method are shown
in Figure 6. As can be seen from this picture, normal and three
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FIGURE 6. Different types of faulty on the CWRU dataset. Different levels
of scores represent different states of rolling bearings (Normal, IR, OR, B).
Pink dotted line separates the normal and abnormal samples.

FIGURE 7. Anomaly detection performance on dataset from our lab. Pink
dotted line separates the normal and abnormal samples.

fault conditions of rolling bearings are clearly separated with
different levels of scores. Additionally, different types of fail-
ures can be surprisingly recognized (which is not our initial
objective in this study). Pink dotted line seperates normal and
abnormal samples. Moreover, the results also show that the
data pattern of ball faults (B in Figure 6) are closest to that
of normal, while the inner race faults (IR in Figure 6) are the
most distinguished from the normality.

2) RESULTS OF THE ROLLING BEARING DATASET

FROM OUR LABORATORY

For this dataset, we focus on fault signals acquired with lower
SNR. Therefore, the robustness of our proposed method can
be investigated with higher noise level compared to the pre-
vious case. The results are presented in Figure 7. It clearly
show that the fault samples (above the pink dotted line) and
normal samples are well separated, and fault samples obtain
much higher anomaly scores than normal samples, compared
to the results in Figure 6. Thus, we confirm that the proposed
method achieves excellent classification results using our
own rolling bearing dataset even the signals are highly noised.
However, although the data distribution of faulty in outer

race still farthest deviate from normal samples, anomaly
scores of three kinds of faulty are randomly mixed together.
The future study will explore more complex GANomaly
method to achieve multi-class diagnosis.

B. COMPARE WITH OTHER METHODS

1) COMPARE WITH DBN, ANOGAN, AND BIGAN

To ensures a fair comparison across different methods,
hyper-parameters and architectures of each method are well
tuned to obtain its best diagnosis performance for each
dataset. AUC of each methods are shown in Table 4.

TABLE 4. AUC results for different networks on two datasets.

For the dataset from CWRU, AUCs of three GAN-based
methods are almost the same, yet our approach shows a
completely correct anomaly detection results. For our own
dataset, compared to other approaches, our architecture using
the model trained only with normal sample lead to the supe-
rior performance (AUC=1).

2) COMPARE WITH CLASSIC ALGORITHMS

Table 5 shows AUC results of classic algorithms under dif-
ferent unbalanced factors. From this table, we can conclude
that classical methods for unbalanced datasets can not achieve
the AUC of 1 on both datasets, especially worse results are
carried out on the dataset collected from our laboratory when
compared to our proposed approach. Although the accuracy
of Borderline SMOTE and SMOTEENN for the dataset from
CWRU can reach AUC=1 under the condition that the clas-
sification algorithm is SVC with an unbalanced factor of 5:1,
when the unbalanced factor increases to 20:1, the accuracy
decreases. Furthermore, the precondition for these classical
algorithms is that abnormal samples are necessary in both
the training and testing sets, indicating that models can not
be trained without abnormal samples. However, our approach
only need to be trained on normal samples, meanwhile, 100%
accurate anomaly detection can be achieved on the both
datasets.

C. RESULTS ANALYSIS

1) DATA VISUALIZATION

The proposed method aims to training the model that gen-
erates scores as small as possible for samples under nor-
mal conditions. To explore the effectiveness of the trained
model, it is necessary to visualize the difference between the
scores of normal and fault samples. We randomly select a
normal sample and three fault samples in the CWRU dataset
for investigation. Figure 8 shows the temporal vibrations
of raw samples X (green lines) and reconstructed samples
X̂ (red lines) of each condition. It can be observed that
the temporal vibrations of normal samples in Figure 8(a)
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TABLE 5. AUC results for classic algorithms on two datasets.

FIGURE 8. Examples of temporal vibrations of raw sample X and

re-engineered sample X̂ of (a) normal condition, (b) ball fault, (c) outer
race fault, and (d) inner race fault on the CWRU dataset.

are very similar to each other. In contrast, Figures 8(b)-(d)
show that the difference between X̂ and X of each fault
condition are obvious. We further investigate the difference
between the latent vectors Z (original) and Ẑ (re-engineered)
learned by the model, and the results are shown in Figure 9.
Not surprisingly, temporal vibrations of the fault conditions
in Figure 9(b)-(d) are discriminated very well and temporal
vibrations of the normal samples in Figures 9(a) are very
similar.

In addition, in our approach, 16 most representative fea-
tures are acquired after feature extractor. To intuitively
observe the difference between the temporal vibration of
feature F and the reconstructed feature F̂ under various oper-
ating modes, we present the most representative two (mean
value and skewness value) of the features in Fig. 11. It can be
seen that the original extracted features of abnormal samples
are sometimes difficult to be distinguished (magnitudes of

FIGURE 9. Examples of temporal vibrations of raw latent vector Z and

reengineered latent Ẑ of (a) normal condition, (b) ball fault, (c) outer race
fault, and (d) inner race fault on CWRU dataset.

FIGURE 10. Overall performance of our model based on varying size of
the subsample.

red lines). After processing the abnormal samples according
to the encoding-decoding-encoding patterns from the gener-
ator, the reconstructed feature values deviate a lot from the
original compared to that of normal samples.
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FIGURE 11. Two examples of temporal vibrations of raw sample F and re-engineered sample F̂ of (a) normal condition, (b) ball fault, (c) outer race
fault, and (d) inner race fault on the CWRU dataset.

These results further demonstrate that the proposed
method effectively learns the hidden patterns of the nor-
mal samples; consequently, fault samples can be recognized
effectively.

2) THE IMPACT OF SAMPLE SEGMENTATION

In Figure 10, it can be observed that optimal performance is
achieved when the length of the subsample is 12000 for each
dataset. Considering the sampling frequency is 50kHz for
voltage signals collected in our lab, we are able to infer that
the potential patterns and spectral complexities are hidden in
every 0.24 seconds. Similarly, the patterns of vibration signals
from CWRU can be seen in every 0.25 seconds.

VI. CONCLUSION

In this paper, we put forward an innovative GAN-based archi-
tecture for anomaly detection involving imbalanced industrial
time series; this architecture requires only normal samples for
training. We elaborately design a feature extractor based on
the characteristics of time series before the anomaly detector,
and an encoder-decoder-encoder generator helps to detect the
existence of abnormal samples by outputting larger anomaly
scores. This network architecture achieves 100% accuracy
(AUC=1) for both rolling bearing data from CWRU and
our lab. With advances in both experimental techniques and
equipment, and computational power and storage capacity,
sensors in industrial fields can now collect more multivariate
time-series data than ever before. Therefore, future work
should include combining the information between different
dimensions of multivariate time series to achieve better diag-
nostic effects.

APPENDIX

Detailed network architectures of AnoGAN and BiGAN are
shown in Table 6 and Table 7.
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