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A B S T R A C T

Image-to-image translation based on generative adversarial network (GAN) has achieved state-of-
the-art performance in various image restoration applications. Single image dehazing is a typical
example, which aims to obtain the haze-free image of a haze one. This paper concentrates on the
challenging task of single image dehazing. Based on the atmospheric scattering model, a novel model
is designed to directly generate the haze-free image. The main challenge of image dehazing is that
the atmospheric scattering model has two parameters, i.e., transmission map and atmospheric light.
When they are estimated respectively, the errors will be accumulated to compromise the dehazing
quality. Considering this reason and various image sizes, a novel input-size flexibility conditional
generative adversarial network (cGAN) is proposed for single image dehazing, which is input-size
flexibility at both training and test stages for image-to-image translation with cGAN framework. A
simple and effective U-connection residual network (UR-Net) is proposed to combine the generator
and adopt the spatial pyramid pooling (SPP) to design the discriminator. Moreover, the model is
trained with multi-loss function, in which the consistency loss is a novel designed loss in this paper.
Finally, a multi-scale cGAN fusion model is built to realize state-of-the-art single image dehazing
performance. The proposed models receive a haze image as input and directly output a haze-free one.
Experimental results demonstrate the effectiveness and efficiency of the proposed models.

1. Introduction
Haze removal [9] is a classical ill-posed image restora-

tion problem, which plays an important role in intelligent
transportation systems, e.g., object detection under haze con-
ditions [18, 19, 23]. Haze is defined as some particles such
as dust that obscure the clarity of the atmosphere. Dehazing
is to remove the veil of haze from a haze image and restore a
corresponding haze-free image. In recent years, because the
development of deep learning has greatly improved the per-
formance of image processing compared with non-learning-
based technology, the problem of dehazing attracts more and
more attentions in image restoration research community.
Various image dehazing methods based on deep learning
technology have been proposed, including: (1) Generating
medium transmission map [3] or haze-free image [17, 23,
43] by a convolutional neural network (CNN); (2) gener-
ating transmission map [29] or haze-free image [24, 39, 42]
based on encoder-decoder structure without adversary train-
ing; (3) reconstructing haze-free image with paired image-
to-image translation models based on generative adversary
network (GAN) [20, 28, 30, 41, 45]; (4) reconstructing haze-
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free image with unpaired image-to-image translation mod-
els based on cycle GAN (CGAN) [5, 22, 40].

In order to directly generate medium transmission map,
[3] and [29] proposed an end-to-end learnable CNN model.
To generate haze-free image from a haze one via an end-to-
end manner, [17],[23] and [43] proposed light-weight and
fast CNNs. [24], [39] and [42] incorporated some modern
technologies into CNNs based on encoder-decoder struc-
ture. Usually, the real of image restoration is sub-optimal
based on these models. In order to merge GAN [7] and im-
age dehazing, supervised learning model with paired and
unpaired samples based on adversary training are developed.
[20], [28], [30], [41] and [45] are GAN-based end-to-end
learnable models that trained with paired synthetic dataset,
while [40], [5] and [22] are cycle-consistency models that
trained with unpaired training dataset.

From these deep learning-based methods, we can see
that: (1) Because the end-to-end dehazing models [17, 20,
24, 30, 39, 41, 42, 43, 45] can directly generate the haze-
free image without additional parameter estimation, they
are generally more efficient than non-end-to-end dehazing
models [3, 29]; (2) Due to down-sampling and up-sampling
process are not used before and after image dehazing with
input-size flexibility models [17, 24], the information loss
can be minimized throughout the restoration process. Thus,
images generated with input-size flexibility models have a
better visual effect than images generated with input-size
fixed models [30, 41, 42, 43]; (3) Because the paired sam-
ples have definitive supervised information, the training of
the network can be truly supervised when the paired samples
are used. Thus, paired image-to-image translation models
[20, 28, 30, 41, 45] are usually more effective than unpaired
image-to-image translation models [5, 22, 40]; (4) Various
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works [20, 28, 30, 45] focus on exploring single image de-
hazing with GAN-based models and achieve promising per-
formance. Considering these properties, we propose an end-
to-end input-size flexibility conditional generative adversar-
ial network (cGAN) for single image dehazing. The pro-
posed model can not only remove the haze as much as pos-
sible but also preserve the clear content of an image.

The method proposed in this paper has obtained the state-
of-the-art results on the datasets of the intelligent traffic video
image enhancement processing competition2 of ICIG 2019
and the more large scale REalistic Single Image DEhazing
(RESIDE) dataset [19] for single image dehazing. The per-
formance improvement primarily comes from the input-size
flexibility training and test, multi-loss supervised training
and the designed end-to-end framework.

Our works have the following contributions.

• An end-to-end input-size flexibility cGAN model is
proposed for single image dehazing. The size of fea-
ture map in each layer of the generator is automated
calculated based on the size of the input image. Based
on our model, input-size flexibility mode can be ap-
plied to both adversary training and test stages and the
image dehazing performance can be improved greatly.

• In our framework, a UR-Net structure is designed based
on the popular U-Net [38] structure and residual learn-
ing [12], which is simple and effective. The generator
is the iteration of UR-Net between two adjacent con-
volutional layers. Moreover, in order to realize input-
size flexibility adversary training, the spatial pyramid
pooling (SPP) [10] structure is embedded into the dis-
criminator.

• Training with multi-loss functions is also an impor-
tant part of our framework. We proposed a novel con-
sistency loss to keep the transformation consistency
between the generated dehazing image and the real
input image, and combined adversary loss, L1 loss,
the structural similarity (SSIM) loss and a new peak
signal to noise ratio (PSNR) loss to train our network.
The effectiveness of these loss functions is verified by
ablation studies.

The rest of this paper is organized as follows. In Section
2, related works about learning-based single image dehazing
are reviewed. The idea, framework and details of the pro-
posed input-size flexibility cGAN for single image dehazing
are presented in Section 3. In Section 4, datasets, evaluation
metrics and the experimental results are presented. Section
5 concludes the paper.

2. Related Work
Single image dehazing is a difficult vision task and has

a long research history. Traditional single image dehaz-
ing methods are based on the handcrafted priors [6], e.g.,

2http://icig2019.csig.org.cn/?page_id=328

dark channel prior [9, 31, 32], color attenuation prior [47]
and non-local prior [2, 21], which are usually simple and
effective for many scenes. However, prior-based methods
are limited when describing specific statistics. In recent
few years, learning-based methods are becoming popular
because they can overcome the limitations of specific priors
[4, 26]. We also oriented to study learning-based single im-
age dehazing in this paper. Here, works related to them are
reviewed in detail, including learning-based dehazing with-
out and with GAN methods, respectively.

2.1. Learning-based Dehazing Without GAN
Learning-based dehazing methods become more and more

popular since the learning idea was proposed by Tang et
al.[37]. The original idea was learning a regression model
based on random forests from prior-based haze-relevant fea-
tures, such as dark channel [9], local max contrast [36], hue
disparity [1], and local max saturation [37]. Subsequently,
more powerful learning dehazing models were proposed, es-
pecially CNN-based end-to-end learning methods. Song et
al. [35] proposed a ranking CNN to capture the statisti-
cal and structural attributes of hazy images, simultaneously.
However, it is not an end-to-end learning system. Cai et
al. [3] proposed an end-to-end learning system to directly
generate a medium transmission map, which is based on the
CNN framework and called DehazeNet. Ren et al. [29] pro-
posed a coarse-to-fine multi-scale CNN (MSCNN) model to
predict transmission maps. Although the two models can be
learned via an end-to-end manner, they are not end-to-end
dehazing models.

In 2017, Li et al. [17] proposed a light-weight, effec-
tive and fast end-to-end learning model for image dehaz-
ing, called AOD-Net, which can directly generate a haze-
free image from a haze one. Since then, the end-to-end de-
hazing idea is favored by researchers. Based on the AOD-
Net framework, Liu et al. [23] investigated various loss
functions and demonstrated that training with perception-
driving loss can further boost the performance of dehaz-
ing. Zhang et al. [42] proposed a multi-scale image de-
hazing method using a perceptual pyramid deep network
based on an encoder-decoder structure with a pyramid pool-
ing module. In this model, the designed network is based
on dense blocks [13] and residual blocks [12], the percep-
tual loss is also incorporated into the training process. Xu et
al. [39] proposed an instance normalization unit and embed-
ded it into the VGG-based [33] U-Net [38] with an encoder-
decoder structure. Liu et al. [24] proposed a generic model-
agnostic CNN (GMAN) for signal image dehazing, which is
based on the fully convolutional idea and is not rely on the
atmosphere scattering model. Both Xu et al. and Zhang et
al. are based on the mean squared error (MSE) and VGG-
feature-based perceptual loss to train the network. Recently,
Zhang and Tao [43] proposed a fast and accurate multi-scale
end-to-end dehazing network called FAMED-Net, which is
lightweight and computationally efficient.

Inspired by the success of these models, our proposed
framework is based on the U-Net structure and residual learn-
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ing, which is also an end-to-end dehazing one. Different
from the previous idea, our network is designed for gen-
eralized image restoration, especially for different sizes of
images, which can accept input images of any size during
both training and test processes.

2.2. Learning-based Dehazing With GAN
The idea of GAN was first proposed in [7], which is

designed to synthesize realistic images via an adversarial
process. Latter, it is widely extended to a variety of image
generation tasks, such as conditional image generation [25],
paired image-to-image translation [15], unpaired image-to-
image translation [46], etc. Now, it is also becoming popu-
lar in single image dehazing. Zhang and Patel [41] proposed
to jointly learn the transmission map, atmospheric light, and
dehazing based on GAN framework, which is called densely
connected pyramid dehazing network (DCPDN) and is an
end-to-end single image dehazing model. Zhu et al. [45]
formulated the atmospheric scattering model into a GAN
framework and proposed a DehazeGAN, which can be used
to learn the global atmospheric light and the transmission
coefficient simultaneously. In order to generate realistic clear
images, Li et al. [20] directly estimates the haze-free im-
age based on an end-to-end trainable cGAN with encoder-
decoder architecture. Ren et al. [30] adopted a fusion-based
strategy to fuse three inputs from an original hazy image
and proposed an end-to-end gated fusion network (GFN)
for single image dehazing, which is trained with MSE and
adversarial loss. Qu et al. [28] directly generate a haze-
free image from a haze one without the physical scattering
model, which is called enhanced pix2pix dehazing network
(EPDN), and multi-loss function optimization idea is also
used to train the network, including adversarial loss. All of
these models are based on paired image-to-image transla-
tion framework.

Moreover, the unpaired image-to-image translation frame-
work can be also found in single image dehazing. Yang et
al. [40] proposed an end-to-end disentangled dehazing net-
work to generate a haze-free image based on unpaired super-
vision. Engin et al. [5] completed the dehazing task based
on unpaired supervision, which did not rely on the atmo-
spheric scattering model and trained by combining cycle-
consistency and perceptual losses. Liu et al. [22] developed
an end-to-end learning system that uses unpaired fog and
fog-free training images to generate a fog-free image, which
also uses adversarial discriminators and cycle-consistency
losses to train the whole framework. The advantage of un-
paired supervision training is that the training process does
not need to rely on synthetic dataset, because unpaired sam-
ples are easy to obtain. However, because these frameworks
do not rely on the paired training data, the performance to
restore realistic images is limited.

Therefore, our designed framework is based on paired
cGAN, which is also incorporating multi-loss function opti-
mization in it.

3. Input-Size Flexibility Conditional
Generative Adversarial Network
Most of the previous single image dehazing models are

based on the atmospheric scattering model, which tends to
estimate the parameters of transmission map and atmospheric
light. However, parameter estimation usually introduces es-
timation errors, which reduces the quality of restoration im-
age. We thus develop an end-to-end and image-to-image
translation model for single image dehazing, which is in-
dependent of the atmospheric scattering model and there is
no additional parameter estimation. The proposed model
directly produces a haze-free image from a haze one and
is input-size flexibility at both training and test stages. In
the following, the atmospheric scattering model is first ana-
lyzed and then each component of our proposed input-size
flexibility conditional generative adversarial network is pre-
sented, respectively, i.e., generator, discriminator and loss
functions.

3.1. The Analysis of Atmospheric Scattering
Model

The famous atmospheric scattering model [27] can be
formulated as follows:

Ire(x) = Jre(x)t(x) + �(1 − t(x)), (1)

where Ire(x) is the real haze image that need to be restored,
Jre(x) is the expected haze-free image that could be recov-
ered from Ire(x), t(x) is the medium transmission map, � is
the global atmospheric light and x is the indexes of the pix-
els corresponding to an image (Ire, Jre and t). In real tasks,
only Ire(x) of Eq.(1) is known, the other three variables are
unknown. Because the final goal is to estimate Jre(x), thus
if t(x) and � can be estimated, then one can directly obtain
the Jre(x) according the following formula:

Jre(x) =
1
t(x)

Ire(x) + �(1 −
1
t(x)

) (2)

However, estimating t(x) is a complex task because t(x)
is related with both the distance d(x) from the scene point
to the camera and the scattering coefficient � of the atmo-
sphere, which can be formulated as follows:

t(x) = e−�d(x) (3)

Moreover, there will always exist an error in the estima-
tion of each parameter. Suppose that �1 and �2 are the av-
erage estimation errors of parameters t and �, respectively.
When Eq.(2) is used to obtain a haze-free image, if the total
average estimated error is �, then we have:

� = �1 + �2 + �1 ⋅ �2 (4)

From Eq.(4), only both �1 → 0 and �2 → 0, we can
obtain � → 0. When the estimating parameters are more
than one in a system, the estimated error of each parameter
is usually difficult to control simultaneously. In order to
estimate them by an end-to-end manner, a new framework
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Figure 1: The designed generator (UR-Net-7) of the proposed input-size flexibility conditional generative adversarial network.

with a novel consistency loss (Eq.(7)) is designed. Next, we
will analyze it.

Through log transformation, Eq.(2) can be transformed
to the following form:

log(Jre(x) − �) = log(Ire(x) − �) − log(t(x)), (5)

By setting J g(x) = log(Jre(x) − �), Ir(x) = log(Ire(x) − �)
and M(x) = log(t(x)), Eq.(5) can be rewritten as follows:

J g(x) = Ir(x) −M(x), (6)

In this paper, Encoder-decoder idea is used to realize
dehazing task. According to Eq.(6), if we assume that Ir
is one layer output of the encoder network with input Ire,
and J g is one layer output of the decoder network. We can
obtain Jge according to the following rule: Ir = log(Ire −
�) ⇒ � = Ire − exp(Ir) then J g = log(Jge − �) ⇒ Jge =
Ire − [exp(Ir) − exp(J g)]. In the following, we design our
framework based on this observation and Eq.(6).

3.2. The Generator of the Proposed Input-size
Flexibility cGAN

As derived in Eq.(6), residual idea is an important com-
ponent of our generator. An U-connection residual network
(UR-Net) is designed for single image dehazing, and the
whole generator is the iteration of UR-Net between two ad-
jacent convolutional layers. Fig. 1 is the framework of our
designed generator.

The unit of the red dotted rectangle in Fig. 1 is an ex-
ample of the designed UR-Net. Step 1 is a convolutional
layer with kernel of 5 × 5 and stride 2. Suppose that the
shape of conv7 is (1, c7, ℎ7, w7) and the shape of conv8 is
(1, c8, ℎ8, w8), then we have ℎ8 = ⌈

ℎ7
2 ⌉, w8 = ⌈

w7
2 ⌉, where

⌈⋅⌉ is an up-round symbol. This is implemented by using
the "same" padding operation in TensorFlow. Step 2 is a
de-convolutional layer with a kernel of 5 × 5 and stride 2.

Suppose that the output shape of step 2 is (1, co8, ℎ
o
8, w

o
8),

then we have ℎo8 = ℎ7, wo8 = w7 by setting ℎo8 = ℎ8+1
2 ,

wo8 =
w8+1
2 . Next, we concatenate the output of step 2 and

conv7 in the channel dimension, the output of step 4 is the
concatenated result. This is the idea of U-Net for the pur-
pose of fine information recovery. In order to realize resid-
ual learning between the input (conv7 in this example) and
output of the penultimate layer of UR-Net, we need to en-
sure that the output channel dimension of the penultimate
layer equals to the input. Thus, in step 5 , a convolutional
layer with kernel of 3 × 3 and stride 1 is used to reduce the
channel dimension of step 4 , and the output size of step
5 is equal to its input size by using the "same" padding op-

eration in TensorFlow. Finally, the residual can be obtained
by the subtraction between conv7 and the output of step 5 .
Moreover, batch normalization (bn) [14] is used to each con-
volutional and de-convolutional layer in our framework for
the purpose of fast convergence. The activation function of
the last layer is tanh(⋅), other layers are leak ReLU (Lrelu)
and the value of leak is set to 0.2.

In order to provide noise to realize conditional input,
dropout operation is used at both training and test stage after
the de-convolutional layers corresponding to conv6, conv7
and conv8. The dropout rate is set as 0.5. In Fig. 1, the
height ℎi and width wi of each convi is related to the height
ℎ and width w of an input image, the calculation formulas
are ℎi =

ℎ+2i−1
2i and wi =

w+2i−1
2i . The designed generator

is an encoder-decoder structure, conv1 to conv8 form the
encoder, the other parts form the decoder.

For convenience, in the following, UR-Net-K is used to
indicate that the number of UR-Net structure in the genera-
tor isK (e.g., the generator of Fig. 1 has 7 UR-Net structure,
thus we call it UR-Net-7). At the same time, UR-Net-K∗ is
used to represent that there is no subtraction process in the
last UR-Net of the generator (the last UR-Net is located at
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Figure 2: The designed discriminator of the proposed input-size flexibility conditional generative adversarial network.

the last de-convolutional layer).
The purpose of generator (G) is generating a haze-free

output image Jge based on the input haze image Ire and ran-
dom noise Z, i.e., G ∶ {Ire, Z} → Jge.

3.3. The Discriminator of the Proposed Input-size
Flexibility cGAN

The discriminator D is an important part of our pro-
posed input-size flexibility cGAN model, which is used to
discriminate the input sample is a "real image" (Jre) or a
"generated image" (Jge). As shown in Fig. 2, it consists
of an input layer, 4 convolutional layers, a spatial pyramid
pooling (SPP) [11] layer and a fully convolutional layer (fc).
One image of the input layer is the concatenation of real
clear image and real haze image across the channel dimen-
sion, another one is the concatenation of real clear image
and the generated haze-free image across the channel di-
mension. The first three convolutional layers have a con-
volutional operation with kernel of 5 × 5 and stride 2, the
last convolutional layer have a convolutional operation with
kernel of 5 × 5 and stride 1. The SPP layer is designed to
pool different sizes of input feature maps into vectors of the
same length (the level of SPP is set as 4), thus training with
input-size flexibility can be realized. The fc layer is a classi-
fier to discriminate whether the input sample is real or fake
(generated).

3.4. Multi-loss Function
The idea of multi-loss function optimization is widely

used in various CNN-based systems, which is proved effec-
tive in different kinds of applications. It is also used in our
framework. Next, we will define them one-by-one.

To ensure that Ir = log(Ire − �) and J g = log(Jge − �),
we need to constrain Ire − exp(Ir) = Jge − exp(J g). Thus,
we define a consistency loss as follows:

Consistency(G) = ||Ire−exp(Ir)−Jge+exp(J g)||1 (7)

This consistency loss function is to ensure that the transfor-
mations of Ire and Jge in the network are approximated to

the log transformation with parameter �, which is novel and
important for our framework. Instead of learning the param-
eter of �, by this consistency loss, a convolutional layer is
developed to estimate the transformation of log(Ire−�) and
the inverse transformation of log(Jge − �), respectively.

Then, we adopt the general cGAN loss function [15] in
our model, which is defined as follows:

cGAN (G,D) =EIre,Jre [logD(Ire, Jre)]+

EIre,Z [log(1 −D(Ire, G(Ire, Z)))]
(8)

At the training stage, the generator G is trained to pro-
duce outputs that cannot be distinguished as "fakes" by the
discriminator D, and D is trained to distinguish the gener-
ated example as "fakes". Thus,G tries to minimize objective
(8) against an adversarial D that tries to maximize it, i.e.,
G∗ = argminGmaxD cGAN (G;D). In the last term of (8),
minimizingG is equivalent to maximizing log(D(Ire, G(Ire, Z))),
which is adopted at the implementation stage.

Because the L1 loss function can constrain the output
of the generator absoutely equal to the expected output thus
reduce the blur. We also introduce it as one of our loss func-
tions, as follows:

L1
(G) = EIre,Jre,Z [||Jre − G(Ire, Z)||1] (9)

Moreover, perception-driving losses are verified effec-
tive in various image restoration tasks. Thus, in order to
make the generated haze-free images have a good visual ef-
fect, we adopt SSIM and PSNR loss to construct our percep-
tion losses. In our model, the calculation formula of SSIM
is the same as [44]. PSNR is defined as:

PSNR(Jre, Jge) = 10 ⋅ log10(
(max(Jre) − min(Jre))2

MSE(Jre, Jge)
),

(10)

where MSE(Jre, Jge) is the mean of (Jre − Jge)2 and can
be formulated as MSE(Jre, Jge) = mean((Jre − Jge)2).
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Figure 3: The fusion model of multi-scale generator.

According to the above formula, SSIM and PSNR losses
are defined as follows:

SSIM (G) = 1 − SSIM(Jre, Jge), (11)

PSNR(G) = 1 −
PSRN(Jre, Jge)

tℎresℎ
, (12)

where tℎresℎ is a threshold that is set to 40 in our experi-
ments.

Finally, the overall loss function of our model is defined
as follows:

 =Consistency(G) + �1cGAN (G,D) + �2L1
(G)+

�3SSIM (G) + �4PSNR(G) + �||w||22,
(13)

where �1, �2, �3 and �4 are weights of their correspond-
ing loss functions, which are set to 1, 100, 100 and 100 in
our experiments, respectively. The final goal is to minimize
(13). The last term is only used to multi-scale training stage
(Section 3.5), in whichw is the weights of the generator and
� is the weight of this term.

3.5. Multi-scale Generator Fusion
Multi-scale fusion is verified effective in image dehaz-

ing by Zhang and Tao [43]. In their model, a Gaussian pyra-
mid architecture with a late fusion module is designed to
fuse different estimated feature maps. Here, the Gaussian
pyramid architecture is also used to realize multi-scale gen-
erator fusion model, as shown in Fig. 3. This fusion model
aims to show the generalization of our model to multi-scale
framework. It should be noted that FAMED-Net[43] is trained
without adversarial, our multi-scale generator is trained based
on our cGAN framework. The input of the generator in-
cludes one haze image (haze1) and the corresponding down-
sampled images ( 12 scale (haze2) and 1

4 scale (haze3)). The

output of the generator includes 4 haze-free images (haze-
free1, haze-free2, haze-free3, and haze-freefusion in Fig. 3),
which corresponds to the original scale of input haze image,
1
2 scale, 1

4 scale, and multi-scale fused output. The module
of multi-scale fusion is performed based on the concatena-
tion of haze maps (M1, M2, M3 in Fig. 3) of original scale,
2× up-sampling of 1

2 scale, 4× up-sampling of 1
4 scale. The

fused haze map (Mfusion) is obtained after applying a con-
volutional layer with 1×1 kernel to the concatenated haze
maps. In this fusion model, the down-sampling and up-
sampling operations are performed with bicubic interpola-
tion. The generators of original scale, 1

2 down-sampling

scale and 1
4 down-sampling scale of haze images are UR-

Net-7∗, UR-Net-6∗ and UR-Net-5∗, respectively.
The discriminator is also vital for the fusion generator.

Because the designed discriminator is input-size flexibility,
thus we have two alternative of discriminator for the fusion
generator, i.e., with and without sharing parameters for each
output of the generator. Although sharing parameters of dis-
criminator can reduce the model size, it can not reduce the
number of computations. In order to enhance the discrim-
inant ability of this fusion generator, we directly adopt the
discriminator model without sharing parameters, i.e., each
output of the fusion generator is discriminated by different
discriminators.

For the loss function of the fusion generator, we apply
objective (13) to each output of the generator and corre-
sponding discriminator.

3.6. Model Training
The model is implemented based on TensorFlow, and is

trained with minibatch SGD (Stochastic Gradient Descent).
The Adam solver [16] with a learning rate of 0.0002 and
momentum parameters �1 = 0.5, �2 = 0.999 is applied to
optimize our model. All parameters are trained from scratch
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and the batch size is set as 1. The hyper-parameter � in ob-
jective (13) is set as 0.001. In order to better maintain the
convergence balance between the generator and the discrim-
inator, we update parameters of the discriminator once every
4 iterations. Because our model is input-size flexibility, we
can train this model by images with different sizes to obtain
a better haze-free image. However, training with different
sizes of input is slow, thus the model is first trained with
fixed size of input images and then fine-tuned based on dif-
ferent sizes of images.

4. Experiments
We conduct experiments on the dataset of intelligent traf-

fic video image enhancement processing competition of ICIG
2019 (we call it ICIG2019 for convenience) and the large
scale REalistic Single Image DEhazing (RESIDE) dataset
[19] for single image dehazing.

The ICIG2019 dataset contains 5500 clear images of
real scene and corresponding synthetic haze ones. The train-
ing and validation sets contain 5000 and 500 image pairs,
respectively. In the experiments, we use the training set to
train our models and use the validation set to test the trained
models. Ablation studies are conducted on this dataset.

The RESIDE dataset is one of the largest single image
dehazing datasets, which contains 110,500 synthetic hazy
indoor images (ITS) and 313,950 synthetic hazy outdoor
images (OTS) in the training set. The synthetic objective
testing set (SOTS) contains 500 indoor images and 500 out-
door images. The hybrid subjective testing set (HSTS) con-
tains 10 real-world images and 10 synthetic images. In the
training dataset, each clear image corresponds to multiple
haze images of different concentrations. For each clear im-
age, we randomly select a corresponding haze image from
the training samples to form our training set.

We use 4 evaluation metrics that have been realized in
the skimage package of python to evaluate the performance
of single image dehazing, which are MSE (the smaller the
better ↓), normalization root mean-squared error (NRMSE)
(the smaller the better ↓), PSNR (the larger the better ↑) and
SSIM (the larger the better ↑). We also re-test the compared
methods by running the corresponding released models. All
the results reported for the compared methods and our meth-
ods are evaluated using the standard evaluation interface of
python for a fair comparison.

4.1. Ablation Studies
The experiments of ablation study is conducted on the

ICIG2019 dataset. We first verify the effectiveness of each
loss function in Eq.(13) based on the model of UR-Net-7
(Fig. 1) and the input image with size of 256×256. The
maximum training epoch is set as 16. Based on the Base =
Consistency(G) + cGAN (G,D) loss function in our frame-
work, we verify the combinations of Base + L1

, Base +
SSIM , Base + PSNR, Base + L1

+ SSIM (without
PSNR), Base+L1

+PSNR (without SSIM ), Base+
SSIM+PSNR (without L1

), and Base+L1
+SSIM+

PSNR (). The experimental results are shown in Table 1.

Table 1
Results of Different Losses on The ICIG2019 Dataset.

loss MSE ↓ NRMSE ↓ PSNR ↑ SSIM ↑

Base 637.6 0.168 21.54 0.789
Base + L1

382.8 0.135 23.21 0.866
Base + SSIM 383.3 0.135 23.26 0.894
Base + PSNR 336.3 0.126 24.03 0.890
without PSNR 321.1 0.123 24.15 0.899
without SSIM 299.2 0.119 24.45 0.898
without L1

337.8 0.126 23.87 0.902
 287.9 0.116 24.58 0.904

Table 2
Results of Different Input Sizes With and Without Input-size
Flexibility Fine-tuning on The ICIG2019 Dataset.

Training mode MSE ↓ NRMSE ↓ PSNR ↑ SSIM ↑

256×256 287.9 0.116 24.58 0.904
256×256 + IFF 245.1 0.108 25.04 0.905
368×544 300.8 0.118 24.53 0.898
368×544 + IFF 219.6 0.101 25.58 0.905
512×512 317.1 0.116 24.67 0.891
512×512 + IFF 223.4 0.101 25.67 0.906

From Table 1, it can be seen that the best performance is
obtained when all the losses are used. The performances of
Base+L1

, Base+SSIM and Base+PSNR are much
better than the performance of Base, which verified the ef-
fectiveness of each loss function after combined with Base.
The performance without PSNR is much better than the
performances of Base +L1

and Base +SSIM , the per-
formance without SSIM is much better than the perfor-
mances of Base+L1

and Base+PSNR, and the perfor-
mance without L1

is much better than the performances
of Base + SSIM and Base + PSNR, which verified
the effectiveness of combining any two loss functions with
Base. Moreover, we notice that the values of MSE and
PSNR of LBase+LPSNR are much better than LBase+LL1
and LBase + LSSIM , which shows that the proposed PSNR
loss is much better than the L1 loss and LSSIM loss when
they combined with LBase, respectively.

The second ablation experiments are the generator net-
work with fixed sizes of input images and fine-tuned with
input-size flexibility images, which aims to verify the effec-
tiveness of input-size flexibility. The experimental results
are shown in Table 2.

In Table 2, the IFF is the abbreviation of input-size flex-
ibility fine-tuning. The training mode indicates the sizes of
training input. The test results are based on the mode of
input-size flexibility, i.e., the output size of an image equals
to the size of the input image. From Table 2, we can see
that with the input-size flexibility fine-tuning, better perfor-
mances can be obtained. Moreover, the best MSE is ob-
tained with the training mode of 368×544 + IFF, the best
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Table 3
Comparison With The State-of-the-art Methods on The Vali-
dation of ICIG2019 Dataset.

Methods MSE ↓ NRMSE ↓ PSNR ↑ SSIM ↑

MSCNN [29] 1292 0.250 17.33 0.810
DCPDN [41] 971.2 0.218 19.06 0.848
GFN [30] 766.7 0.176 20.96 0.828
De-cGAN [20] 764.4 0.174 21.02 0.857
AOD-Net [17] 646.8 0.175 20.73 0.868
GMAN [24] 290.2 0.118 24.37 0.887
GMAN fine-tuned 287.1 0.118 24.43 0.891
FAMED-Net [43] 249.5 0.107 25.17 0.909
UR-Net-7 223.4 0.101 25.67 0.906
Multi-scale cGAN 213.6 0.099 25.89 0.912

PSNR and SSIM are obtained with the training mode of
512×512 + IFF. The size of 368×544 is the mean size of the
training images (368 is the mean of heights and 544 is the
mean of widths). Moreover, we can see that when IFF is not
used, the best MSE is obtained by the model trained with
input size of 256×256. These experimental results show
that if IFF is used, the process of pre-training with larger in-
put size can lead to higher PSNR and SSIM, otherwise, the
model trained with smaller input size can lead to a smaller
MSE. However, both pre-training and fine-tuning are com-
plex processes. The conclusion that can be determined from
the experiments is that the performances with IFF are better
than the performances without IFF. Other conclusions may
be related to the experimental parameter settings.

4.2. Comparison With the State-of-the-Art
Methods

We compare the proposed method with the state-of-the-
art CNN-based dehazing methods. They are AOD-Net [17],
MSCNN [29], GMAN [24], DCPDN [41], De-cGAN [20],
GFN [30], and recently proposed FAMED-Net [43]. The
comparison results of ICIG2019 dataset are shown in Table
3.

In Table 3, the method of GMAN fine-tuned means the
fine-tuned model of GMAN on the ICIG2019 dataset based
on the pre-trained GMAN model. From Table 3, we can see
that the proposed UR-Net-7 is much better than the previous
proposed methods for the evaluations of MSE, NRMSE and
PSRN. The best SSIM is obtained by the proposed multi-
scale cGAN, followed by the method of FAMED-Net. More-
over, we notice that after the GMAN model is fine-tuned
(GMAN fine-tuned) on the ICIG2019 dataset, the perfor-
mance are better than the GMAN without fine tuning (GMAN
(SPL19)).

In these comparison methods, both AOD-Net and GMAN
are input-size flexibility at the test stage. But they are not
input-size flexibility at the training stage, one reason is that
the batch-size of them is greater than 1 to obtain a good
performance. The performance of them will drop a lot if
the batch-size is set as 1 for input-size flexibility purpose at

Table 4
Comparison With The State-of-the-art Methods on The Out-
door of SOTS Dataset.

Methods MSE ↓ NRMSE ↓ PSNR ↑ SSIM ↑

MSCNN [29] 812.2 0.202 20.02 0.880
DCPDN [41] 828.1 0.204 19.93 0.858
GFN [30] 676.2 0.172 21.47 0.849
De-cGAN [20] 611.1 0.160 21.96 0.868
AOD-Net [17] 693.0 0.185 20.47 0.899
FAMED-Net [43] 199.6 0.098 26.17 0.925
UR-Net-7 160.5 0.089 26.96 0.910
Multi-scale cGAN 152.3 0.086 27.28 0.925

Table 5
Comparison With The State-of-the-art Methods on The Syn-
thetic of HSTS Dataset.

Methods MSE ↓ NRMSE ↓ PSNR ↑ SSIM ↑

MSCNN [29] 1164.2 0.233 18.47 0.813
DCPDN [41] 841.5 0.197 20.21 0.852
GFN [30] 527.6 0.147 22.83 0.887
De-cGAN [20] 498.5 0.145 22.85 0.869
AOD-Net [17] 711.1 0.181 20.56 0.887
FAMED-Net [43] 168.9 0.089 26.68 0.922
UR-Net-7 146.3 0.083 27.04 0.908
Multi-scale cGAN 105.9 0.071 28.38 0.919

the training stage, because batch-normalization is adopted
to realize good performance by using large batch-size. The
FAMED-Net is designed based on the AOD-Net, it can be
also changed to input-size flexibility mode at the test stage,
because late fusion idea is adopted, better performance can
be obtained. Different from these works, the proposed model
is GAN-based input-size flexibility, which is input-size flex-
ibility at both training and test stages. Moreover, the pro-
posed multi-scale cGAN obtained the best single image de-
hazing performance based on the evaluations in this paper,
which also proved the effectiveness of image late fusion.
Different from previous fusion idea, the proposed fusion
framework is based on cGAN, which is a cGAN fusion frame-
work.

Table 4 and Table 5 are the comparisons of the out-
door of SOTS and HSTS on the RESIDE dataset. It can be
seen that the proposed multi-scale cGAN obtains the best
results for the evaluations of MSE, NRMSE and PSNR. For
the evaluation of SSIM, the best value is obtained by the
method of FAMED-Net (both in Table 4 and Table 5) and
multi-scale cGAN (in Table 4). Although the SSIM of the
proposed multi-scale cGAN is less than the FAMED-Net
0.03% in Table 5, the MSE, NRMSE, and PSNR values of
the proposed multi-scale cGAN are much higher than the
FAMED-Net. In particular, the PSNR is 1.34dB higher.

Fig. 4 is the subjective comparisons on synthetic hazy
images from the ICIG2019 validation set. From these de-
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Haze-Input MSCNN DCPDN GFN De-cGAN AOD-Net 

GMAN FAMED-Net UR-Net-7 Multi-scale cGAN Ground Truth

Haze-Input MSCNN DCPDN GFN De-cGAN AOD-Net 

GMAN FAMED-Net UR-Net-7 Multi-scale cGAN Ground Truth

Haze-Input MSCNN DCPDN GFN De-cGAN AOD-Net 

GMAN FAMED-Net UR-Net-7 Multi-scale cGAN Ground Truth

Figure 4: Subjective comparisons between the proposed methods and the most related state-of-the-art methods on synthetic
hazy images from ICIG2019 validation set. Best viewed in color.

Haze 

Input

Haze 

Map

Dehazing

Output

Figure 5: The visualizations of haze map M and corresponding dehazed results of UR-Net-7.
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Figure 6: The visualizations of haze map Mfusion and corresponding dehazed results of Multi-scale cGAN.

Table 6
Comparison With The State-of-the-art Methods on The In-
door of SOTS Dataset.

Methods MSE ↓ NRMSE ↓ PSNR ↑ SSIM ↑

MSCNN [29] 2097.5 0.383 16.00 0.780
AOD-Net [17] 1144.8 0.271 19.07 0.824
GFN [30] 443.0 0.175 22.48 0.888
FAMED-Net [43] 361.4 0.153 23.63 0.901
UR-Net-7 274.1 0.139 24.42 0.881
Multi-scale cGAN 265.3 0.132 24.56 0.900

Table 7
Learnable Parameters and Time Spent of Different Methods.

Methods Params Time(second)
MSCNN [29] 8,014 0.04
AOD-Net [17] 1,833 0.004
De-cGAN [20] 1.23×108 0.05
DCPDN [41] 6.69×107 0.04
GFN [30] 514,415 0.05
FAMED-Net [43] 17,991 0.03
UR-Net-7 8.59×107 0.04
Multi-scale cGAN 2.06 ×108 0.1

hazed images, we can see that our methods (especially multi-
scale cGAN) are relatively good for the ground, the clouds
and the sky.

Table 6 is the comparisons of the indoor of SOTS on the
RESIDE dataset. According to Table 6, we can see that the
best SSIM is obtained by the FAMED-Net. However, the
best values of MSE, NRMSE, and PSNR are obtained by
the proposed UR-Net-7 and multi-scale cGAN.

Table 7 summarizes the learnable parameters and time
spent of different models based on the Tesla K40c GPU.
The numbers of learnable parameters of our methods are

larger than other methods. This is because our model in-
cludes discriminators. However, the discriminators are not
used during test. The time spent of our UR-Net-7 is similar
to most of other state-of-the-art learning-based methods.

4.3. Discussions
As analysis in Section 3.1, the general atmospheric scat-

tering model can be simplified to Eq.(6). According to Eq.(6),
one haze image (I) can be seen as a clear image (J ) plus a
content related noise image M , which is a general additive
noise model. For CNN-based image denoising or restora-
tion, most of the noise models can be transformed into an
additive noise model, e.g., the multiplicative noise model
can be transformed into an additive noise model by loga-
rithmic transformation. Thus, the proposed input-size flexi-
bility cGAN is a general image restoration model.

The haze map (M) of Eq.(6) can be thought of as a kind
of content related noise in a haze image. The visualizations
of M are shown in Fig. 5. The haze maps in Fig 5 is the
transformed results of M , which is same as the transforma-
tion of J g , i.e., add 1 and multiply by the mean. From Fig.
5, it can be seen that the haze maps relate with the color,
illumination and the concentration of haze, also the content
of the corresponding haze images. Similar to the haze of
real scenes, there is no specific rule for these generated haze
maps. Moreover, the visualizations of Mfusion for multi-
scale cGAN are also shown in Fig. 6, the characteristics of
these haze maps are similar to those in Fig. 5.

Considering the applicability, image dehazing can usu-
ally be used to the preprocess step of other computer vision
tasks. The proposed image dehazing algorithm can be used
to assist object detection, as shown in Fig.7, which is the
comparison of object detection results before and after de-
hazing with the proposed UR-Net-7. The detection algo-
rithm is SNIPER [34], we only use the released code3 and
the pre-trained model for detection. From the detection re-
sults of the two images in the middle of Fig.7, we can see

3https://github.com/mahyarnajibi/SNIPER
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Figure 7: The detection results before (the first line) and after (the second line) dehazing with UR-Net-7.

Figure 8: The dehazing results for images of nighttime or low-light conditions based on the UR-Net-7 model trained on the
RESIDE outdoor training set.

Table 8
Summary of Major Contributions for Performance Improve-
ment Based on The Experimental Results of ICIG2019
Dataset.

Methods MSE ↓ NRMSE ↓ PSNR ↑ SSIM ↑

Baseline 637.6 0.168 21.54 0.789
+ Mulit-loss 287.9 0.116 24.58 0.904

+ IFF 223.4 0.101 25.67 0.906

that more objects can be detected after dehazing with UR-
Net-7 (the objects in the red rectangle).

Moreover, the UR-Net-7 model trained on the RESIDE
outdoor training set is used to test haze images in nighttime
or low-light conditions. Results are shown in Fig. 8, it can
be seen that the proposed model can be generalized to the
haze scene under special conditions.

Finally, the major contributions of our work for perfor-
mance improvement based on the experimental results of
ICIG2019 dataset are summarized in Table 8. We can see
that optimization with multi-loss functions greatly improves
the performance of baseline, boosted 3.04 dB and 12.5% for
PSNR and SSIM evaluation metrics, respectively. More-
over, input-size flexibility fine-tuning (IFF) can further im-

prove the PSNR about 1.09 dB.

5. Conclusions
In this paper, an input-size flexibility cGAN with multi-

loss function training model is developed for single image
dehazing, experimental results proved the effectiveness of
input-size flexibility and multi-loss function optimization.
Moreover, a multi-scale image restoration fusion framework
based on cGAN was proposed and verified for single image
dehazing. Experimental results showed that we obtained the
best single image dehazing performance on the ICIG2019
and RESIDE datasets. On the ICIG2019 dataset, the PSNR
has been improved 0.5dB and 0.72dB for UR-Net-7 and
Multi-scale cGAN compared with the FAMED-Net, respec-
tively. On the outdoor of SOTS dataset, the PSNR has been
improved 0.79dB and 1.11dB for UR-Net-7 and Multi-scale
cGAN compared with the state-of-the-art methods, respec-
tively. Our basic idea is to realize image restoration based
on Eq.(6), thus the proposed framework can be also used
to other image restoration tasks, such as image denoising,
image deblurring, and image fusion [8]. Future works could
be focused on extending our methods to other image restora-
tion tasks.

Shichao Kan et al.: Preprint submitted to Elsevier Page 11 of 13



A GAN-Based Input-Size Flexibility Model for Single Image Dehazing

References
[1] Ancuti, C.O., Ancuti, C., Hermans, C., Bekaert, P., 2010. A fast

semi-inverse approach to detect and remove the haze from a single
image, in: Computer Vision - ACCV 2010 - 10th Asian Conference
on Computer Vision, Queenstown, New Zealand, November 8-12,
2010, Revised Selected Papers, Part II, pp. 501–514.

[2] Berman, D., Treibitz, T., Avidan, S., 2016. Non-local image de-
hazing, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pp. 1674–1682.

[3] Cai, B., Xu, X., Jia, K., Qing, C., Tao, D., 2016. Dehazenet: An end-
to-end system for single image haze removal. IEEE Trans. Image
Processing 25, 5187–5198.

[4] Ding, X., Liang, Z., Wang, Y., Fu, X., 2021. Depth-aware total vari-
ation regularization for underwater image dehazing. Signal Process.
Image Commun. 98, 116408.

[5] Engin, D., Genç, A., Ekenel, H.K., 2018. Cycle-dehaze: Enhanced
cyclegan for single image dehazing, in: 2018 IEEE Conference on
Computer Vision and Pattern Recognition Workshops, CVPR Work-
shops 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 825–
833.

[6] Gao, Y., Hu, H., Li, B., Guo, Q., Pu, S., 2019. Detail preserved single
image dehazing algorithm based on airlight refinement. IEEE Trans.
Multimedia 21, 351–362.

[7] Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A.C., Bengio, Y., 2014. Generative adversar-
ial nets, in: Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pp. 2672–2680.

[8] Guo, X., Nie, R., Cao, J., Zhou, D., Mei, L., He, K., 2019. Fusegan:
Learning to fuse multi-focus image via conditional generative adver-
sarial network. IEEE Trans. Multimedia 21, 1982–1996.

[9] He, K., Sun, J., Tang, X., 2011. Single image haze removal using
dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–
2353.

[10] He, K., Zhang, X., Ren, S., Sun, J., 2015a. Spatial pyramid pooling
in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 37, 1904–1916.

[11] He, K., Zhang, X., Ren, S., Sun, J., 2015b. Spatial pyramid pooling
in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 37, 1904–1916.

[12] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for
image recognition, in: 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pp. 770–778.

[13] Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q., 2017.
Densely connected convolutional networks, in: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, July 21-26, 2017, pp. 2261–2269.

[14] Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift, in: Proceedings
of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pp. 448–456.

[15] Isola, P., Zhu, J., Zhou, T., Efros, A.A., 2017. Image-to-image trans-
lation with conditional adversarial networks, in: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pp. 5967–5976.

[16] Kingma, D.P., Ba, J., 2015. Adam: A method for stochastic optimiza-
tion, in: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings.

[17] Li, B., Peng, X., Wang, Z., Xu, J., Feng, D., 2017. Aod-net: All-in-
one dehazing network, in: IEEE International Conference on Com-
puter Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pp.
4780–4788.

[18] Li, B., Peng, X., Wang, Z., Xu, J., Feng, D., 2018a. End-to-end
united video dehazing and detection, in: Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the

30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, pp. 7016–7023.

[19] Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z., 2019.
Benchmarking single-image dehazing and beyond. IEEE Trans. Im-
age Processing 28, 492–505.

[20] Li, R., Pan, J., Li, Z., Tang, J., 2018b. Single image dehazing via
conditional generative adversarial network, in: 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pp. 8202–8211.

[21] Liu, Q., Gao, X., He, L., Lu, W., 2018a. Single image dehazing with
depth-aware non-local total variation regularization. IEEE Trans. Im-
age Processing 27, 5178–5191.

[22] Liu, W., Hou, X., Duan, J., Qiu, G., 2019a. End-to-end single image
fog removal using enhanced cycle consistent adversarial networks.
arXiv preprint, abs/1902.01374 .

[23] Liu, Y., Zhao, G., Gong, B., Li, Y., Raj, R., Goel, N., Kesav, S.,
Gottimukkala, S., Wang, Z., Ren, W., Tao, D., 2018b. Improved
techniques for learning to dehaze and beyond: A collective study.
arXiv preprint, abs/1807.00202 .

[24] Liu, Z., Xiao, B., Alrabeiah, M., Wang, K., Chen, J., 2019b. Single
image dehazing with a generic model-agnostic convolutional neural
network. IEEE Signal Process. Lett. 26, 833–837.

[25] Mirza, M., Osindero, S., 2014. Conditional generative adversarial
nets. arXiv preprint, abs/1411.1784 .

[26] Nair, D., Sankaran, P., 2021. A modular architecture for high resolu-
tion image dehazing. Signal Process. Image Commun. 92, 116113.

[27] Narasimhan, S.G., Nayar, S.K., 2003. Contrast restoration of weather
degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 713–
724.

[28] Qu, Y., Chen, Y., Huang, J., Xie, Y., 2019. Enhanced pix2pix de-
hazing network, in: 2019 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, 2019.

[29] Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M., 2016. Sin-
gle image dehazing via multi-scale convolutional neural networks, in:
Computer Vision - ECCV 2016 - 14th European Conference, Ams-
terdam, The Netherlands, October 11-14, 2016, Proceedings, Part II,
pp. 154–169.

[30] Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M., 2018.
Gated fusion network for single image dehazing, in: 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, pp. 3253–3261.

[31] Salazar-Colores, S., Arreguín, J.M.R., Echeverri, C.J.O., Cabal-
Yepez, E., Ortega, J.C.P., Rodríguez-Reséndiz, J., 2018. Image de-
hazing using morphological opening, dilation and gaussian filtering.
Signal Image Video Process. 12, 1329–1335.

[32] Salazar-Colores, S., Arreguín, J.M.R., Ortega, J.C.P., Rodríguez-
Reséndiz, J., 2019. Efficient single image dehazing by modifying
the dark channel prior. EURASIP J. Image Video Process. 2019, 66.

[33] Simonyan, K., Zisserman, A., 2015. Very deep convolutional net-
works for large-scale image recognition, in: 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings.

[34] Singh, B., Najibi, M., Davis, L.S., 2018. SNIPER: efficient multi-
scale training, in: Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada.,
pp. 9333–9343.

[35] Song, Y., Li, J., Wang, X., Chen, X., 2018. Single image dehazing
using ranking convolutional neural network. IEEE Trans. Multimedia
20, 1548–1560.

[36] Tan, R.T., 2008. Visibility in bad weather from a single image, in:
2008 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2008), 24-26 June 2008, Anchorage,
Alaska, USA.

[37] Tang, K., Yang, J., Wang, J., 2014. Investigating haze-relevant fea-
tures in a learning framework for image dehazing, in: 2014 IEEE

Shichao Kan et al.: Preprint submitted to Elsevier Page 12 of 13



A GAN-Based Input-Size Flexibility Model for Single Image Dehazing

Conference on Computer Vision and Pattern Recognition, CVPR
2014, Columbus, OH, USA, June 23-28, 2014, pp. 2995–3002.

[38] Tang, Z., Peng, X., Li, K., Metaxas, D.N., 2019. Towards efficient
u-nets: A coupled and quantized approach. IEEE Transactions on
Pattern Analysis and Machine Intelligence , 1–1.

[39] Xu, Z., Yang, X., Li, X., Sun, X., 2018. The effectiveness of instance
normalization: a strong baseline for single image dehazing. arXiv
preprint, abs/1805.03305 .

[40] Yang, X., Xu, Z., Luo, J., 2018. Towards perceptual image dehaz-
ing by physics-based disentanglement and adversarial training, in:
Proceedings of the Thirty-Second AAAI Conference on Artificial In-
telligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educa-
tional Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pp. 7485–7492.

[41] Zhang, H., Patel, V.M., 2018. Densely connected pyramid dehazing
network, in: 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pp. 3194–3203.

[42] Zhang, H., Sindagi, V., Patel, V.M., 2018. Multi-scale single im-
age dehazing using perceptual pyramid deep network, in: 2018 IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pp. 902–911.

[43] Zhang, J., Tao, D., 2020. Famed-net: A fast and accurate multi-scale
end-to-end dehazing network. IEEE Trans. Image Process. 29, 72–
84.

[44] Zhao, H., Gallo, O., Frosio, I., Kautz, J., 2017. Loss functions for
image restoration with neural networks. IEEE Trans. Computational
Imaging 3, 47–57.

[45] Zhu, H., Peng, X., Chandrasekhar, V., Li, L., Lim, J., 2018. De-
hazegan: When image dehazing meets differential programming, in:
Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden., pp. 1234–1240.

[46] Zhu, J., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-
to-image translation using cycle-consistent adversarial networks, in:
IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pp. 2242–2251.

[47] Zhu, Q., Mai, J., Shao, L., 2015. A fast single image haze removal al-
gorithm using color attenuation prior. IEEE Trans. Image Processing
24, 3522–3533.

Shichao Kan et al.: Preprint submitted to Elsevier Page 13 of 13


