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Abstract. In all representations of the canonical commutation relations, there is a
common, invariant domain of essential self-adjointness for quantum fields and conjugate
momenta.

1. Introduction

Let Uk(s), Vk(t) be one-parameter continuous unitary groups on a
separable Hubert space X, satisfying the relations:

= eist**Ύι{t)Uk(s),

for all k, I = 1,2,... and s, ί e R. Such a structure is called a representation
of the Weyl relations. In this paper we prove the following theorem
(whose consequences for Quantum Field Theory are discussed in § 5).

Theorem 1.1. Let ({Uk(s\ Ffc(ί)}?=i, X) be a representation of the
Weyl relations denote by pk the generator of Uk(s), by qk the generator
of Vk(t). Then there exists a Banach space, τ, of sequences of real numbers
and a domain D, dense in X, such that for all {ckyk=1 e τ,

00 00

1) Σ c/c4/c> Σ ckPk a r e well-defined and essentially self-adjoint on D,
k=l k=ί

2) Σ ckqkDQD, ΣWkDCD.
k=ί k=l

3) // {<£}?= *-Me*}"=i and φeD, then

00 00 00 GO

Σ <%<ik<p-> Σ °k<ikψ and Σ clPkψ-^ Σ ckPkψ
k = l k = ί k = ί k = l

We remark that if we were concerned with only a finite number of
qk and pk, the conclusions of the theorem would follow from well-known
work of L. Garding on representations of Lie groups. For the Fock
representation the theorem was proven by J. Cook [2]. In our proof we
use heavily the classification of all representations achieved by Garding
and Wightman [4] it is briefly described in § 2.

The proof of the theorem is contained in § 3 and § 4. In § 3 we con-
struct a dense set of vectors Dι C X. The construction is done so that for
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ψeDu one has precise estimates on the growth of \\(pl + qk +l)ψ\\ as
fc->oo. We then show that Xcfcqfc, ΣckPk a r e well-defined symmetric
operators on Du if {ck}f=ί e τ, a sequence space depending on the esti-
mates. In § 4 we enlarge Dί to a domain D by allowing certain infinite
linear combinations of vectors in Dv Using the estimate

N N

Π I*

we show that each ψ e D is an analytic vector for ]Γ cfegfc and ]Γ
fc=l Λ = l

thus proving essential self-adjointness. Invariance and continuity follow
trivially from the construction.

Anticipating the notation introduced in § 2 we remark here that the
test sequence space τ depends only on the Garding-Wightman measure
μ, not on the reducibility of the representation or the fibre maps C(ή).
Also, there will be many nuclear spaces and Hilbert spaces (with stronger
topologies) contained in τ so that in the statement of the theorem
"Banach" may be replaced by "nuclear," or "Hilbert."

§ 2. The Garding-Wightman Classification

Let 7°° denote the set of all sequences n = (nun2,..., nk,...) of non-
negative integers. Let Ikj be the set of sequences such that nk —j, and
denote by Ji the smallest σ-algebra containing {7kj }^J = 1. A measure
μ(ή) on (700, Ji) is called quasi-invariant if μ(ή) and μ(ή + δ) are equiv-
alent whenever δ is a sequence of integers with only a finite number of
non-zero entries. Let μ be a quasi-invariant measure of mass one and
let v(ή) be a quasi-invariant positive integer-valued function on 700 and
let 77̂  be a Hilbert space of dimension v(ή). We denote by L2(7°°, μ(ή\ HH)
the direct integral j H~dμ(n). We define operators ak and a* on all

JOO

vectors f(ή) e L2(7°°, μ(ή\ H%) satisfying

J nk\\f{n)\\ldμ{n)< co

by the formulas

(akf) (n) = 1/X+ΐ Ck(n) f(n + 5
diM(w)

(2.1)

where Ck(ή) are measurable unitary operators from Hn+δk to H% satis-
fying Ck(n) Q(n + δk) = C^n) Ck{n + δt). In the above || f(n)\\n is the norm
of f(ή) in H% and δk denotes the sequence with one in the feth place and
zero elsewhere.

24*



338 M. C. Reed:

If we define qk = —γ=- (ak — a%) and pk = —τ=^ (ak + αjf), then their

closures are self-adjoint and the groups they generate are a representation
of the Weyl relations. Furthermore, every representation is unitarily
equivalent to one of these; therefore in the proof of the theorem stated
in § 1 we may assume that X = L 2 ^ 0 0 , μ(ή), H~) and that qk and pk are
given by the formulas (2.1).

§ 3. Construction of the Analytic Vectors

Let μ be a quasi-invariant Borel measure of mass one on I 0 0 . We
proceed to define a family of measurable sets {Iι}f=ί such that I1 Clι + 1

and μ(Iι) ^ 1 —-y-. In this construction all sets are obtained by countable
00

processes from sets in Jί and are thus measurable. Since J00 = | J lXj

00

is a disjoint decomposition, 1 = μ(/°°) = £ μ(hj)- Choose an integer

ρ(l, 1) such that £ M^ij) < ( — ) (~ό~)' a n c * define Λi,i) = U hjl

(7 ρ ' i \ / i \ °° J

y j ί y j N o w ' J(ίsD= U (J(ίΛ)nI2j)l choose
ρ(l, 2) ̂  ρ(l, 1) such that X μ(Ja,i)

nI2j) S ί y j ί y j ,' and define
0(1,2)

J ( l j 2 ) = (J («^(l,l)n4j
j = l

We proceed inductively, defining J^i^) = (J («^(i,fc-i)n4j) where ρ(l,fc)

^ ρ(l, fc — 1) is chosen so that

Thus μ(JiUk)) ^ 1 - -i ( Σ (~J\ We now set

00

i'= n/α.«

and observe that μfϊ1) = lim μ(J(1 fc)) ^ —. We have defined a non-

decreasing function on the positive integers, ρ(l, •).

Having defined I1 and ρ(l, •) we proceed by induction to define I1 and

ρ(/, •). We choose ρ(Z, 1) ^ ρ(/ -1,1) so that £ μ(/u) ί

Letting J ( ί 1 } = (J J l 7 we define J(/ fc) by induction as (J



A Garding Domain for Quantum Fields

where ρ(l, k) is chosen so that

ρ(/, k) ^ ρ(l — 1, k), ρ(l, k) ^ ρ(/, k —
and

Setting /' = Π Λ/ tί we find that

339

The sets /' are increasing and μf (J /Λ ^ 1 — ( — 1 for all /, so μ(\Jlι) = 1.

Each of the functions ρ(l, •) is non-decreasing and ρ(Z, •) ^ ρ(/ — 1, •)•

1 2 3 4 5 K axis
Graphs of q (I ,K)

F i g . 1

The purpose of this construction is that for a point n = (nun2, ...)elι

we have an upper bound, namely ρ(l, k) on how fast the sequence {nk}f=ί

can grow.

Definition 3.1. Dί = {φ(n); φ(n)e L2(Im, μ, Hn), 313 | |^(n)|| ί r = 0 a.e.
forήeϊι = Γ-I1}.

Definition 3.2. τ =

We now can state:

= 1 Cfc ε R, Σ \ck\ Q(K k)1/2 < oo

Lemma 3.3. D1 is dense in L2(/°°,μ5/f~) and each ψeD1 is in the
domain of any finite linear combination of qk's; further, if {ck}^=1 e τ, then
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oo oo

Σ ck°.kΨ converges. Thus, Σ c/c<2k ι s a well-defined symmetric operator

π)|| ~ >0

on £>!. The same is true of Σ ckPk
fc = l

Proof. D1 is dense since for any <p(w) e L2(/°°, μ, //#), J
/*

as Z->oo. If ψeDu then ψeD((aka^)ί/2) which implies ψeD(qk). Since
the gfc commute with each other (i.e. the groups and therefore the spectral
projectors commute) φ is in the domain of any finite linear combination
of qk. Since ||φ(n)||~ = 0 a.e. for neϊ1 for some Z,

- J (nk
/OO

l)\\ψ(n)\\idμ(n)

Thus for
N

^ Σ I
k = M

N

^ Σ I
k = M

^ Σ |c
k = M

as M,N^oo. Therefore ^ckqk is well-defined and symmetric on Dx
00

(since it is the strong limit of symmetric operators). The proof for Σ ckPk
fc=l

is the same.

§ 4. Proof of the Theorem

The theorem is a result of the following sequence of lemmas. We
denote by {ak)

m any m-fold product of ak and a$.

Lemma 4.1. Let xp e Dί then

N

π
Proof. The proof is a straightforward calculation. Let s* and sf be

respectively the number of af. and the number of ak. in the product
{ak.)

mi. Let δkι = sf — st and let 5 be the sequence of integers which for
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all i has δkι in the /c th position and has zeros elsewhere. Then

Π
N mt

= | ( Π Y\^β))\\ψ(n~δ)\\ldμ{n-δ)

where αj (n) is a function on 700 satisfying 0 ^ α](n) ^ rcfcι + 1 + sf. Thus,

αj(w + 5) ̂  (wki + 1 + S; + δki) ̂  nki + 1 + sf ^ nkι + 1 + m£,

so,

Therefore,
N

Π ^kiT'Ψ
i = l

2 N

^ π <
i - l

/ N

V = i

ΊJ
/«

/

V

/

1 N

Π ("k

^ N \

2- m ι 1

. + l ) m ί ||tp(n)||~

Π K < ) 2 v
i = l

Definition 4.2, We denote by D the set of vectors of the form
00 00

where xpeD^ and & is a polynomial of fields ^ ckqk9 ^ dkpk; {ck}f=ί,
fc=l Λ = l

{dfc}^! G τ. Different occurrences of the fields in the polynomial may have
different test sequences.

00

Lemma 4.3. 2
k = l k = l

m / oo

Let ^ =

are essentially self-adjoint on D.

Σ ί̂cî k, )• If ΨeDi t n e n ||t/;||~ = 0 a.e. for

r for some /. Thus
/ m

^ Σ ΠK Π <ikt

< V Γf Idί lmw / 22m / :

(by Lemma 4.1).

mn ia^.aj,.)

Π (α,,

= Π (»*,
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so we have

M. C. Reed:

oo m

Σ Π
* l , . . . , f c m i = l

i = l \fc, = l

Since {4tffι = 1 e τ , the right-hand side is finite and 0>ιpe L2^"0, μ,Hn).
m N

and an estimateIf we let φN = Y[ Σ dι

k.qkι\p, then φNeD, φN

/ = 1 fc, = l
00

similar to the one above shows that Σ ckqk(φN — φM)->0 as JV, M->oo.

Thus, ^ φ is in the domain of the closure of £ cfcgfc. Clearly the same
fc = l

OO 00

proof works if some of the ]Γ 4 ι^/Cι are replaced by Σ dl

k.pk. or if & is
k, = l fc, = l

00

a finite linear combination of such terms. Since any power of ]Γ cfê rk

fe = l

applied to ̂ φ is again a vector of the same form, &\p is contained in the

domain of any power of the closure of Σ ckQ.k Finally,

oo
VI Σ ΠW ΠI4 Π is, Π * Λ

i = l

v m

Σ 14,

Thus Y —-
,, = n V!

Σ < oo and the same proof holds for more

00

general 3P. Thus each φ = ̂ φ in D is an analytic vector for ]Γ cŝ fs so by

OO

a theorem of Nelson [5], Σ cs(ls i s essentially self-adjoint on D. The
oo s = 1

same proof works for £ c sp s.

Lemma 4.4. // fojf-ieτ, V ckqk:D-^D and if {cΐ}f-ί-^{ck}
(ί-ί

00 00

" converges strongly to Σ CΛ̂ /C o n D The same statements

hold for
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oo oo

Proof. By its definition D is invariant under £ ckqk and Σ ckPk

m i oo

Suppose {<$}?=! -£> {c,}?=1, <? = Π Σ 4 , ^ , , and ψ e Du \\ψ\\~n = 0 a.e.
ί = l \fcχ=l

for ή
/ 00

Σ

\s = l

asn-

e I1. Then,

cn

sqs- Y csqs)^ψ
S J-S ^_j S IS I Ύ

S,kU...,km \ i = l /

<C > cn — c 1 (nil <Ϊ\ -A- 1

s,ki,.. . , k m

/ m oo

< ( Π Σ i4i(ρ(Uf) + i)1Λ

^oo since

m

i =

m

1

[ (ρ(/A ) + i ) 1 Λ

|c;-cj(ρ(/,s)

as

We remark that Lemma 4 and the Trotter-Kato Theorem imply
that the maps

iί

are continuous from τ to the unitary operators with the strong topology.
The spaces

J^i ; l l fe}^i l l 2 = feΣ kl2fc2ρ(fc,fc)<ooj, (4.1)

^=Uck}ΐ=1;\\{ck}\\2

n = Σ k | 2 /c"ρ(^^)<α) for all n\ (4.2)

are respectively Hubert and Nuclear spaces (with stronger topologies)
contained in τ.

§ 5. Consequences for Quantum Field Theory

Suppose that one has constructed quantum fields φ(f, t\ π(g, t) whose
exponentials satisfy

exp(ί<p(/, t g, t))

= exp(-i Sf(x)g(x)dx)exp{iπ(g, t))exp(iφ{f, t))
(5.1)
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for / anf g in some test function space T. In order to use the structure of
the Garding-Wightman representations one must choose an ortho-
normal basis {fn} of T and define qn = φ(fn, t), pn = π(/M, ί). This proce-
dure is presently unpopular and is considered at best inelegant. The
difficulties are illustrated by the fact that for different choice of bases
one can get different Garding-Wightman representations. However, the
real question is not elegance, but how much information about φ(f, ή
and π(g, t) is lost by passing to a basis, proving theorems about {φ(fn, t),
π(/n, £)} and then attempting to recover φ(f, t) and π(g, t). In our opinion
this is very much an open question. To illustrate this we will show how
the theorem proved in this paper may be used to find Garding domains
for certain basis independent representations.

We consider first the approach of Gelfand and Vilenkin [3]. Let
Sf(Rm) denote Schwartz space (real) and let V( \ U(-) be continuous
maps of 6f(Rm) into the unitary operators (strong topology) on some
separable Hubert space X satisfying: V(f)V(g)=V(f + g), U(f)U(g)

U(f) V(g) = exp (/(/, g)) V(f) U(g). (5.2)

For each f,ge ^(Rm) the continuity and linearity conditions imply that
U(tf) and V(tg) are continuous one-parameter groups whose generators
we denote by π(f) and φ(g). Let {fk)t=ι be an orthonormal basis (in
terms of the L2(Rm) inner product) such that each fe^(Rm) can be

OO

expressed / = Σ ckfk where {ck}f=ieS, the rapidly decreasing se-

quences, and all such sums are in ^(Rm) (for example, one could use

products of Hermite functions). Define Uk(t) = U(tfk), Vk(t) = V(tfk),

then {Uk(t\ V^t)} is a representation of the Weyl relations (1.1), qk = φ(fk)9
00

Pk = π(9k) Therefore the conclusions of Theorem 1.1 hold for all Σ ckQk^

00

Σ ckPk wi t n {ck}lk = i e ^ ( s e e (4.2) for definition of Jf). By the linearity
k — 1

Of ^ ( 0 , ΛΓ / N

k = l \ fc=l

a n d t h e r e f o r e

e x p i Σ c f e ^ = π Σ c/cΛ
\ fe=l / \fc=l

iv oo

Since {cfc}f=1^{ck}^=1, we have by Theorem 1.1 that Σ ckQ.k~* Σ cfĉ fc

strongly on D, a domain of essential self-adjointness for all of them. By
/ N \ / oo \

the Trotter-Kato theorem exp Ϊ V ckqk ^ e x p i V cfc^fc . Since the
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N oo

topology of Jf is stronger than that of S, Σ ckfk^ Σ c/cΛ> s o

/ i V \ / o o \ oo / ° ° \

y( Y ckfΛ-^V[ Σ ckfk), which implies Y ckqk = φ( Y cjk\. Let
\fc = l / \k = l / fc = l \k = l /

ί I

^ ^ l Σ c/cA' {c/c)?=i E J*\ with the natural topology. Therefore, we

have proven (by Theorem 1.1)
Theorem 5.1. Let V( ) , U() be a Gelfand-Vilenkin representation

(5.2). Then there exists a nuclear space T C ̂ (Rm) (with stronger topology)
such that there is a common dense invariant domain of essential self-
adjointness for all the generators of the groups V(tf), U(tg), f,geT.

It is an attractive conjecture that the basis {fk}^=1 can be chosen so
that T = Sf{Rm).

We now consider the approach of I. Segal [6]. A Weyl system is a
map W{ ) from a complex Hubert space H to the unitary operators on
a Hubert space X satisfying:

a) for every z and z' in H,

W(z) W{z•') = exp — iJfmίz, z) W(z + z'),
L 2 J

b) for every z e H, W(tz) is weakly continuous at zero as a function of t.

From condition b) it follows that W(z) = Qxp(ίΨ(z)\ where Ψ(z)
is a self-adjoint operator on X and that the map z-> W(z) is continuous
from finite dimensional subsets of H to the unitary operators with the
strong topology. It does not follow that z-» W(z) is globally continuous,
i.e. contmuous from H to the unitary operators on X. Let {z}^=1 be an
orthonormal basis for H and define

Vh(t)=W(tzά Uk(t)=W(tizk).

Then {Uk(t), Vk(t)} is a Gardmg-Wightman representation, qk= Ψ(zk),
pk = Ψ{izk). From Theorem 1.1: there exists a Hubert space Jf (see (4.1)

00 00

for definition) of sequences so that if {c kff= 1eJC Σ ck4k9 Σ ckPk
k=ί k=l

make sense on X. Let T=< Σ oίkzk\ake(£,Σ\Oίk\2^2Q{Kk)<^\ with

00

the natural inner product and define for z = Σ akzk e X
k = l

Γ 1 OT Ί Γ °° Ί
L2 k=i * J L=i fe

 J

r ^ , Ί
• exp ) Jm((xΔpk .
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W'(z) is a globally continuous Weyl system over T which agrees with
W(z) on finite linear combinations of the basis elements zk. The open
question is, to what extent do W(z) and W'(z) differ for zeT. Chaiken [1]

( / \ )

has shown that if the operators < W ]Γ ockzk I, N arb. > are irreducible,
I \k = i ) J

then W(z) = exp(//l(z)) W'(z) where λ is an everywhere defined (in general
discontinuous) linear functional on T In this case the generators of
W(z) differ from the generators of W'(z) by constant multiples of the
identity which affect none of the conditions of Theorem 1.1 except the
continuity statement 3). We therefore have

Theorem 5.2. Let (W( ), H) be a Weyl system on X such that for some

( / N W
orthonormal basis {zk}™=1, <WI £ ckzfc)> is irreducible. Then there

I Jexists a sub-Hilbert space TCH such that
a) there is a common dense invariant domain of essential self-adjoint-

ness for all the generators of W(tz), zeT.
b) W(z) differs from a globally continuous Weyl system over T by a

complex (possibly discontinuous) character of T.

B. Simon has pointed out that since the fields which generate W(z)
and W'(z) differ by a constant multiple of the identity, their truncated
vacuum expectation values will be the same. Therefore both systems
will have the same scattering theory.
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References

1. Chaiken, J.: Finite-particle representations and states of the canonical commutation
relations. Ann. Phys. 42, 23—80 (1967).

2. Cook, J.: The mathematics of second quantization. Trans. Am. Math. Soc. 74,222—245
(1953).

3. Gelfand, I., et N. Vilenkin: Les distributions IV. Paris: Dunod 1967.
4. Garding, L., and A. Wightman: Representations of the commutation relations. Proc.

Natl. Acad. Sci. U.S. 40, 622—626 (1954).
5. Nelson, E.: Analytic vectors. Ann. Math. 70, 572—615 (1959).
6. Segal, I.: Mathematical problems of relativistic physics. Providence, R. I.: Am. Math.

Soc. 1963.

M. C. Reed
Department of Mathematics
Princeton University
Princeton, N. J., USA


