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A GÂTEAUX DIFFERENTIABILITY SPACE
THAT IS NOT WEAK ASPLUND

WARREN B. MOORS AND SIVAJAH SOMASUNDARAM

(Communicated by Jonathan M. Borwein)

Abstract. In this paper we construct a Gâteaux differentiability space that
is not a weak Asplund space. Thus we answer a question raised by David
Larman and Robert Phelps from 1979.

1. Introduction

A Banach space X is called a weak Asplund (almost weak Asplund) [Gâteaux
differentiability] space if every continuous convex function defined on it is Gâteaux
differentiable at the points of a residual (everywhere second category) [dense] subset.
While it is easy to see that every weak Asplund space is an almost weak Asplund
space and every almost weak Asplund space is a Gâteaux differentiability space it
is not so clear whether the reverse implications hold.

In this paper we show that there are in fact some almost weak Asplund spaces
that are not weak Asplund. Our considerations are mainly based around the fol-
lowing classes of topological spaces which are defined in terms of minimal uscos.
A set-valued mapping ϕ : X → 2Y acting between topological spaces X and Y is
called an usco mapping if for each x ∈ X, ϕ(x) is a non-empty compact subset of
Y and for each open set W in Y , {x ∈ X : ϕ(x) ⊆ W} is open in X. An usco
mapping ϕ : X → 2Y is called a minimal usco if its graph does not contain, as a
proper subset, the graph of any other usco defined on X. A topological space X
is said to be a Stegall [11] (weakly Stegall [4]) space if for every Baire (complete
metric) space B and minimal usco ϕ : B → 2X , ϕ is single-valued at some point
of B or, equivalently, if for every Baire (complete metric) space B and minimal
usco ϕ : B → 2X , ϕ is single-valued at the points of a residual [2] (everywhere
second category [4]) subset of B. For us, the significance of these spaces stems from
the fact that for a Banach space X, if (X∗, weak∗) is a Stegall space, then X is
weak Asplund [11], and if (X∗, weak∗) is a weakly Stegall space, then X is almost
weak Asplund [9, Theorem 13] (and so a Gâteaux differentiability space). For more
information on weak Asplund spaces, see [2], [3] and [10].
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2. The Cantor game and nearly Stegall spaces

We will say that a σ-ideal A of subsets on a topological space (X, τ ) is topologi-
cally stable if h(A) ∈ A for each homeomorphism h : (X, τ ) → (X, τ ) and A ∈ A. In
this paper, A will always denote a topologically stable σ-ideal on ({0, 1}N, τp), where
τp denotes the topology of pointwise convergence on N. With this understanding,
we can introduce the following notation.

Given a topological space (X, τ ) that is homeomorphic to ({0, 1}N, τp) and a
topologically stable σ-ideal A on ({0, 1}N, τp), we shall denote by A(X,τ) the in-
duced σ-ideal on X defined by A(X,τ) := {h−1(A) : A ∈ A} for some home-
omorphism h : (X, τ ) → ({0, 1}N, τp). (Note: Since A is topologically stable,
the definition of A(X,τ) is independent of the particular choice of homeomorphism
h : (X, τ ) → ({0, 1}N, τp).) When there is no ambiguity, we shall simply denote
A(X,τ) by AX . In terms of this notation we can introduce a stronger notion of
topological stability. A σ-ideal A on ({0, 1}N, τp) is said to be strongly topologically
stable if (i) A is topologically stable and (ii) for each clopen subset Y of {0, 1}N

that is homeomorphic to ({0, 1}N, τp), we have that AY ⊆ A.

2.1. The Cantor game. Let (M, d) be a complete metric space without isolated
points, let R be a subset of M and let A be a strongly topologically stable proper
σ-ideal on ({0, 1}N, τp). On M we consider the CA(R)-game played between two
players α and β. Player β goes first (always!) and chooses a family B0 := {Bt

0 :
t = ∅} consisting of a non-empty open set B∅

0 with d-diam(B∅
0 ) < 1/20. Player

α must respond to this by choosing a family A0 := {At
0 : t = ∅} consisting of a

non-empty open set A∅
0 of B∅

0 . Following this player β must select another family
B1 := {Bt

1 : t ∈ {0, 1}1} of non-empty open subsets such that:

(i) ∅ = B0
1 ∩ B1

1 ⊆ B0
1 ∪ B1

1 ⊆ A∅
0 and

(ii) d-diam(Bt
1) < 1/21 for all t ∈ {0, 1}1.

In turn, player α must again respond by selecting a family A1 := {At
1 : t ∈ {0, 1}1}

of non-empty open subsets such that At
1 ⊆ Bt

1 for all t ∈ {0, 1}1.
Continuing this procedure indefinitely the players α and β produce a sequence

{(An, Bn) : n ∈ ω} of ordered pairs of indexed families of non-empty open subsets
with An := {At

n : t ∈ {0, 1}n} and Bn := {Bt
n : t ∈ {0, 1}n} that satisfy the

following conditions:

(i) ∅ = Bt0
n+1 ∩ Bt1

n+1 ⊆ Bt0
n+1 ∪ Bt1

n+1 ⊆ At
n ⊆ Bt

n for all t ∈ {0, 1}n and
(ii) d-diam(Bt

n) < 1/2n for all t ∈ {0, 1}n.

Such a sequence will be called a play of the CA(R)-game. We shall declare that
α wins a play {(An, Bn) : n ∈ ω} of the CA(R)-game if the set K\R ∈ AK , where
K :=

⋂∞
n=0 Kn and Kn :=

⋃
{Bt

n : t ∈ {0, 1}n}. Otherwise the player β is said to
have won this play. By a strategy σ for the player α, we mean a ‘rule’ that specifies
each move of the player α in every possible situation. More precisely a strategy
σ := (σn : n ∈ ω) for α is a sequence of functions such that:

(i) σn(B0, B1, . . . , Bn) := {σt
n(B0, B1, . . . , Bn) : t ∈ {0, 1}n};

(ii) ∅ �= σt
n(B0, B1, . . . , Bn) ⊆ Bt

n for all t ∈ {0, 1}n; and
(iii) σt

n(B0, B1, . . . , Bn) is open for all t ∈ {0, 1}n.

The domain of each function σn is precisely the set of all finite sequences
(B0, B1, . . . , Bn) of indexed families Bj := {Bt

j : t ∈ {0, 1}j} of non-empty open
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subsets that satisfy the following conditions:
(i) ∅ = Bt0

j+1 ∩ Bt1
j+1 ⊆ Bt0

j+1 ∪ Bt1
j+1 ⊆ σt

j(B0, B1, . . . , Bj) for all t ∈ {0, 1}j

and 0 ≤ j < n and
(ii) d-diam(Bt

j) < 1/2j for all t ∈ {0, 1}j and 0 ≤ j ≤ n.
Such a finite sequence (B0, B1, . . . , Bn) [infinite sequence (Bn : n ∈ ω)] is called a
partial σ-play [σ-play]. A strategy σ := (σn : n ∈ ω) for the player α is called a
winning strategy if each σ-play is won by α.

To expedite the proof of the following theorem we shall introduce the following
notation. Given an indexed family of sets {At : t ∈ {0, 1}n} with n ∈ N and
i ∈ {0, 1} we define

[{At : t ∈ {0, 1}n}]i := {At′

∗ : t′ ∈ {0, 1}n−1}, where At′

∗ := Ait′ for all t′∈{0, 1}n−1.

Theorem 1 (Splicing Theorem). Let (M, d) be a complete metric space without
isolated points, let {Rn : n ∈ N} be a family of subsets of M and let A be a strongly
topologically stable proper σ-ideal on ({0, 1}N, τp). If for each n ∈ N the player
α has a winning strategy in the CA(Rn)-game played on M , then there exists a
winning strategy for the player α in the CA(

⋂∞
n=1 Rn)-game played on M .

Proof. For each k ∈ N, let kσ := (kσn : n ∈ ω) be a winning strategy for the
player α in the CA(Rk)-game. To prove the theorem we first need to construct a
candidate strategy σ := (σn : n ∈ ω) for the player α in the CA(

⋂∞
n=1 Rn)-game

and then show that it is in fact a winning strategy. The idea behind the strategy is
simple. If the player β selects B0, then the player α responds by using 1σ0. Then
after player β chooses B1, player α responds by first applying 1σ1 (once) and then
2σ0 (twice). In general if β chooses Bn at the nth stage, then α replies by using 1σn

(20 times), 2σn−1 (21 times), 3σn−2 (22 times) and so on down to applying n+1σ0

(2n times). But we need to be more precise.
First, if β chooses B0 := {Bt

0 : t = ∅}, then α sets 0Ω∅
0 := B0 and defines

σ0(B0) := {At
0 : t = ∅} where A∅

0 := 1σ∅
0(0Ω∅

0). Now suppose that kΩs
j and σj have

been defined for each partial σ-play {B0, B1, . . . , Bj} with s ∈ {0, 1}k−1 and 1 ≤
k ≤ j + 1 ≤ n so that:

(i) 0Ω∅
j := Bj ;

(ii) {k−1Ωs
k−1, . . . ,

k−1Ωs
j−1,

k−1Ωs
j} is a partial kσ-play for each s ∈ {0, 1}k−1

and 1 ≤ k ≤ j + 1;
(iii) kΩsi

j :=
[
kσ(j+1−k)(k−1Ωs

k−1, . . . ,
k−1Ωs

j−1,
k−1Ωs

j)
]i for each i ∈ {0, 1},

s ∈ {0, 1}k−1 and 1 ≤ k ≤ j;
(iv) σj(B0, B1, . . . , Bj) := {At

j : t ∈ {0, 1}j}, where At
j := j+1σ∅

0(jΩt
j) for each

t ∈ {0, 1}j .
If the nth move of β is Bn := {Bt

n : t ∈ {0, 1}n}, then α responds in the following
way:

(i) First α sets 0Ω∅
n := Bn and then inductively defines.

(ii) kΩsi
n :=

[
kσ(n+1−k)(k−1Ωs

k−1, . . . ,
k−1Ωs

n−1,
k−1Ωs

n)
]i for each i ∈ {0, 1},

s ∈ {0, 1}k−1 and 1 ≤ k ≤ n.
(iii) Then α observes that with this definition, for each s ∈ {0, 1}k−1 and

1 ≤ k ≤ n + 1, {k−1Ωs
k−1, . . . ,

k−1Ωs
n−1,

k−1Ωs
n} is a partial kσ-play.

(iv) Finally α defines σn(B0, B1, . . . , Bn) := {At
n : t ∈ {0, 1}n} where At

n :=
n+1σ∅

0(nΩt
n) for all t ∈ {0, 1}n.
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This completes the definition of σ := (σn : n ∈ ω). It remains to show that σ :=
(σn : n ∈ ω) is indeed a winning strategy for the player α in the CA(

⋂∞
n=1 Rn)-game.

To accomplish this, it will be sufficient to show that for any σ-play (Bn : n ∈ ω)
and m ∈ N, K\Rm ∈ AK where K :=

⋂∞
n=1 Kn and Kn :=

⋃
{Bt

n : t ∈ {0, 1}n}
for all n ∈ ω. To this end, let (Bn : n ∈ ω) be a fixed σ-play and let m be a fixed
member of N. For each s ∈ {0, 1}m−1 let

Ks :=
⋂

j≥(m−1)

{⋃{
Bt

j : t ∈ {0, 1}j and s ≤ t
}}

=
⋂

j≥(m−1)

m−1Ωs
j .

Now {m−1Ωs
j : j ≥ m − 1} is a mσ-play and so

(
⋂

j≥(m−1)

m−1Ωs
j)\Rm = Ks\Rm ∈ AKs ⊆ AK ,

since for each s ∈ {0, 1}m−1, Ks is homeomorphic to ({0, 1}N, τp) and a clopen
subspace of K. Therefore,

K\Rm =
⋂

{Kj : j ≥ m − 1} \Rm =
⋃{

Ks : s ∈ {0, 1}m−1
}
\Rm

=
⋃ {

Ks\Rm : s ∈ {0, 1}m−1
}
∈ AK .

This shows that σ := (σn : n ∈ ω) is a winning strategy for the player α in the
CA(

⋂∞
n=1 Rn)-game played on M . �

Given a strongly topologically stable proper σ-ideal A on ({0, 1}N, τp) and a
topological space X we shall say that X is nearly Stegall with respect to A if, for
every complete metric space M without isolated points and minimal usco ϕ : M →
2X , there exists a winning strategy for the player α in the CA(R)-game played on
M , where R is the set of points at which ϕ is single-valued.

It is not difficult to show that for any strongly topologically stable proper σ-
ideal A on ({0, 1}N, τp) we have the following: if X is a Stegall space, then X is
nearly Stegall with respect to A; if X is nearly Stegall with respect to A, then X
is weakly Stegall.

The following theorem is now a simple consequence of the Splicing Theorem.

Theorem 2. Let ρ be a metric on a topological space X and let A be a strongly
topologically stable proper σ-ideal on ({0, 1}N, τp). Then X is a nearly Stegall space
with respect to A if (and only if) for each ε > 0, each complete metric space
M without isolated points and each minimal usco ϕ : M → 2X , there exists a
winning strategy for the player α in the CA(Rε)-game, where Rε := {m ∈ M :
ρ-diam[ϕ(m)] ≤ ε}.

In the proof of our main result we will need the following basic properties of
nearly Stegall spaces. Since the proofs of these assertions are similar to those given
in Theorem 3.1.5 of [2], we shall not give them here.

Theorem 3. Let (X, τ ) and (Y, τ) be topological spaces and let A denote a strongly
topologically stable proper σ-ideal on ({0, 1}N, τp).

(i) Let f : X → Y be a perfect mapping onto Y . If X is a nearly Stegall space
with respect to A, then Y is a nearly Stegall space with respect to A.

(ii) Let {Xn : n ∈ N} be a cover of X. If each Xn is a closed subset of X and
is a nearly Stegall space with respect to A, then X is a nearly Stegall space
with respect to A.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(iii) If each {Xn : n ∈ N} is a nearly Stegall space with respect to A, then∏∞
n=1 Xn is a nearly Stegall space with respect to A.

3. A weakly Stegall space that is not weak Asplund

Let A be an arbitrary subset of (0, 1) and let

KA := [(0, 1] × {0}] ∪ [({0} ∪ A) × {1}].
If we equip this set with the order topology generated by the lexicographical (dic-
tionary) ordering (i.e., (s1, s2) ≤ (t1, t2) if and only if either s1 < t1 or s1 = t1 and
s2 ≤ t2), then with this topology KA is a compact Hausdorff space [5, Proposition
2]. In the special case of A = (0, 1), KA reduces to the well-known “double arrow”
space.

For any subset A of (0, 1) we shall denote by BVA[0, 1] the space of all real-
valued functions of bounded variation on [0, 1] that are right continuous at the
points of (0, 1)\A and map 0 to 0. We will consider this space endowed with the
total variation norm, i.e., for each α ∈ BVA[0, 1],

‖α‖ := Var(α) = sup{
n∑

k=1

|α(tk) − α(tk−1)| :

{tk : 0 ≤ k ≤ n} is a partition of [0, 1]}.
For a non-empty subset A of [0, 1] we shall denote by τA the topology (on

BVA[0, 1]) of pointwise convergence on A ∪ {1}. If A is dense in [0, 1], then τA

is a Hausdorff topology. Moreover the closed unit ball in BVA[0, 1] (with respect
to the total variation norm) is τA-compact. The following proposition reveals the
relationship between the spaces C(KA) and BVA[0, 1].

Proposition 1 ([6, Corollary 1]). For a dense subset A of (0, 1), the closed unit ball
BBVA[0,1] in BVA[0, 1] with the τA-topology is homeomorphic to (BC(KA)∗ ,weak∗).

A more detailed analysis of Proposition 1 may be found in [9, Theorem 7]. Next,
we give some technical results that will be needed in our main theorem.

Lemma 1 ([6, Lemma 2]). Let ϕ : X → 2Y be a minimal usco acting between
topological spaces X and Y and let f : Y → R be a continuous function. Then
there is a residual set R in X such that the composition mapping f ◦ ϕ : X → 2R

defined by (f ◦ ϕ)(x) := {f(y) : y ∈ ϕ(x)} is single-valued at the points of R.

The following result is a consequence of Proposition 5.1 and Proposition 5.3 in
[12].

Proposition 2 ([9, Proposition 1]). Let ϕ : B → 2X be a minimal usco act-
ing from a Baire space B into a topological space X. If K is a Borel set and
ϕ−1(K) := {b ∈ B : ϕ(b) ∩ K �= ∅} is second category, then there exist a non-empty
open subset U of B and a dense Gδ subset G of U such that ϕ(G) ⊆ K.

For each α ∈ MA[0, 1], the set of all non-decreasing functions in BBVA[0,1], and
each m ∈ N we define

S(α, m) := {t ∈ [0, 1] : α(t+) − α(t−) ≥ 1/m}
where α(t+) := limt′→t+ α(t′) for t ∈ [0, 1), α(1+) := α(1), α(t−) := limt′→t− α(t′)
for t ∈ (0, 1] and α(0−) := α(0) = 0.
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Lemma 2 (Basic Lemma). Let A be a dense subset of (0, 1), let α ∈ MA[0, 1],
let m ∈ N and let 0 ≤ a < b ≤ 1. If S(α, m) ∩ [a, b] = ∅, then there exists a
neighbourhood U(α) of α in (MA[0, 1], τA) such that S(β, m) ∩ [a, b] = ∅ for each
β ∈ U(α).

Corollary 1. Let A be a dense subset of (0, 1), let α ∈ MA[0, 1], let m ∈ N and
let U be an open subset of [0, 1]. If S(α, m) ⊆ U , then there exists a neighbourhood
U(α) of α in (MA[0, 1], τA) such that S(β, m) ⊆ U for each β ∈ U(α).

We are now in a position to present our main theorem.

Theorem 4. Let A be a strongly topologically stable proper σ-ideal on ({0, 1}N, τp)
and let A be a dense subset of (0, 1) such that C ∩ A ∈ AC for each set C ⊆ [0, 1]
that is homeomorphic to ({0, 1}N, τp). Then (BVA[0, 1], τA) is nearly Stegall with
respect to A. In particular, (BVA[0, 1], τA) is weakly Stegall.

Proof. First, let us note that by Theorem 3, part(ii), we need only show that
the closed unit ball BBVA[0,1] of BVA[0, 1] is nearly Stegall with respect to A. In
fact, we need only show that the (τA-compact) set MA[0, 1] of all non-decreasing
functions in BBVA[0,1], endowed with the τA-topology, is nearly Stegall with respect
to A. Since if MA[0, 1] is nearly Stegall with respect to A, then by Theorem
3, part(iii), MA[0, 1] × MA[0, 1] is nearly Stegall with respect to A. However,
by the Jordan decomposition theorem BBVA[0,1] ⊆ �(MA[0, 1] × MA[0, 1]), where
� : MA[0, 1] × MA[0, 1] → BVA[0, 1] is defined by �(f, g) := f−g. Hence the result
follows from Theorem 3, part(i), since � is a perfect mapping.

For any α, β in MA[0, 1] we define

ρI(α, β) :=
∞∑

n=1

|(α − β)(an)|/2n and ρJ(α, β) :=
∑
t∈A

|(α − β)(t+) − (α − β)(t)|

where a1 := 1 and {an : n ≥ 2} ⊆ A is dense in [0, 1].
Note: {t ∈ A : |(α − β)(t+) − (α − β)(t)| > 0} is at most countable. Then

we define ρ(α, β) := ρI(α, β) + ρJ (α, β). With a little thought it should be clear
that ρ defines a metric on the set MA[0, 1]. We now proceed via Theorem 2. To
this end, let ε > 0, let M be a complete metric space without isolated points, let
ϕ : M → 2MA[0,1] be a minimal usco and let Rε := {x ∈ M : ρ − diam[ϕ(x)] ≤ ε}.

Step 1. It is not too difficult to check that ρI is a continuous pseudo-metric on
MA[0, 1], i.e., for each α ∈ MA[0, 1] and r > 0 the set {β ∈ MA[0, 1] : ρI(α, β) < r}
is τA-open in MA[0, 1]. Hence it follows that ρI “fragments” MA[0, 1]. In particular
this means that there is a residual set R ⊆ M such that ρI -diam[ϕ(x)] = 0 at each
point x ∈ R (see the proof of Theorem 5.1.11 in [2]). One immediate consequence of
this is that for each x ∈ R, we may unambiguously refer to the left-hand and right-
hand limits of ϕ(x), since if α, β ∈ ϕ(x), then both the left-hand and right-hand
limits of α and β coincide on [0, 1].

Step 2. In this step we decompose the space MA[0, 1] into countably many parts,
{Mm,n,F : (m, n, F ) ∈ N

2 × F}, but first we introduce some notation. For each
α ∈ MA[0, 1] and m ∈ N we define

L1(α, m) :=
∑

t∈S(α,m)

[α(t+) − α(t−)].
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The notation S(α,∞) and L1(α,∞) will have the expected meaning. For each
m ∈ N, we define Mm := {α ∈ MA[0, 1] : L1(α, m) > L1(α,∞)− ε/2} and for each
partition P := {tk : 0 ≤ k ≤ n} of [0, 1], we let Ik(P ) := [tk−1, tk], for all 1 ≤ k ≤ n.
Then for each n ∈ N, we let Pn denote the uniform 1/n-partition of [0, 1] and we
define

Mm,n := {α ∈ Mm : P ∗
n ∩ S(α, m) = ∅ and

card[S(α, m) ∩ Ik(Pn)] ≤ 1 for k ∈ {1, 2, . . . , n}}

where P ∗
n := Pn\{t0, tn}. One can now check that

⋃
{Mm,n : (m, n) ∈ N

2} =
MA[0, 1]. Now with m and n fixed, we further decompose MA[0, 1] as follows. For
each fixed non-empty subset F ⊆ {1, 2, . . . , n}, we consider the set

Mm,n,F := {α ∈ Mm,n : card[Ik(Pn) ∩ S(α, m)] = 1 if and only if k ∈ F}.
If we let F denote the family of all subsets of {1, 2, . . . , n}, then F is finite. Hence
{Mm,n,F : (m, n, F ) ∈ N

2 ×F} is a countable decomposition of MA[0, 1].

Step 3. We claim that for each (m, n, F ) ∈ N
2 × F , Mm,n,F is a Borel subset of

(MA[0, 1], τA). We begin by noting that with the aid of Lemma 2 it is not difficult
to justify the fact that for each m ∈ N, the mapping α �→ L1(α, m) is upper
semi-continuous on (MA[0, 1], τA). Now L1(α,∞) = limm→∞ L1(α, m), therefore
the mapping α �→ L1(α,∞) is Borel measurable on (MA[0, 1], τA) and hence for
each m ∈ N, Mm is a Borel subset of (MA[0, 1], τA). Next, for each partition
P := {tk : 0 ≤ k ≤ n} of [0, 1] and F ⊆ {1, 2, . . . , n}, let

Mm(P, F ) :=

{
α ∈ Mm : S(α, m) ∩ P ∗ = ∅ and S(α, m) ⊆

⋃
k∈F

Ik(P )

}

where P ∗ := P\{t0, tn}. By again appealing to Lemma 2 it should be easy to see
that for each partition P of [0, 1] and subset F ⊆ {1, 2, . . . , n}, Mm(P, F ) is τA-open
in Mm. Now, for each partition P on [0, 1] and subset F ⊆ {1, 2, . . . , n} let

M∗
m(P, F ) := {α ∈ Mm(P, F ) : S(α, m) ∩ Ik(P ) �= ∅ if and only if k ∈ F};

then M∗
m(P, F ) = Mm(P, F )\

⋃
{Mm(P, F ′) : F ′ is a proper subset of F}. Thus

M∗
m(P, F ) is a Borel subset of Mm(P, F ) and hence a Borel subset of (MA[0, 1], τA).

With m, P, F and δ > 0 fixed define

M∗
m(P, F, δ) := {α ∈ M∗

m(P, F ) : diam[S(α, m) ∩ Ik(P )] < δ for all k ∈ F}.
Now from Corollary 1 it is clear that for each δ > 0, M∗

m(P, F, δ) is relatively open
in M∗

m(P, F ). Therefore,

Mm,n,F = {α ∈ Mm,n : card [Ik(Pn) ∩ S(α, m)] = 1 if and only if k ∈ F}
=

⋂
{M∗

m(Pn, F, 1/j) : j ∈ N} ,

which is a Gδ-subset of M∗
m(Pn, F ) and so a Borel subset of (MA[0, 1], τA).

Step 4. In this step we describe the strategy for the player α in the CA(Rε)-
game played on M . First, suppose β chooses B0 := {Bt

0 : t = ∅}. Then for each
(m, n, F ) ∈ N

2 × F we define

Rm,n,F :=
{

x ∈ B∅
0 : ϕ(x) ∩ Mm,n,F �= ∅

}
.
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Now since B∅
0 =

⋃
{Rm,n,F : (m, n, F ) ∈ N

2 × F}, it follows that for some
(m′, n′, F ′) ∈ N

2 × F , Rm′,n′,F ′ is of second category in B∅
0 and so by Proposi-

tion 2 there exists a non-empty open subset U of B0 and a dense Gδ subset G of
U ∩ R such that ϕ(G) ⊆ Mm′,n′,F ′ . For each k ∈ F ′ ⊆ {1, 2 . . . , n′} we define the
function gk : G → [0, 1] by gk(x) := S(ϕ(x), m′) ∩ Ik(Pn′). Note: this definition is
sensible since for each x ∈ G and α, β ∈ ϕ(x), S(α, m′) = S(β, m′). It now follows
from the τA-upper semicontinuity of ϕ, Corollary 1 and the definition of Mm′,n′,F ′

that each gk is continuous on G. Player α now selects a non-empty open subset A∅
0

of U ⊆ B∅
0 such that for each k ∈ F ′ either gk is constant on A∅

0 ∩ G or gk is not
constant on W ∩ G for any non-empty open subset W of A∅

0. Then α sets

F ′
1 := {k ∈ F ′ : gk is constant on A∅

0 ∩ G and gk(A∅
0) ∩ A = ∅};

F ′
2 := {k ∈ F ′ : gk is constant on A∅

0 ∩ G and gk(A∅
0) ⊆ A}; and

F ′
3 := {k ∈ F ′ : gk is not constant on G ∩ W for any non-void open set W ⊆ A∅

0}.
For each k ∈ F ′

2, α defines tk := gk(x) for x ∈ A∅
0 ∩ G. Then by Lemma 1 there

exists a residual set R∗ ⊆ G∩A∅
0 such that each of the uscos (tk ◦ϕ) : G∩A∅

0 → 2R

defined by (tk◦ϕ)(x) := {α(tk) : α ∈ ϕ(x)} are single-valued on R∗. Next α chooses
a sequence of dense open sets {On : n ∈ N} of A∅

0 such that
⋂∞

n=1 On ⊆ R∗ ⊆ G∩A∅
0

and notes that for each k ∈ F ′
1 ∪ F ′

2 and x ∈ R∗, ϕ(x)(gk(x)) is a singleton.
Then α defines σ0(B0) := {At

0 : t = ∅}. In general if β selects Bn := {Bt
n :

t ∈ {0, 1}n}, then α responds by choosing non-empty open subsets At
n ⊆ Bt

n ∩ On

such that gk(At
n)∩gk(At′

n ) = ∅ for all k ∈ F ′
3 and all t, t′ ∈ {0, 1}n with t �= t′. Then

α defines σn(B0, B1, . . . , Bn) := {At
n : t ∈ {0, 1}n}. This completes the definition

of σ := (σn : n ∈ ω).

Step 5. We now show that the just described strategy σ is a winning strat-
egy for the player α in the CA(Rε)-game. To this end, let K :=

⋂∞
n=0{

⋃
{Bt

n :
t ∈ {0, 1}n}} ⊆ R∗ and, for each k ∈ F ′

3, let

A(k) := g−1
k (A) ∩ K = g−1

k (gk(K) ∩ A).

Since gk(K) is homeomorphic to ({0, 1}N, τp), gk(K)∩A∈Agk(K) and so A(k)∈AK .
We claim that K\Rε ⊆

⋃
{A(k) : k ∈ F ′

3} ∈ AK . To see this, first note that it is
sufficient to show that ρJ -diam[ϕ(x)] ≤ ε for each x ∈ K\

⋃
{A(k) : k ∈ F ′

3}. Now
fix x0 ∈ K\

⋃
{A(k) : k ∈ F ′

3} and consider α, β ∈ ϕ(x0); then

ρJ(α, β) =
∑
t∈A

|(α − β)(t+) − (α − β)(t)| =
∑

t∈S(α,∞)

|(α − β)(t+) − (α − β)(t)|.

However, if t ∈ S(α, m′), then |(α−β)(t+)− (α−β)(t)| = 0 because α(t+) = β(t+)
(by Step 1) and α(t) = β(t) since α(gk(x0)) = β(gk(x0)) for all k ∈ F ′. On the
other hand, if we write Stail := S(α,∞)\S(α, m′), then we have∑
t∈Stail

|(α − β)(t+) − (α − β)(t)| ≤
∑

t∈Stail

α(t+) − α(t) +
∑

t∈Stail

β(t+) − β(t)

≤
∑

t∈Stail

α(t+) − α(t−) +
∑

t∈Stail

β(t+) − β(t−)

< ε/2 + ε/2 = ε.

Thus ρ(α, β) ≤ ε and so ρ-diam[ϕ(x0)] ≤ ε; which completes the proof. �
To apply Theorem 4 we need to consider some small subsets of R.
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Lemma 3. There exist a dense second category subset A of (0, 1) and a strongly
topologically stable proper σ-ideal A on ({0, 1}N, τp) such that C ∩A ∈ AC for each
set C ⊆ [0, 1] that is homeomorphic to ({0, 1}N, τp).

Proof. Let κ be the least ordinal of cardinality 2ℵ0 , let {(fα
n : n ∈ N) : α < κ}

be an enumeration of all the sequences of continuous one-to-one functions from
({0, 1}N, τp) into [0, 1] and let {Eα : α < κ} be an enumeration of all the non-
meager Borel subsets of (0, 1). Inductively, we may choose

aα ∈ Eα\{fβ
n (xβ) : n ∈ N and β < α} and xα ∈ {0, 1}N such that

fα
n (xα) �= aβ for any n ∈ N and β ≤ α.

Set A := {aα : α < κ}. Then A is not meager and for any sequence (fn : n ∈ N)
of continuous one-to-one functions from ({0, 1}N, τp) into [0, 1], (f−1

n (A) : n ∈ N)
does not form a cover of {0, 1}N. So, if we take A to be the σ-ideal generated by
the inverse images, f−1(A), as f runs over all the continuous one-to-one functions
from {0, 1}N into [0, 1], then A will be a strongly topologically stable proper σ-ideal
on ({0, 1}N, τp) such that C ∩A ∈ AC for every set C ⊆ [0, 1] that is homeomorphic
to ({0, 1}N, τp). �

Corollary 2. There exists a Banach space (X, ‖·‖) such that (X∗,weak∗) is weakly
Stegall but (X, ‖ · ‖) is not weak Asplund. In particular, (X, ‖ · ‖) is a Gâteaux
differentiability space that is not weak Asplund.

Proof. Let A be the set constructed in Lemma 3 and let A be the corresponding
σ-ideal on ({0, 1}N, τp). Then A satisfies the hypotheses of Theorem 4 with respect
to A. Hence (BVA[0, 1], τp) is nearly Stegall with respect to A. Therefore, by
Proposition 1, (C(KA)∗, weak∗) is nearly Stegall with respect to A and so weakly
Stegall. On the other hand, if (C(KA), ‖ · ‖∞) is weak Asplund, then by [1], every
closed subset of KA contains a dense completely metrizable subspace. However by
Proposition 5 in [5] this implies A is meager (in fact perfectly meager); which it is
not. Therefore, (C(KA), ‖ · ‖∞) is not weak Asplund. �

Remark. We note here that the statement of Theorem 4 can be recast in terms
of the following definition. If A is a proper σ-ideal of subsets on {0, 1}N and N
is a subset of a complete metric space M , then we say that N is A-negligible if
γ−1(N) ∈ A for each γ belonging to a residual subset RN of C({0, 1}N, M); the
continuous functions from {0, 1}N into M equipped with the topology of uniform
convergence. [Note: the residual set RN will in general depend upon the set N .]

Theorem 4 can then be rephrased as: “Let A be a proper σ-ideal on {0, 1}N and
let A be a dense subset of (0, 1) such that γ−1(A) ∈ A for every homeomorphic
embedding of ({0, 1}N, τp) into [0, 1]. Then for every complete metric space M

without isolated points and minimal usco ϕ : M → 2BVA[0,1], ϕ is single-valued
except on an A-negligible subset of M . In particular, (BVA[0, 1], τA) is weakly
Stegall”.

Let us also note that a subset N of a complete metric space M that has the Baire
property is A-negligible if and only if it is of the first category. Hence the interesting
A-negligible sets are necessarily among those sets that are not very topologically
respectable.
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Note added in proof

Since this manuscript was first submitted in 2002, a simplified proof of Corollary
2 has appeared in [8].
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of Bulgarian Mathematicians, Sljanĉev Brjag, (1986), 141–149. MR0872913 (88d:46037)

2. M. J. Fabian, Gâteaux differentiability of convex functions and topology: Weak Asplund
spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley-
Interscience, New York, 1997. MR1461271 (98h:46009)

3. J. R. Giles, Convex Analysis with Application in Differentiation of Convex Functions, Re-
search Notes in Mathematics, 58 Pitman, Melbourne, 1982. MR0650456 (83g:46001)

4. O. F. K. Kalenda, Weak Stegall spaces, unpublished manuscript, Spring 1997 (3 pages).
5. O. F. K. Kalenda, Stegall compact spaces which are not fragmentable, Topology Appl. 96

(1999), 121–132. MR1702306 (2000i:54027)
6. P. S. Kenderov, W. B. Moors and S. Sciffer, A weak Asplund space whose dual is not weak∗

fragmentable, Proc. Amer. Math. Soc. 129 (2001), 3741–3747. MR1860511 (2002h:54014)
7. D. G. Larman and R. R. Phelps, Gâteaux differentiability of convex functions on Banach

spaces, J. London Math. Soc. 20 (1979), 115–127. MR0545208 (80m:46017)

8. W. B. Moors, Some more recent results concerning weak Asplund spaces, Abstr. Appl. Anal.
2005 (2005), 307–318. MR2197122

9. W. B. Moors and S. Somasundaram, Some recent results concerning weak Asplund spaces,
Acta Univ. Carolin. Math. Phys. 43 (2002), 67–86. MR1979559 (2004e:46027)

10. R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture notes in
Mathematics, Springer-Verlag, Berlin, 1993. MR1238715 (94f:46055)

11. C. Stegall, A class of topological spaces and differentiability, Vorlesungen aus dem Fachbereich
Mathematik der Universität Essen 10 (1983), 63–77. MR0730947 (85j:46026)

12. C. Stegall, The topology of certain spaces of measures, Topology Appl. 41 (1991), 73–112.
MR1129700 (93d:46067)

Department of Mathematics, The University of Auckland, Private Bag 92019, Auck-

land, New Zealand

E-mail address: moors@math.auckland.ac.nz

Department of Mathematics, The University of Waikato, Private Bag 3105, Hamilton

2001, New Zealand

E-mail address: ss15@math.waikato.ac.nz

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0872913
http://www.ams.org/mathscinet-getitem?mr=0872913
http://www.ams.org/mathscinet-getitem?mr=1461271
http://www.ams.org/mathscinet-getitem?mr=1461271
http://www.ams.org/mathscinet-getitem?mr=0650456
http://www.ams.org/mathscinet-getitem?mr=0650456
http://www.ams.org/mathscinet-getitem?mr=1702306
http://www.ams.org/mathscinet-getitem?mr=1702306
http://www.ams.org/mathscinet-getitem?mr=1860511
http://www.ams.org/mathscinet-getitem?mr=1860511
http://www.ams.org/mathscinet-getitem?mr=0545208
http://www.ams.org/mathscinet-getitem?mr=0545208
http://www.ams.org/mathscinet-getitem?mr=2197122
http://www.ams.org/mathscinet-getitem?mr=1979559
http://www.ams.org/mathscinet-getitem?mr=1979559
http://www.ams.org/mathscinet-getitem?mr=1238715
http://www.ams.org/mathscinet-getitem?mr=1238715
http://www.ams.org/mathscinet-getitem?mr=0730947
http://www.ams.org/mathscinet-getitem?mr=0730947
http://www.ams.org/mathscinet-getitem?mr=1129700
http://www.ams.org/mathscinet-getitem?mr=1129700

	1. Introduction
	2. The Cantor game and nearly Stegall spaces
	2.1. The Cantor game

	3. A weakly Stegall space that is not weak Asplund
	Acknowledgement
	Note added in proof
	References

