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Abstract 

An extension of the Gauss-Newton method for nonlinear equations to convex composite opti- 
mization is described and analyzed. Local quadratic convergence is established for the minimiza- 
tion of h o F under two conditions, namely h has a set of weak sharp minima, C, and there is a 
regular point of the inclusion F ( x )  E C. This result extends a similar convergence result due to 
Womersley (this journal, 1985) which employs the assumption of a strongly unique solution of 
the composite function h o F. A backtracking line-search is proposed as a globalization strategy. 
For this algorithm, a global convergence result is established, with a quadratic rate under the 
regularity assumption. 

Keywords: Gauss-Newton; Convex composite optimization; Weak sharp minima; Quadratic convergence 

1. Introduction 

In the early nineteenth century, Gauss proposed a powerful method for solving systems 

of nonlinear equations that generalized the classical Newton's method for such systems. 

Recall that Newton's method is based on successive linearization. Unfortunately, in 

many applications the linearized systems can be inconsistent. To remedy this problem, 

Gauss proposed that the iterates be based on the least-squares solutions to the linearized 

problems. In making the transition from solving the linearization to solving the associated 
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linear least-squares problem, the underlying problem changes from equation solving to 
minimization. Specifically, the Gauss-Newton method solves the associated nonlinear 

least-squares problem and can therefore converge to a solution to the nonlinear least- 
squares problem that is not a solution to the underlying system of equations. Nonetheless, 
the method is always implementable and can be made significantly more robust by the 
addition of a line-search. Other variations that enhance the robustness of the method are 
the addition of a quadratic term to the objective in the step-finding subproblem (see 
[20,27] ) or the inclusion of a trust-region constraint (see [ 13] ). 

In this paper we discuss the extension of the Gauss-Newton methodology to finite- 
valued convex composite optimization. Convex composite optimization refers to the 
minimization of any extended real-valued function that can be written as the composition 
of a convex function with a function of class C1 : 

(79) rain f ( x ) : = h ( F ( x ) ) ,  

where h : R m --+ R t_l {+ec} is convex and F : lt~" ~ R m is of class C 1 . We consider 

only the finite-valued case: h : R m -+ R. Obviously the nonlinear least-squares problem 
is precisely of this form. It is interesting to note that in their outline of the Gauss- 
Newton method, Ortega and Rheinboldt [28, p. 267] used the notion of a composite 
function. A wide variety of applications of this formulation can be found throughout the 
mathematical programming literature [6,16,17,21,31,39,40], e.g., nonlinear inclusions, 
penalization methods, minimax, and goal programming. The convex composite model 
provides a unifying framework for the development and analysis of algorithmic solution 
techniques. Moreover, it is also a convenient tool for the study of first- and second-order 

optimality conditions in constrained optimization [ 7,9,17,39 ]. 
Our extension of the Gauss-Newton methodology to finite-valued convex composite 

optimization is based on the development given in [5,18], which specifically address the 
problem of solving finite-dimensional systems of nonlinear equations and inequalities. 
In this case, much more can be said about the algorithmic design and this is done in 
the cited articles. In this article we focus on the general theory. Specifically, we extend 
a result due to Womersley [40] establishing the quadratic convergence of a Gauss- 
Newton method under the assumption of strong uniqueness. An important distinction 
between these results is that we do not require that the solution set be a singleton or 
even a bounded set. A further discussion of the relationship to Womersley's result is 

given at the end of Section 3. 
The approach we take requires two basic assumptions: (1) the set of minima for the 

function h, denoted by C, is a set of weak sharp minima for h, and (2) there is a 

regular point for the inclusion 

F ( x )  C C. (1) 

In this article, we provide a self-contained and elementary proof theory in the finite- 

dimensional case. The basic algorithm is discussed in Section 2. After a discussion of 
regularity in Section 3, we establish the local quadratic convergence of the method in 
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Section 4. The results of Section 4 can be extended to the setting of reflexive Banach 
spaces under a suitable strengthening of the regularity condition (see condition (10) ). 
We conclude in Section 5 by establishing the convergence properties of a globalization 
strategy based on a backtracking line-search. 

The notation that we employ is for the most part standard; however, a partial list 
is provided for the readers' convenience. The inner product on R", (y, x), set addition 
U ± flV and set difference U \ V are standard. The polar of U C R" is the set U ° := 
{x* E R" I (x*, x) ~< 1, Vx E U}. The relative interior of U, ri U, is the interior of 
U relative to the affine hull of U and the closure of U, cl U, is the usual topological 
closure of the set U. The cone generated by U is cone(U) := {,~u I A > 0, u c U}. The 
indicator function for U is the function ~bu(x) taking the value 0 when x is in U and 
+ec  otherwise. The support function for U is given by ~p{j(x) := sup{(x*,x) I x* E U}. 

We denote a norm on R ~ by II' II, its closed unit ball by ~, and its dual norm by 
IIx[lo := ~b~ (x).  It is straightforward to show that the unit ball associated with the dual 

norm is II~ °. The distance of a point x to a set U is given by dist(x ] U) := inf{llx -ull I 
u E U}. Finally, the sets ker A and im A represent the kernel and image space of the 
linear map A, respectively, and the inverse image of a set U under the mapping A is 
given by A-1U : =  {y I Ay ~ U}. 

2. The basic algorithm 

Let f ( x )  := h ( F ( x ) )  be as given in (7 ~) with h finite-valued. The basic Gauss- 
Newton procedure takes a unit step along a direction selected from the following set: 

D~(x) := argmin{h(F(x) + V ' ( x )d )  I Ildll (2) 

which represents the set of solutions to the minimization problem 

min{h(F(x)  + F ' ( x ) d )  [ Ildll ~< d}. (3) 

There are two points to note. The first is that the "linearization" is carried out only 
on the smooth function F, the convex function h is treated explicitly, corresponding 
exactly to the Gauss-Newton methodology. The second point is that the directions are 
constrained to have length no greater than A. This is different from the standard Gauss- 
Newton procedure which can be recovered by setting A = oc. Nonetheless, from the 
standpoint of convergence analysis it is advantageous to take A finite. Observe that D,a 
is a multifunction taking points x and generating a set of directions. The basic algorithm 
to be considered here is as follows. 

Algorithm 1. Let ~/ /> 1, A E (0, +cx~] and x ° E R n be given. Having x k, determine 
x k+l as follows. 

If  h(F(xk ) )  = min{h(F(x  k) + U ( x k ) d )  [ IId[[ ~< ~), then stop; otherwise, choose 
d k C D,a(x k) to satisfy 

Ildkl[ ~< ~Tdist(OID~(xk)), (4) 
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and set x k+l := x k + d k. 

Algorithms of  this type have been extensively studied in the literature [5,t8,23,33]. 

I f  it is assumed that both h and the norm on ]1{ n are polyhedral, then one can obtain 

a direction choice satisfying (4) in Algorithm 1 by computing a least-norm solution 

of  a linear program in the sense of  [24,25]. Numerical methods for obtaining least- 

norm solutions to linear programs have been developed in [ 12]. I f  h is piecewise 
linear-quadratic and the norm on R n is either polyhedral or quadratic, then a two-stage 

procedure can be employed to obtain the step d k. In the first stage one obtains an optimal 

solution to (3) ,  dopt, then in the second stage a least-norm solution is obtained by solving 

the linear or quadratic program min{]]dtl I F' (x )d  = F'(x)dopt}. For example, when the 
norm on R '~ is polyhedral, the algorithm given in [2] will solve (3).  If  h is the distance 

function to a nonempty closed convex set, one can apply the relaxation techniques 

described in [5] .  

In most studies, the objective function in (3) includes a quadratic term of the form 

½dTHd in order to incorporate some curvature components. Such methods are commonly 

referred to as sequential quadratic programming methods. In addition to a second-order 

sufficiency condition, these methods require a strong nondegeneracy condition for their 

local analysis. These conditions combine to imply that the point under consideration is an 

isolated stationary point of  the problem. Consequently, this theory does not apply to the 

class of  problems addressed in this article. Further discussion of  this curvature component 

can be found in [13,28] for the classical Gauss-Newton method and in [17,31] for 

convex composite optimization. The relationship of  this component to second-order 

optimality conditions can be found in [9,17,39]. In this article, we avoid the need for a 

curvature term by focusing on the local behavior of  the algorithm in the neighborhood 

of  a point 2 satisfying F(.~) C C := argminh,  assumed nonempty. 
Our analysis is based on two key assumptions: the set C is a set of  weak sharp 

minima for the function h and the point 2 is a regular point (see Section 3) for the 

inclusion (1). The weak sharp minima concept was introduced in [ 14]. 

Definition 2.1. The set C C R m is a set of  weak sharp minima for the function 
h : R m --~ R t3 {±oc}  if there is an ce > 0 such that 

h(y) )hmin + a d i s t ( y  I C) ,  for all y E ]I{ m, (5) 

where hmin := miny h(y).  The constant ce and the set C are called the modulus and 
domain of sharpness for h over C, respectively. 

Note that in finite dimensions, if inequality (5) is satisfied for one choice of  norm, 

then it is satisfied for every other norm with perhaps a different choice of  ce. The pro- 

totypical example of  a function h having a set of  weak sharp minima is the distance 

function dist(. I C) itself; other examples are explored in [8,14]. The notion of  weak 

sharp minima generalizes the notion of  a sharp [30] or strongly unique [11,21,29,40] 
minimum. These concepts have a long history in the literature and have far-reaching con- 
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sequences for the convergence analysis of  many iterative procedures [ 11,19,21,30,40]. 
In [ 8 ], it was shown that some of these convergence results can be extended to the case 

of  weak sharp minima. This article continues this discussion in the context of  convex 
composite optimization. Whereas in the fully convex case one obtains finite termination 
criteria, in the convex composite case we can establish quadratic convergence when 
regularity is also assumed. 

3. Regularity 

In this section, we define a notion of regularity for the inclusion (1) that can be 
applied at any point in R n. It is related to various notions of  regularity that can be found 

in the literature [4,7,22,26,35,37,39]. In particular, in the finite-dimensional case, it is 
equivalent to the definition of regularity given by Maguregui [22,23]. Regularity is a 
convenient tool for relating the set of  search directions Da(x)  to the set of  solutions of  
the linearized inclusion 

F(x )  ÷ F ' ( x ) d  E C, with Ildll ~< A. (6)  

Regularity also allows us to establish local bounds on the set Dz(x ) .  These bounds 
are the key to establishing a quadratic convergence result for Algorithm 1 in the next 

section. 

Definition 3.1. A point 2 C R" is a regular point for the inclusion (1) if 

k e r ( U ( 2 )  T) n F c ( F ( 2 ) )  = {0}, (7) 

where the multifunction Fc : R m ~ R"' is given by F c ( y )  := [cone(C - y ) ]o ,  for all 
y E R m. 

The multifunction Fc is closely related to the normal cone mapping for C, N c ( ' ) .  

Indeed, they coincide at points in C; however, N c ( y )  = 0 at points y ¢ C. It is 
straightforward to show that Fc has the following very useful dual representation: 

rc(z) = {Yl (y ,z)  - ~O~(y) >>. 0}. (8) 

In the context of  the nonlinear least-squares problem, the set C is the origin and so 
Fc ( F ( 2 ) )  = [ F ( 2 )  ] ±, the subspace orthogonal to the linear span of the vector F(2) .  
Therefore condition (7) reduces to the condition k e r ( F t ( 2 )  T) N [ F ( 2 ) ]  ± = {0}. I f  

F(2)  = 0, this can be restated as i m ( F t ( 2 ) )  = ]R m. 
Our first objective in this section is to establish several equivalent forms of regularity 

that are pertinent to the discussion. 

L e m m a  3.2. Let Z ¢ N m and A ¢ R mxn, and suppose that C is a nonempty closed 

convex subset of  R m. Then the following statements are equivalent. 
(i) ker,~ f N F c ( Z )  = {0}. 
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(ii) imfi, + cone ( r iC  - Z) = R m. 

(iii) There is a tz > 0 such that 

0 c int(/zABn + ( r iC  - g ) ) ,  

where B,  is the unit ball of  R n. 

(iv) There is a /3  > 0 such that 

--I o (,,~T) B,, r~ Cc(~ )  c/3B°,. (9) 

(v)  There is an e > 0 such that each of  the conditions ( i ) - ( i v )  above hoM for all 
(z, A) C (Z, ,~) + •B where the unit ball in R m x ~mxn is determined by the norm 

I I ( z , m )  - ( Z , ~ ) I I  - - I I z  - zll + l[ m - fi']l 

with the operator norm on R mx" chosen to be compatible with the given norms on ~n 

and ]~m. In particular, the parameters tz in (iii) and/3 in (iv) depend only on the point 

(~ ,A) .  

Proof.  To obtain the equivalence of  (i) and (ii) ,  we first take the polar of  the relation 
in (i) to see that imfi~ + c l c o n e ( C -  Z) = R m. From this equation, the equivalence 
follows from a simple separation argument and the fact that r i coneS  = cone (ri S) for 

any convex set S. 
Clearly, (ii) follows from (iii) .  The reverse implication again follows by a simple 

separation argument. Indeed, if this implication were false, then one could separate the 
origin from the set # A B ,  + (ri C - g) ,  for each Iz > 0. But then the cone generated 
by these sets, namely im,~ + cone ( t iC  - g ) ,  would lie in a half space which would 
contradict (ii) .  

To see that (iv) follows from (iii),  note that (iii) is equivalent to the statement 

that there exists an 77 > 0 such that r/Bin C /z.,~B,, + (ri C - Z). This implies that 
(rl/Iz)B,,, C .~B, + cone (C - ~).  The polar of  this last expression is precisely (iv) 

wi th/3  =/xr / -~.  

Clearly, (iv) implies (i) since kerfi, = (/~T)-10 and the only bounded cone is the 
origin. 

For the final statement of  the lemma, it is obvious that (v)  implies any one of  ( i ) -  
( iv) .  We obtain the equivalence of  (v)  with any one of ( i ) - ( i v )  by showing that (iii) 
implies the local version of  ( iv) .  This will simultaneously establish the uniform nature 
of  the parameter /3. First, it is clear that if (iii) holds for some A, ~ and /2, then it 
holds for all A, z and /z nearby. As noted above, the condition in (iii) implies the 

existence of  an r / >  0 and / z  > 0 such that r/Nm C/zABn + (ri C - g) .  Hence, r/Bin C 
# A B ,  + (ri C - z ) + ½r/N,~,, whenever (z, A) E (Z, fi~) + e B ,  for some • > 0. Therefore, 
by the R~dstrOm Cancellation Lemma [32, Lemma 1], l'r]Bm C /.tAN, + ( r iC  - z)  
which implies that r//(2/z)B,,,  C A B , ,  + cone (C - z) .  Taking the polar of  this last 
statement and set t ing/3-1 := z/ / (2/z) ,  we find that (iii) implies the existence of • > 0 

and/3  > 0 such that the condition in (iv) holds for all ( z ,A)  E (g ,A )  + • B .  [] 
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Remarks. ( 1 ) Maguregui [ 22,23 ] studies methods similar to Algorithm 1 in the Banach 
space setting under the regularity condition 

0 C core(( imA + C  - g)) .  (10) 

This condition and condition (ii) of Lemma 3.2 are equivalent in the finite-dimensional 
setting. In the infinite-dimensional setting, (10) is stronger than the condition in (ii), 
but condition (ii) is not strong enough to obtain Maguregui's sensitivity results. 

(2) By taking A = U ( 2 )  and g = F(2) ,  Lemma 3.2(v) implies that ker ( U ( x )  T) N 
F c ( F ( x ) )  = {0} for all points x near 2 at which (7) holds. That is, regularity is a 
local property. 

The following proposition can be viewed as a local Hoffman bound for the linearized 
inclusions (6). This result is similar to [35, Theorem 1]. Our proof is a straightforward 
application of Fenchel's Duality Theorem [38, Corollary 31.2.1]. It is self-contained 
and significantly simplifies the proof technique employed in [ 35, Theorem 1 ] which 
depends on the theory of normed convex processes [34]. The power of this approach 
for the derivation of very general Hoffman bounds is illustrated further in [ 10]. 

Proposition 3.3. If  2 is a regular point of (1),  then for all A > dist(O I D ~ ( 2 ) ) ,  
there is some neighborhood N' (2)  of 2 and a fl > 0 satisfying 

dist(0 } D o ( x ) )  <<. f ld i s t (F(x)  I C) ,  (11) 

whenever x E iV'(2). Moreover, .A[(2) can be chosen so that there exists d E A~ 
satisfying 

F (x )  + F ' ( x ) d  E tiC, (12) 

for all x ~ N'(2) .  

Proof. We first establish (11). Let • > 0 be given by Lemma 3.2(v) at the pair 
( F ( 2 ) ,  F ' ( 2 ) ) .  Let N'(2)  be the neighborhood of 2 chosen so that ( F ( x ) ,  F t ( x ) )  E 
( F ( 2 ) ,  F ' ( 2 ) )  + •~  whenever x C N'(2) .  

By Lemma 3.2(ii) and the continuity of F and F/, the set {d I F(x )  + U ( x ) d  E C} 
is nonempty and equals D ~ ( x )  for all x C N'(2) .  The relation (11) follows from the 
inequality 

dist(0 I Doo(x) ) ~ fldist( F (x )  I C) ,  (13) 

which we now establish via Fenchel duality. 
The Fenchel dual to the problem 

dist(O ] Do~(x) ) =inf{lld[I I F(x )  + F t ( x ) d  E C} 

=inf{O~o (d) + Oc-F(x ) (F ' ( x )d ) }  
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is the problem 

sup{(y, F(x) ) - ~ (y) [ F' (x) Vy E ~°}. (14) 

The optimal values of these problems coincide with attainment in (14) if there exists 
d C R n satisfying (12). For each x E A/'(2), such a d exists by parts (iii) and (v) 
of Lemma 3.2. Since 0 ~< dist(0 I D~(x) ) ,  identity (8) can be used to further restrict 
the constraint region in (14) by adding the inclusion y EFc  (F(x)) .  This observation 
along with parts (iv) and (v) of Lemma 3.2 yields the relation 

dist(0 ] Doo(x)) = max{(y, F(x)) - ~p~ (y) ]y  E ( F ' ( x ) T ) - I ~  ° N Fc(F(x ) ) }  

<~max{(y,F(x)) - g,~ (y) l Y E fl]~°} 

<<. fldist(F(x) I C), 

for all x E A/'(.t). The last inequality follows from the fact that for every z E C and 

y E fl~° one has 

(y,F(x) ) <~ (y,F(x) -- z) + (y,z) <~ /~IIF(x) - zll + ~P~ (y) ,  

and so (y,F(x)) - ¢ ~ ( y )  <~ fldist(F(x) IC). 
We now construct d with Ildll ~< A satisfying (12) to complete the proof. Let A > 

dist(0 I Doo(x)) be given and let A0 = ½A+ ½dist(0 I Doo(x)).  By (11), there is a 
neighborhood of ff on which D~,(x) = {d E Ao~ I F(x) + F'(x)d E C} 4= ~. Let 
d~ E D~ 0. By parts (iii) and (v) of Lemma 3.2, there is a d2 E R" satisfying (12). By 
[ 38, Theorem 6. l ], it follows that 

( l - t ) [ F ( x ) + F ' ( x ) d l ] + t [ F ( x ) + F ' ( x ) d 2 ]  EriC,  V t c ( 0 ,  l ] ,  

and hence that F(x) + U ( x ) (  (1 - t ) d l  + td2) E ri C. The required d is determined by 
choosing t > 0 small enough so that (1 - t)dl + td2 E A~. [] 

Remark. The first part of this result can be extended to the setting of reflexive Banach 
spaces under Maguregui's regularity hypothesis (10) or if one assumes a regularity 
condition having the form of parts (ii) or (iii) of Lemma 3.2. 

We now take a moment to clarify the relationship of our result to that of Womersley 
[40]. For this purpose, recall that Robinson [37, Theorem 1] extends the stability 
result (11) to smooth nonlinear systems under the same regularity conditions. His result 
implies that for some r / >  0, 

dist(x t F-I (C) )  <<. r /dis t (F(x)  [C) ,  

for all x in a neighborhood of the regular point .~. It immediately follows that regularity 
coupled with weak sharpness implies that the composite function h o F is locally weak 
sharp with respect to the set F-I(C) .  That is, 

f ( x )  = h(F(x))  >~ f(Yc) + ydist(xl  F - l ( C ) ) ,  (15) 
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for all x near 2. Womersley [40] assumes the relation (15) with F -1 (C) = {2}, which 
is the key difference to our approach. Our proof theory is based on sufficient conditions 
to ensure weak sharpness, whereas Womersley assumes only sharpness and a unique 
solution. The proof we give does not assume that the set of minimizers of f is even 
bounded, let alone a singleton. 

4. Quadratic convergence 

We can now establish the local quadratic convergence of Algorithm 1. This result is 
reminiscent of the Kantorovich Theorem for the convergence of Newton's method since 
the existence of a solution to (1) is not assumed. The result also extends the quadratic 
convergence result due to Womersley [40] to the case of nonunique solution sets (for 
related results, see [ 19,23,29] ). 

Theorem 4.1. Let 2 E R" be a regular point o f  the inclusion (1) where C is a set 

o f  weak sharp minima fo r  h and suppose that the conclusions of  Proposition 3.3 are 

satisfied on the set 2 + 6B fo r  6 > O, with A > ~. Assume that F t is Lipschitz continuous 
on 2 + 6~  with Lipschitz constant L and h is Lipschitz continuous on F ( 2 + ~ ) + ½ L ~  

with Lipschitz constant M. I f  there exists 6 > 0 such that 

(a) 6 < min{½6, 1}, 

(b) d i s t ( f ( 2 )  I C) < 6/2~7fl, and 
(c) 0 := rlLM6fl/cr < 1, 

then there is a neighborhood 31l(2) of  2 such that if  Algorithm 1 is initiated in .Ad( 2), 
then the iterates {x k} converge to some x* E R '~ with F (x* )  E C; that is, x* solves 

(79). Furthermore, x k --+ x* and h ( F ( x k )  ) --+ hn~n at a quadratic rate. 

Proof. Since F and F' are continuous, there is a neighborhood 0 ( 2 )  such that 

8 
d is t (F(x)  I C) <~ 2~7-fl' (16) 

and DA(X) = {d ~ AB I F ( x )  + F ' ( x ) d  ~ C}  4= O, for all x E 0 ( 2 ) .  Let .A4(2) := 
(.9(2) N (2 + 6B). If  Algorithm 1 is applied, observe that 

IId°ll <~ r l f ld i s t (F(x°)  I C) <. ½6. (17) 

Since x ° C .A4(2), we have 

IIx ~ - 211 ~< II x° - 21[ + [Id°ll ~< 6 +  ½6 < 26, 

andx  j C 2 + 2 6 ~ C 2 + ~ . W e c l a i m t h a t f o r k = 1 , 2  . . . . .  

x k E 2 + 6 ~  (18) 

and 

]]dkll <. ~T f l a - l ( h (F (xk )  ) -hmin)  ~< ½0[[dk-lll 2 <<. 162 I-2kl. (19) 
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Note that (18) implies that the algorithm is well-defined for k = 0, 1,2 . . . . .  The proof  
of  the claim proceeds by induction on k. 

Observe that (18) has already been established for k = 1. To see (19) for k = 1, first 
recall that by the quadratic bound lemma [28, 3.2.12] 

[[F(x °) + F'(x°)d  ° -  F(x l ) [ I  ~< ½Zlld°ll 2 ~< ~Z, 

so that F(x  °) + F' (x°)d  ° c F(2 + 3~) + ~L~. Thus, 

( /o' ) h(F(x l ) )  =h F(x  ° ) + F ~ ( x ° ) d ° +  (F~(x°+td  ° ) - F ~ ( x ° ) ) d ° d t  

fo 1 dt <<. h (F(x  °) + Fl(x°)d °) + M (F~(x ° + td °) - F~(x °) )d o 

fo I dt = hmin + M (F~(x ° + td °) - F~(xO))d ° 

hmin -]- ½LMIId°II 2, (20) 

the second equality following from (12).  We now have 

IIdlll <.~lflce-l(h(F(xl)) - hmin) (from (4),  (11) and (5 ) )  

~< ½0Ha°l[ 2 (from (20))  

1 I 2 70(~5)  (from (17) )  

~< ½62 -2. 

Next assume that (18) and (19) hold for k = 1 . . . . .  s. We show that they also hold 

for k = s + 1. First of  all, since x ° E .AA(.~), we have 

_ 1 ~ 2 - 2 k  llxS+l-~ll~<llx° ~11+ tld~tl~<~+½~-~'2E-2~J~<~+~ ~ '  <23, 
k=0 k=0 k=0 

so that x s+l C ~ + ~B. Therefore, as in (20) ,  h(F(xS+l) ) <~ hmin + ½tMIIdsll  2, and so 
by the induction hypothesis we obtain 

tldS+~ll<~rlflce-l(h(F(x~+~)) - hm~n)<~½OlldSll2<~½0(12~2-2.2) ~< 7321 [-2 s*l ] , 

which concludes our induction. 
Therefore, the sequence is Cauchy, and so must converge to some x* satisfying 

h(F(x*))  = hmin. TO prove the quadratic rate of  convergence for {xk), we note from 
the triangle inequality that 

i--I oo 

II x~+/- xk+l II ~< ~ llx ~+j+l - xk+Jll ~< ~ It x~+j+l - x~+Jll. 
j=l  j=l  
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For large k, IIx ~+1 - x k l l  = • < 1 / (30) .  It follows from (19) that II xk÷2 -x~+lll  ~< 
0• 2, and in general that II x~+j+l -x~+Jt[ <. 02i-x• 2j ~< (o•)J•. Thus, Ilx k+i -  x k+l [[ 
0 •  2 / ( 1 --  0 •  ), and hence II xk+i - -  xk II 2 >/•2 ( ( 1 - 20•)  / ( 1 - 0•) ) 2. From these estimates, 

llx k÷l - xk+ill 0•2/(1  - 0•)  
~< < 60, IIx k - xk+ill 2 • 2 ( ( l  -- 2 0 • ) / ( 1  -- 0 • ) )  2 

and the quadratic rate for {x k} follows. The quadratic rate of  convergence for { h ( F ( x  ~) ) } 
is obvious from (19) .  [] 

Observe that the above result can also be viewed as a domain of  attraction result by 
assuming that point 2 referred to in the hypotheses actually solves the inclusion (1) .  In 
this case the inequality in assumption (b)  is trivially satisfied so that a ~ > 0 satisfying 
assumptions ( a ) - ( c )  is guaranteed to exist. 

5. A globalization strategy 

In this section, we propose a globalization strategy for Algorithm 1, based on a 
backtracking line-search. The algorithm is simply stated as follows. 

Algor i thm 2. Let ~7 >~ 1, A E ( 0 , + o c ] ,  c C (0 ,1 ) ,  y E (0 ,1 )  and x ° C R" be given. 
Having x k, determine x k+l as follows. 

(1) I f  h ( F ( x ) )  = m i n { h ( F ( x )  + U ( x ) d )  I [[dl] ~< A}, then stop; otherwise, choose 
d k ~ D a ( x  k) to satisfy fldkll ~< r/dist(0 I D a ( x k ) ) .  

(2) Set x k+l := Xk+ tkd k where tk is the maximum value of ys, for s = 0, 1 . . . . .  such 

that 

h( F ( x  ~ + ySdk) ) -- h( F(xk)  ) <. cyS[ h( F ( x  ~) + F~(xk)d k) - h( F(xk)  ) ]. 

Algorithm 2 is an instance of the class of  algorithms studied in [6],  so the global 
convergence properties of  the method follow from [6, Theorems 2.4 and 5.3]. These 
theorems specify the behavior of sequences generated by Algorithm 2 in terms of the 
first-order optimality conditions for the problem (7)). Recall that a point 2 is a first-order 
stationary point for the problem (7) ) if 

f ' ( 2 ; d )  >/O, for all d E R", (21) 

where f t (2;  .) (the usual directional derivative of  f at the point 2) exists and is finite- 
valued on R n. By [6, Lemma 4.5 and Theorem 3.6], condition (21) is equivalent to 

the condition 

h( F(  2) + F' ( Yc)d) - h( F(  2) ) = O, 

which can be more simply stated as 

for all d C D a ( 2 ) ,  (22) 

0 C D a ( 2 ) .  (23) 
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Conditions (22) and (23) are particularly important in light of the search direction and 
step-length choice specified in Algorithm 2. 

The key global properties for Algorithm 2, established in [6], are stated as the 
following theorem. 

Theorem 5.1. Let x ° E •n and let f = h o F  be as in (79). Suppose that F ~ is uniformly 

continuous on the closed convex hull o f  the set {x  E •n: f ( x )  <~ f ( x ° ) }  and that h 

is Lipschitz on the set {y E Rm: h ( y )  ~ f (x° )} .  I f  {x k} is the sequence generated by 

Algorithm 2 with initial point x °, then at least one o f  the following must occur. 

(i) The iterates terminate finitely at a first-order stationary point f o r  the prob- 
lem (79). 

(ii) The sequence o f  values {f(x~)}  decreases to - ~ .  

(iii) The sequence {lldkll} diverges to .÷~ .  
(iv) For every subsequence K C {1,2 . . . .  ) for  which the search directions {dk}K 

remain bounded, one has 

lim[ h( F(  x k) -4- F'  ( x k ) d  k) - h( F(  x k) )] = 0. 
kEK 

Moreover every cluster point o f  the subsequence {Xk}K is a first-order stationary point 

f o r  (79). 

An immediate consequence of the above result is that if the set C = argmin h is 
nonempty and A < + ~ ,  then 

lim[ h( F(  x k) -4- F' ( x k ) d  k) - h( F(  xk) ) ] = O, 
k 

and every cluster point of the sequence {x k} is a first-order stationary point for (79). We 
now further analyze the convergence behavior at cluster points satisfying the sharpness 
and regularity hypotheses. 

Theorem 5.2. Let f := h o F be as in (79) with h finite-valued and F ~ locally Lipschitz 

continuous. Suppose that {x k} is a sequence generated by Algorithm 2 and that Yc is a 

cluster point o f  this sequence. I f  2 is a regular point o f  the inclusion ( 1 ) where C is a 

set o f  weak sharp minima fo r  h, then F(Yc) ~ C and both x k --~ Y: and f ( x  k) --+ hmin 
at a quadratic rate. 

Proof. We first show that F ( 2 )  E C. By Theorem 5.1, we have 0 C U(Yc)T3h(F(Yc)) .  

If F ( 2 )  ~ C, then 0 ¢ O h ( F ( 2 ) )  in which case there is a nonzero z E Oh(F(2 ) )  N 
kerU(5:) v. But z C F c (  F(  2 ) ) since 0 ~> h ( y )  - h( F(  2) ) >~ (z, y - F(  2) ), for all 
y C C, so that 

z C {v: ( v , F ( Y c ) ) - ~ c ( v ) > ~ 0 } = r c ( F ( ~ ) )  (by (8)) .  

This contradicts the assumption that ~ is a regular point of the inclusion (1), hence 
F(.~) ~ C. 
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We now establish the convergence rates. Since the regularity hypothesis at 2 implies 

that F ( 2 )  C C, the result will follow immediately from Theorem 4.1 if it can be shown 
that there is a neighborhood N of  2 such that 

h ( F ( x  ÷ d) ) - h ( F ( x )  ) <~ c [ h ( F ( x )  + F ' ( x ) d )  - h ( F ( x )  ) ], (24) 

for all x E N and d E R n satisfying ]]dl[ ~< 7/dist(0 I D,a(x)) .  Indeed, if (24) holds, 

then Algorithms 1 and 2 generate identical iterates sufficiently close to 2. Hence, by 
Theorem 4.1, these iterates remain close to 2 and converge to a solution of  (79). Since )~ 

is a cluster point of  this sequence, the entire sequence must converge to 2 with x k ~ 

and f ( x ~) --+ hmin quadratically. 
Suppose to the contrary that (24) does not hold near 2. Then there is a sequence 

{2 k } converging to 2 such that 

c [ h ( F ( 2  k) + U ( 2 k ) d  k) - h ( f ( 2 k ) ) ]  < h ( F ( 2  k + d ~ ) )  - h ( F ( 2 k ) )  (25) 

at each 2 k for some d ~ C R n satisfying 

Ildkll <~ Bdist(0 I D,a(2k)).  (26) 

In particular, we obtain from (11) that 

Ildkll -+ 0. (271 

Let N1 be a compact neighborhood of  2 containing the set 2 + 2AII~ and let K and M 
be Lipschitz constants for h on F (N1)  and U on N1, respectively. Let A > 8 > 0 be 

chosen so that the conclusions of  Proposition 3.3 hold for this choice of  6. We suppose 

with no loss of  generality that {2 k} C 2 + 8 ~ .  Then for all k we have from [28, 3.2.12] 

that 

h(F(Y: k + dk))  - hmin = Ilh(F(2 k + dk)) - h ( F ( 2  k) + F ' ( 2 k ) d  ~) II 

<. KIIF(Yc k + d g) - F(2  k) - F'(2t)dkl l  

<<. ½gMIIdk[[ 2. 

Therefore, by (25),  

c[hmin - h( F( 2 k) ) ] = c[ h( F(  2 k) + F' ( 2k)d  k) - h( F(  Yc k) ) ] 

< h ( F ( 2  k + dk))  - h (F(2~) )  

<~ h ~ .  - h ( F ( ~ k )  t + ½KMl[dkll 2. 

Consequently, 

0 < (1 - c) [hmin - h(F(yck))] q- ½KMlldkt[ 2 

<<. (C -- 1 ) a d i s t ( F ( 2  k) I C) + ½gMIIdkll 2 (from (511 

~< (c - l )a ( /3n) - l l ldk l ]  + ½gMlldkll 2 (from (11) and (26) ) .  
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After dividing this expression through by ]ldkll and using (27) while taking the limit in 
k, we obtain the contradiction 0 ~< (c - l ) a ( /3 r / )  -1. [] 

6. Concluding remarks 

We have shown that under the assumptions of  weak sharpness and regularity one 
obtains the local quadratic convergence of a Gauss-Newton method for convex com- 
posite optimization. Moreover, the method can be "globalized" with the addition of a 
backtracking line-search that does not inhibit the local rate. A similar result can be 
established for a trust-region-based globalization strategy. 

Let us briefly consider the implications for the case of  the nonlinear least squares 
(NLLS) .  Consider Algorithm 1 under the assumptions of  weak sharpness and regularity. 
Recall that the regularity condition implies that i m ( U ( x ) )  = ~m so that n ~> m. 
This instance of  the NLLS problem seems to have received little study [13,15,28]. 
Nonetheless, it is of  great significance in the description of  constraint regions in nonlinear 
programming. In this case, condition (4) with r / =  1 in Algorithm 1 is easily satisfied 
with the aid of  either a QR factorization or a singular-value decomposition. In either 
case, the algorithm is locally equivalent to the Ben-Israel iteration for NLLS [1,3]. In 
their analyses of  this iteration, neither Ben-Israel [ 1 ] or Boggs [3] establish a rate of  
convergence for the method nor do they provide a globalization strategy. The results of  
this article can be applied to fill in these gaps. 

In the context of  solving the more general problem (1) ,  recall that near a regular 

solution to this inclusion, the direction-finding subproblem in Algorithm 1 corresponds 
to locating a least-norm solution to the linearized problem F ( x  k) ÷ U ( x k ) d  = O. 

Thus, the method is locally equivalent to the procedure described in [23],  It is also 

equivalent to the procedure given in [33] if C is a cone. Robinson [33] ( i f  C is a 
cone) and Maguregui [23] obtain a Kantorovich-type convergence result. Theorem 4.1 
is similar to these results since it can also be viewed as an existence result for the 
inclusion (1).  Robinson's  approach appeals to the theory of normed convex processes 
[34] ,  while Maguregui makes use of  the Robinson-Ursescu Theorem [36] along with 
the perturbation theory in [22]. The proof  theory provided in this article is more 
elementary and accessible since it only requires a straightforward application of Fenchel 
duality. Moreover, we improve the applicability of  the theory by providing a simple 
globalization strategy that preserves the local rate. 
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