
A Gaussian Belief Propagation Solver for Large
Scale Support Vector Machines

Danny Bickson
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Givat Ram, Jerusalem, 91904

Israel
danny.bickson@gmail.com

Elad Yom-Tov
IBM Haifa Research Lab

Haifa 31905
Israel

yomtov@il.ibm.com

Danny Dolev
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Givat Ram, Jerusalem, 91904

Israel
dolev@cs.huji.ac.il

Abstract

Support vector machines (SVMs) are an extremely successful type of classifica-
tion and regression algorithms. Building an SVM entails solving a constrained
convex quadratic programming problem, which is quadratic in the number of
training samples. We introduce an efficient parallel implementation of an sup-
port vector regression solver, based on the Gaussian Belief Propagation algo-
rithm (GaBP).

In this paper, we demonstrate that methods from the complex system domain
could be utilized for performing efficient distributed computation. We com-
pare the proposed algorithm to previously proposed distributed and single-node
SVM solvers. Our comparison shows that the proposed algorithm is just as
accurate as these solvers, while being significantly faster, especially for large
datasets. We demonstrate scalability of the proposed algorithm to up to 1,024
computing nodes and hundreds of thousands of data points using an IBM Blue
Gene supercomputer. As far as we know, our work is the largest parallel im-
plementation of belief propagation ever done, demonstrating the applicability
of this algorithm for large scale distributed computing systems.

1 Introduction

Support-vector machines (SVMs) are a class of algorithms that have, in recent years, exhibited
superior performance compared to other pattern classification algorithms. There are several
formulations of the SVM problem, depending on the specific application of the SVM (e.g.,
classification, regression, etc.).

One of the difficulties in using SVMs is that building an SVM requires solving a constrained
quadratic programming problem, whose size is quadratic in the number of training examples.
This fact has led to extensive research on efficient SVM solvers. Recently, several researchers
have suggested using multiple computing nodes in order to increase the computational power
available for solving SVMs.

1

In this article, we introduce a distributed SVM solver based on the Gaussian Belief Propagation
(GaBP) algorithm. We improve on the original GaBP algorithm by reducing the communication
load, as represented by the number of messages sent in each optimization iteration, from O(n2)
to O(n) aggregated messages, where n is the number of data points. Previously, it was known
that the GaBP algorithm is very efficient for sparse matrices. Using our novel construction, we
demonstrate that the algorithm exhibits very good performance for dense matrices as well. We
also show that the GaBP algorithm can be used with kernels, thus making the algorithm more
powerful than what was considered previously thought possible.

Using extensive simulation we demonstrate the applicability of our protocol vs. the state-of-
the-art existing parallel SVM solvers. Using a Linux cluster of up to a hundred machines and
the IBM Blue Gene supercomputer we managed to solve very large data sets up to hundreds of
thousands data point, using up to 1,024 CPUs working in parallel. Our comparison shows that
the proposed algorithm is just as accurate as these previous solvers, while being significantly
faster.

A preliminary version of this paper appeared as a poster in [20].

1.1 Classification Using Support Vector Machines

We begin by formulating the SVM problem. Consider a training set:

D = {(xi, yi) , i = 1, . . . , N, xi ∈ <m, yi ∈ {−1, 1}} . (1)

The goal of the SVM is to learn a mapping from xi to yi such that the error in mapping, as
measured on a new dataset, would be minimal. SVMs learn to find the linear weight vector that
separates the two classes so that

yi (xi ·w + b) ≥ 1 for i = 1, . . . , N. (2)

There may exist many hyperplanes that achieve such separation, but SVMs find a weight vector
w and a bias term b that maximize the margin 2/ ‖w‖. Therefore, the optimization problem
that needs to be solved is

min JD(w) =
1
2
‖w‖ , (3)

Subject to yi (xi ·w + b) ≥ 1 for i = 1, . . . , N. (4)

Any points lying on the hyperplane yi (xi ·w + b) = 1 are called support vectors.

If the data cannot be separated using a linear separator, a slack variable ξ ≥ 0 is introduced and
the constraint is relaxed to:

yi (xi ·w + b) ≥ 1− ξi for i = 1, . . . , N. (5)

The optimization problem then becomes:

min JD(w) =
1
2
‖w‖+ C

N∑

i=1

ξi, (6)

subject to yi (xi ·w + b) ≥ 1 for i = 1, . . . , N, (7)

ξi ≥ 0 for i = 1, . . . , N. (8)

The weights of the linear function can be found directly or by converting the problem into its
dual optimization problem, which is usually easier to solve.

Using the notation of Vijayakumar and Wu [7], the dual problem is thus:

max LD(h) =
∑

i

hi − 1
2
h′ ·D · h, (9)

subject to 0 ≤ hi ≤ C, i = 1, ..., N, (10)

2

Σihiyi = 0. (11)

where D is a matrix such that Dij = yiyjK (xi,xj) and K (·, ·) is either an inner product of the
samples or a function of these samples. In the latter case, this function is known as the kernel
function, which can be any function that complies with the Mercer conditions [9]. For example,
these may be polynomial functions, radial-basis (Gaussian) functions, or hyperbolic tangents.
If the data is not separable, C is a tradeoff between maximizing the margin and reducing the
number of misclassifications.

The classification of a new data point is then computed using the following equation:

(x) = sign

(∑

i∈SV

hiyiK (xi, x) + b

)
(12)

1.2 Kernel Ridge Regression problem

Kernel Ridge Regression (KRR) implements a regularized form of the least squares method useful
for both regression and classification. The non-linear version of KRR is similar to the Support-
Vector Machine (SVM) problem. However, in the latter, special emphasis is given to points
close to the decision boundary, which is not provided by the cost function used by KRR.

Given training data
D = {xi, yi}l

i=1, xi ∈ Rd , yi ∈ R

the KRR algorithm determines the parameter vector w ∈ Rd of a non-linear model (using the
“kernel trick”), via minimization of the following objective function: [6]:

min λ||w||2 +
l∑

i=1

(yi −wT Φ(xi))2

where λ is a tradeoff parameter between the two terms of the optimization function, and Φ()̇ is
a (possible non-linear) mapping of the training patterns.

One can show that the dual form of this optimization problem is given by:

maxW (α) = yT a + 1/4λαT Kα− 1/4αT α (13)

where K is a matrix whose (i, j)-th entry is the kernel function Ki,j = Φ(xi)T Φ(xj).

The optimal solution to this optimization problem is:

α = 2λ(K + λI)−1y

The corresponding prediction function is given by:

f(x) = wT Φ(x) = yT (K + λI)−1K(xi,x).

The underlying assumption used is that the kernel matrices are invertible.

1.3 Previous Approaches for Solving Parallel SVMs

There are several main methods for finding a solution to an SVM problem on a single-node
computer. (See Chapter 10 of [9]) for a taxonomy of such methods.) However, since solving
an SVM is quadratic in time and cubic in memory, these methods encounter difficulty when
scaling to datasets that have many examples and support vectors. The latter two are not
synonymous. A large dataset with many repeated examples might be solved using sub-sampling
approaches, while a highly non-separable dataset with many support vectors will require an
altogether different solution strategy. The literature covers several attempts at solving SVMs
in parallel, which allow for greater computational power and larger memory size. In Collobert
et al. [15] the SVM solver is parallelized by training multiple SVMs, each on a subset of the
training data, and aggregating the resulting classifiers into a single classifier. The training data
is then redistributed to the classifiers according their performance and the process is iterated

3

until convergence is reached. The need to re-divide the data among the SVM classifiers means
that the data must be moved between nodes several times; this rules out the use of an approach
where bandwidth is a concern. A more low-level approach is taken by Zanghirati et al. [14],
where the quadratic optimization problem is divided into smaller quadratic programs (similar to
the Active Set methods), each of which is solved on a different node. The results are aggregated
and the process is repeated until convergence. The performance of this method has a strong
dependence on the caching architecture of the cluster. Graf et al. [17] partition the data and
solve an SVM for each partition. The support vectors from each pair of classifiers are then
aggregated into a new training set for which an SVM is solved. The process continues until a
single classifier remains. The aggregation process can be iterated, using the support vectors of
the final classifier in the previous iteration to seed the new classifiers. One problem with this
approach is that the data must be repeatedly shared between nodes, meaning that once again
the goal of data distribution cannot be attained. The second problem, which might be more
severe, is that the number of possible support vectors is restricted by the capacity of a single
SVM solver. Yom Tov [8] proposed modifying the sequential algorithm developed in [7] to batch
mode. In this way, the complete kernel matrix is held in distributed memory and the Lagrange
multipliers are computed iteratively. This method has the advantage that it can efficiently solve
difficult SVM problems that have many support vectors to their solution. Based on that work,
we show in this paper how an SVM solution can be obtained by adapting a Gaussian Belief
Propagation algorithm to the solution of the algorithm proposed in [7].

Recently, Hazan et al. proposed an iterative algorithm for parallel decomposition based on Fenchel
Duality [23]. Zanni et al. proposes a decomposition method for computing SVM in parallel [22].
We compare our run time results to both systems in Section 5.

2 Gaussian Belief Propagation

In this section we present our novel contribution - a Gaussian Belief Propagation solver for
distributed computation of the SVM problem [19, 18, 21].

Following, we provide a step-by-step derivation of our GaBP solver from our proposed cost
function. As stated in the previous section, our aim is to find x∗, a solution to the quadratic
cost function given in eq. (9). Using linear algebra notation, we can rewrite the same cost

function: min E(x) , xT Wx/2− yT x.

As the matrix W is symmetric 1 (e.g. , W = ST S, the derivative of the quadratic form with
respect to the vector x is given by E′(x) = Wx− y.

Thus, equating E′(x) = 0 gives the global minimum x∗ of this convex function, which is the
desired solution x∗ = W−1y.

Now, one can define the following jointly Gaussian distribution

p(x) , Z−1 exp
(− E(x)

)
= Z−1 exp (−xT Wx/2 + yT x), (14)

where Z is a distribution normalization factor. Defining the vector µ , W−1y, one gets the
form

p(x) = Z−1 exp (µT Wµ/2)

× exp (−xT Wx/2 + µT Wx− µT Wµ/2)

= ζ−1 exp
(− 1

2
(x− µ)T W(x− µ)

)

= N (µ,W−1), (15)

where the new normalization factor ζ , Z exp (−µT Wµ/2). To summarize to this point, the

target solution x∗ = W−1y is equal to µ , W−1y, which is the mean vector of the distribution
p(x) , as defined in eq. (14).

1an extension to non-symmetric matrices is discussed in [18]. For simplicity of arguments, we handle
the symmetric case in this paper

4

The formulation above allows us to shift the rating problem from an algebraic to a probabilistic
domain. Instead of solving a deterministic vector-matrix linear equation, we now solve an infer-
ence problem in a graphical model describing a certain Gaussian distribution function. Given the
Peer-to-Peer graph W and the prior vector y, one knows how to write explicitly p(x) (14) and
the corresponding graph G with edge potentials (compatibility functions) ψij and self-potentials
(‘evidence’) φi. These graph potentials are determined according to the following pairwise fac-
torization of the Gaussian distribution p(x) (14)

p(x) ∝
K∏

i=1

φi(xi)
∏

{i,j}
ψij(xi, xj), (16)

resulting in ψij(xi, xj) , exp(−xiAijxj) and φi(xi) = exp
(
bixi −Aiix

2
i /2

)
. The set of edges

{i, j} corresponds to the set of network edges W. Hence, we would like to calculate the marginal
densities, which must also be Gaussian,

p(xi) ∼ N (µi = {W−1y}i, P
−1
i = {W−1}ii),

where µi and Pi are the marginal mean and inverse variance (a.k.a. precision), respectively.
Recall that, according to our previous argumentation, the inferred mean µi is identical to the
desired solution x∗i .

The move to the probabilistic domain calls for the utilization of BP as an efficient inference
engine. The sum-product rule of BP for continuous variables, required in our case, is given
by [1]

mij(xj) = α

∫

xi

ψij(xi, xj)φi(xi)
∏

k∈N (i)\j
mki(xi)dxi, (17)

where mij(xj) is the message sent from node i to node j over their shared edge on the graph,
scalar α is a normalization constant and the set N (i)\j denotes all the nodes neighboring xi,
except xj . The marginals are computed according to the product rule [1]

p(xi) = αφi(xi)
∏

k∈N (i)

mki(xi). (18)

GaBP is a special case of continuous BP where the underlying distribution is Gaussian. In [21]
we show how to derive the GaBP update rules by substituting Gaussian distributions in the
continuous BP equations. The output of this derivation is update rules that are computed
locally by each node. The GaBP-based implementation of the Peer-to-Peer rating algorithm is
summarized in Table 1.

Algorithm 1 can be easily executed distributively. Each node i receives as an input the i’th row
(or column) of the matrix W and the scalar bi. In each iteration, a message containing two
reals, µij and Pij , is sent to every neighboring node through their mutual edge, corresponding
to a non-zero Aij entry.

Convergence. If it converges, GaBP is known to result in exact inference [1]. In contrast
to conventional iterative methods for the solution of systems of linear equations, for GaBP,
determining the exact region of convergence and convergence rate remain open research prob-
lems. All that is known is a sufficient (but not necessary) condition [4, 5] stating that GaBP
converges when the spectral radius satisfies ρ(|IK −W|) < 1. A stricter sufficient condi-
tion [1], actually proved earlier, determines that the matrix W must be diagonally dominant
(i.e. , |Wii| >

∑
j 6=i |Wij |, ∀i) in order for GaBP to converge.

Efficiency. The local computation at a node at each round is fairly minimal. Each node i
computes locally two scalar values µij , Pij for each neighbor j ∈ N(i). Convergence time
is dependent on both the inputs and the network topology. Empirical results are provided in
Section 5.

5

Algorithm 1

1. Initialize: X Set the neighborhood N(i) to include
∀k 6= i∃Aki 6= 0.

X Set the scalar fixes
Pii = Aii and µii = bi/Aii, ∀i.

X Set the initial N(i) 3 k → i scalar messages
Pki = 0 and µki = 0.

X Set a convergence threshold ε.
2. Iterate: X Propagate the N(i) 3 k → i messages

Pki and µki, ∀i (under certain scheduling).
X Compute the N(j) 3 i → j scalar messages

Pij = −A2
ij/

(
Pii +

∑
k∈N(i)\j Pki

)
,

µij =
(
Piiµii +

∑
k∈N(i)\j Pkiµki

)
/Aij .

3. Check: X If the messages Pij and µij did not
converge (w.r.t. ε), return to Step 2.

X Else, continue to Step 4.
4. Infer: X Compute the marginal means

µi =
(
Piiµii +

∑
k∈N(i) Pkiµki

)
/
(
Pii +

∑
k∈N(i) Pki

)
, ∀i.

(X Optionally compute the marginal precisions
Pi = Pii +

∑
k∈N(i) Pki)

5. Solve: X Find the solution
x∗i = µi, ∀i.

3 Proposed Solution of SVM Solver Based on GaBP

For our proposed solution, we take the exponent of dual SVM formulation given in equation (9)
and solve max exp(LD(h)). Since exp(LD(h)) is convex, the solution of max exp(LD(h)) is
a global maximum that also satisfies maxLD(h) since the matrix D is symmetric and positive
definite. Now we can relate to the new problem formulation as a probability density function,
which is in itself Gaussian:

p(h) ∝ exp(−1
2
h′Dh + h′1),

where 1 is a vector of (1, 1, · · · , 1) and find the assignment of ĥ = arg max p(h). It is known [5]
that in Gaussian models finding the MAP assignment is equivalent to solving the inference
problem. To solve the inference problem, namely computing the marginals ĥ, we propose using
the GaBP algorithm, which is a distributed message passing algorithm. We take the computed
ĥ as the Lagrange multiplier weights of the support vectors of the original SVM data points and
apply a threshold for choosing data points with non-zero weight as support vectors.

Note that using this formulation we ignore the remaining constraints 10, 11. In other words we
do not solve the SVM problem, but the kernel ridge regression problem. Nevertheless, empirical
results presented in Section 5 show that we achieve very good classification vs. state-of-the-art
SVM solvers.

Finally, following [7], we remove the explicit bias term b and instead add another dimension to the
pattern vector xi such that x́i = (x1, x2, . . . , xN , λ), where λ is a scalar constant. The modified
weight vector, which incorporates the bias term, is written as ẃ = (w1, w2, . . . , wN , b/λ).
However, this modification causes a change to the optimized margin. Vijayakumar and Wu [7]
discuss the effect of this modification and reach the conclusion that “setting the augmenting
term to zero (equivalent to neglecting the bias term) in high dimensional kernels gives satisfactory
results on real world data”. We did not completely neglect the bias term and in our experiments,
which used the Radial Basis Kernel, set it to 1/N , as proposed in [8].

6

3.1 GaBP Algorithm Convergence

In order to force the algorithm to converge, we artificially weight the main diagonal of the kernel
matrix D to make it diagonally dominant. Section 5 outlines our empirical results showing that
this modification did not significantly affect the error in classifications on all tested data sets.

A partial justification for weighting the main diagonal is found in [6]. In the 2-Norm soft margin
formulation of the SVM problem, the sum of squared slack variables is minimized:

min
ξ,w,b

‖w‖22 + CΣiξ
2
i

s.t. yi(w · xi + b) ≥ 1− ξi

The dual problem is derived:

W (h) = Σihi − 1
2
Σi,jyiyjhihj(xi · xj +

1
C

δij),

where δij is the Kronecker δ defined to be 1 when i = j, and zero elsewhere. It is shown that the
only change relative to the 1-Norm soft margin SVM is the addition of 1/C to the diagonal of
the inner product matrix associated with the training set. This has the effect of adding 1/C to
the eigenvalues, rendering the kernel matrix (and thus the GaBP problem) better conditioned [6].

3.2 Convergence in Asynchronous Settings

One of the desired properties of a large scale algorithm is that it should converge in asynchronous
settings as well as in synchronous settings. This is because in a large-scale communication
network, clocks are not synchronized accurately and some nodes may be slower than others,
while some nodes experience longer communication delays.

Recent work by Koller et. al [3] defines conditions for the convergence of belief propagation.
This work defines a distance metric on the space of BP messages; if this metric forms a max-
norm construction, the BP algorithm converges under some assumptions. Using experiments
on various network sizes, of up to a sparse matrix of one million over one million nodes, the
algorithm converged asynchronously in all cases where it converged in synchronous settings.
Furthermore, as noted in [3], in asynchronous settings the algorithm converges faster as compared
to synchronous settings.

4 Algorithm Optimization

Instead of sending a message composed of the pair of µij and Pij , a node broadcasts aggregated
sums, and consequently each node can retrieve locally the Pi\j and µi\j from the sums by means
of a subtraction:

Instead of sending a message composed of the pair of µij and Pij , a node can broadcast the
aggregated sums

P̃i = Pii +
∑

k∈N(i)

Pki, (19)

µ̃i = P̃−1
i (Piiµii +

∑

k∈N(i)

Pkiµki). (20)

Consequently, each node can retrieve locally the Pi\j and µi\j from the sums by means of a
subtraction

Pi\j = P̃i − Pji, (21)

µi\j = µ̃i − P−1
i\j Pjiµji. (22)

The rest of the algorithm remains the same.

7

Algorithm 2

1. Initialize: X Set the neighborhood N(i) to include
∀k 6= i∃Aki 6= 0.

X Set the scalar fixes
Pii = Aii and µii = bi/Aii, ∀i.

X Set the initial i → N(i) broadcast messages
P̃i = 0 and µ̃i = 0.

X Set the initial N(i) 3 k → i internal scalars
Pki = 0 and µki = 0.

X Set a convergence threshold ε.
2. Iterate: X Broadcast the aggregated sum messages

P̃i = Pii +
∑

k∈N(i) Pki,

µ̃i = P̃i
−1

(Piiµii +
∑

k∈N(i) Pkiµki), ∀i
(under certain scheduling).

X Compute the N(j) 3 i → j internal scalars
Pij = −A2

ij/(P̃i − Pji),
µij = (P̃iµ̃i − Pjiµji)/Aij .

3. Check: X If the internal scalars Pij and µij did not
converge (w.r.t. ε), return to Step 2.

X Else, continue to Step 4.
4. Infer: X Compute the marginal means

µi =
(
Piiµii +

∑
k∈N(i) Pkiµki

)
/
(
Pii +

∑
k∈N(i) Pki

)
= µ̃i, ∀i.

(X Optionally compute the marginal precisions
Pi = Pii +

∑
k∈N(i) Pki = P̃i)

5. Solve: X Find the solution
x∗i = µi, ∀i.

5 Experimental Results

We implemented our proposed algorithm using approximately 1,000 lines of code in C. We
implemented communication between the nodes using the MPICH2 message passing interface
[24]. Each node was responsible for d data points out of the total n data points in the dataset.

Our implementation used synchronous communication rounds because of MPI limitations. In
Section 6 we further elaborate on this issue.

Each node was assigned several examples from the input file. Then, the kernel matrix D was
computed by the nodes in a distributed fashion, so that each node computed the rows of the
kernel matrix related to its assigned data points. After computing the relevant parts of the matrix
D, the nodes weighted the diagonal of the matrix D, as discussed in Section 3.1. Then, several
rounds of communication between the nodes were run. In each round, using our optimization, a
total of n sums were calculated using MPI Allreduce system call. Finally, each node output the
solution x, which was the mean of the input Gaussian that matched its own data points. Each
xi signified the weight of the data point i for being chosen as a support vector.

To compare our algorithm performance, we used two algorithms: Sequential SVM (SVMSeq)
[7] and SVMlight [16]. We used the SVMSeq implementation provided within the IBM Parallel
Machine Learning (PML) toolbox [10]. The PML implements the same algorithm by Vijaykumar
and Wu [7] that our GaBP solver is based on, but the implementation in through a master-slave
architecture as described in [8]. SVMlight is a single computing node solver.

Table 1 describes the seven datasets we used to compare the algorithms and the classification
accuracy obtained. These computations were done using five processing nodes (3.5GHz Intel
Pentium machines, running the Linux operating system) for each of the parallel solvers. All
datasets were taken from the UCI repository [11]. We used medium-sized datasets (up to 20,000
examples) so that run-times using SVMlight would not be prohibitively high. All algorithms were

8

Dataset Dimension Train Test Error (%)
GaBP Sequential SVMlight

Isolet 617 6238 1559 7.06 5.84 49.97
Letter 16 20000 2.06 2.06 2.3
Mushroom 117 8124 0.04 0.05 0.02
Nursery 25 12960 4.16 5.29 0.02
Pageblocks 10 5473 3.86 4.08 2.74
Pen digits 16 7494 3498 1.66 1.37 1.57
Spambase 57 4601 16.3 16.5 6.57

Table 1: Error rates of the GaBP solver versus those of the parallel sequential solver and SVMlight

Dataset Run times (sec)
GaBP Sequential

Isolet 228 1328
Letter 468 601
Mushroom 226 176
Nursery 221 297
Pageblocks 26 37
Pen digits 45 155
Spambase 49 79

Table 2: Running times (in seconds) of the GaBP solver (working in a distributed environment)
compared to that of the IBM parallel solver

run with an RBF kernel. The parameters of the algorithm (kernel width and misclassification
cost) were optimized using a line-search algorithm, as detailed in [12].

Note that SVMlight is a single node solver, which we use mainly as a comparison for the accuracy
in classification.

Using the Friedman test [13], we did not detect any statistically significant difference between
the performance of the algorithms with regards to accuracy (p < 0.10−3).

Figure 1 shows the speedup results of the algorithm when running the GaBP algorithm on a Blue
Gene supercomputer. The speedup with N nodes is computed as the run time of the algorithm
on a single node, divided by the run time using N nodes. Obviously, it is desirable to obtain
linear speedup, i.e., doubling computational power halves the processing time, but this is limited
by the communication load and by parts of the algorithm that cannot be parallelized. Since
Blue Gene is currently limited to 0.5 GB of memory at each node, most datasets could not be
run on a single node. We therefore show speedup compared to two nodes. As the figure shows,
in most cases we get a linear speedup up to 256 CPUs, which means that the running time is
linearly proportional to one over the number of used CPUs. When using 512 - 1024 CPUs, the
communication overhead reduces the efficiency of the parallel computation. We identified this
problem as an area for future research into optimizing the performance for larger scale grids.

We also tested the ability to build classifiers for larger datasets. Table 3 shows the run times
of the GaBP algorithm using 1024 CPUs on two larger datasets, both from the UCI repository.
This demonstrates the ability of the algorithm to process very large datasets in a reasonably
short amount of time. We compare our running time to state-of-the-art parallel decomposition
method by Zanni et al. [22] and Hazan et al. . Using the MNIST dataset we where considerably
slower by a factor of two, but in the larger Covertype dataset we have a superior performance.
Note that it is hard to compare running times since the machines used for experimentation are
different. Zanni used 16 Pentium IV machines with 16Gb memory, Hazan used 10 Pentium IV
machines with 4Gb memory while we used a larger number of weaker Pentium IV machines with
400Mb of memory. Furthermore, in the Covertype dataset we used only 150,000 data points
while Zanni and Hazan used the full dataset which is twice larger.

9

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Number of CPUs

S
pe

ed
up

 (
R

el
at

iv
e

to
 2

 C
P

U
s)

SVM using GaBP Speed−up

Isolet
Pageblocks
Pen
Spambase

Figure 1: Speedup of the GaBP algorithm vs. 2 CPUS

Dataset Dim Num of examples Run time GaBP (sec) Run time [22] (sec) Run time [23]
Covertype 54 150,000/300,000 468 24365 16742
MNIST 784 60,000 756 359 18

Table 3: Running times of the GaBP solver for large data sets using 1024 CPUs on an IBM Blue
Gene supercomputer. Running time results are compared to two state-of-the-art solvers: [22]
and [23].

6 Discussion

In this paper we demonstrated the application of the Gaussian Belief Propagation to the solu-
tion of SVM problems. Our experiments demonstrate the usefulness of this solver, being both
accurate and scalable.

We implemented our algorithm using a synchronous communication model mainly because
MPICH2 does not support asynchronous communication. While synchronous communication
is the mode of choice for supercomputers such as Blue Gene, in many cases such as heteroge-
neous grid environments, asynchronous communication will be preferred. We believe that the
next challenging goal will be to implement the proposed algorithm in asynchronous settings,
where algorithm rounds will no longer be synchronized.

Our initial experiments with very large sparse kernel matrices (millions of data points) show that
asynchronous settings converge faster. Recent work by Koller [3] supports this claim by showing
that in many cases the BP algorithm converges faster in asynchronous settings.

Another challenging task would involve scaling to data sets of millions of data points. Currently
the full kernel matrix is computed by the nodes. While this is effective for problems with many
support vectors [8], it is not required in many problems which are either easily separable or else
where the classification error is less important compared to the time required to learn the mode.
Thus, solvers scaling to much larger datasets may have to diverge from the current strategy of
computing the full kernel matrix and instead sparsify the kernel matrix as is commonly done in
single node solvers.

10

Finally, it remains an open question whether SVMs can be solved efficiently in Peer-to-Peer
environments, where each node can (efficiently) obtain data from only several close peers. Future
work will be required in order to verify how the GaBP algorithm performs in such an environment,
where only partial segments of the kernel matrix can be computed by each node.

References

[1] Y. Weiss and W. T. Freeman. Correctness of belief propagation in Gaussian graphical models
of arbitrary topology. In NIPS-12, 1999

[2] J.K. Johnson. Walk-summable Gauss-Markov random fields. Technical Report, February
2002. (Corrected, November 2005).

[3] G. Elidan and I. McGraw and D. Koller, Residual Belief Propagation: Informed Schedul-
ing for Asynchronous Message Passing, Proceedings of the Twenty-second Conference on
Uncertainty in AI (UAI), Boston, Massachussetts, 2006

[4] J.K. Johnson, D.M. Malioutov, A.S. Willsky. Walk-sum interpretation and analysis of Gaus-
sian belief propagation, In Advances in Neural Information Processing Systems, vol. 18, pp.
579-586, 2006.

[5] D.M. Malioutov, J.K. Johnson, A.S. Willsky. Walk-sums and belief propagation in Gaussian
graphical models, Journal of Machine Learning Research, vol. 7, pp. 2031-2064, October
2006.

[6] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, 2000. ISBN 0-521-
78019-5.

[7] Sethu Vijayakumar and Si Wu (1999), Sequential Support Vector Classifiers and Regression.
Proc. International Conference on Soft Computing (SOCO’99), Genoa, Italy, pp.610-619.

[8] Elad Yom-Tov (2007), A distributed sequential solver for large scale SVMs. In: O. Chapelle,
D. DeCoste, J. Weston, L. Bottou: Large scale kernel machines. MIT Press, pp. 141-156.

[9] B. Schölkopf and A. J. Smola. Learning with kernels: Support vector machines, regulariza-
tion, optimization, and beyond. MIT Press, Cambridge, MA, USA, 2002.

[10] http://www.alphaworks.ibm.com/tech/pml

[11] Catherine L. Blake, Eamonn J. Keogh, and Christopher J. Merz. UCI repository of ma-
chine learning databases, 1998. URL http://www.ics.uci.edu/\simmlearn/
MLRepository.html.

[12] R. Rifkin and A. Klautau. In defense of One-vs-All classification. Journal of Machine Learn-
ing Research, 5:101–141, 2004.

[13] J. Dems̆ar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

[14] G. Zanghirati and L. Zanni. A parallel solver for large quadratic programs in training support
vector machines. Parallel computing, 29:535-551, 2003.

[15] R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of svms for very large scale
problems. In Advances in Neural Information Processing Systems. MIT Press, 2002.

[16] T. Joachims. Making large-scale svm learning practical. In ”B. Schölkopf, C. Burges, A.
Smola” (Editors), Advances in Kernel Methods - Support Vector Learning,

[17] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik. Parallel support vector
machines: The cascade svm. In Advances in Neural Information Processing Systems, 2004.

[18] D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, and D. Dolev. Gaussian belief propagation
based multiuser detection. In IEEE Int. Symp. on Inform. Theory (ISIT), Toronto, Canada,
July 2008, to appear.

[19] O. Shental, D. Bickson, P. H. Siegel, J. K. Wolf and D. Dolev. Gaussian belief propagation
solver for systems of linear equations.In IEEE Int. Symp. on Inform. Theory (ISIT), Toronto,
Canada, July 2008, to appear.

11

[20] D.Bickson, D. Dolev and E. Yom-Tov, Solving Large Scale Kernel Ridge Regression using
A Gaussian Belief Propagation Solver in NIPS Workshop on Efficient Machine Learning,
Canada, 2007.

[21] D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, and D. Dolev. Linear detection via
belief propagation, in 45th Allerton Conf. on Communications, Control and Computing,
Monticello, IL, USA, Sept. 2007.

[22] L. Zanni, T. Serafini and Gaetano Zanghirati. Parallel Software for Training Large Scale
Support Vector Machines on Multiprocessor Systems. In proc of Journal of Machine Learning
Research, Vol. 7 (July 2006), pp. 1467-1492.

[23] T. Hazan, A. Man and A. Shashua. A Parallel Decomposition Solver for SVM: Distributed
Dual Ascent using Fenchel Duality. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), Anchorage, June 2008, to appear.

[24] MPI message passing interface. http://www-unix.mcs.anl.gov/mpi/mpich/

12

