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Abstract

We investigate a Gaussian latent variable model
for semi-supervised learning of linear large mar-
gin classifiers. The model’s latent variables en-
code the signed distance of examples to the sep-
arating hyperplane, and we constrain these vari-
ables, for both labeled and unlabeled examples,
to ensure that the classes are separated by a
large margin. Our approach is based on simi-
lar intuitions as semi-supervised support vector
machines (S*VMs), but these intuitions are for-
malized in a probabilistic framework. Within
this framework we are able to derive an es-
pecially simple Expectation-Maximization (EM)
algorithm for learning. The algorithm alternates
between applying Bayes rule to “fill in” the la-
tent variables (the E-step) and performing an un-
constrained least-squares regression to update the
weight vector (the M-step). For the best results
it is necessary to constrain the unlabeled data to
have a similar ratio of positive to negative exam-
ples as the labeled data. Within our model this
constraint renders exact inference intractable, but
we show that a Lyapunov central limit theorem
(for sums of independent, but non-identical ran-
dom variables) provides an excellent approxima-
tion to the true posterior distribution. We perform
experiments on large-scale text classification and
find that our model significantly outperforms ex-
isting implementations of S3VMs.

Introduction

The goal of semi-supervised learning is to build predic-
tive models from small collections of labeled examples but
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large collections of unlabeled ones. Semi-supervised learn-
ing offers the most promise in domains where collecting
data is cheap but labeling it is expensive. Important ap-
plications include text and web page classification (Nigam
et al., 2000), protein classification (Weston et al., 2005),
surveillance (Balcan et al., 2005), real-time traffic classifi-
cation (Erman et al., 2007), gene function prediction (Wang
et al., 2009), and many others.

Among the most popular models for semi-supervised
learning are transductive support vector machines
(TSVMs) (Joachims, 1999a), also known as semi-
supervised support vector machines (S*VMs) (Bennett
and Demiriz, 1998). These models extend the original
framework of support vector machines (SVMs) (Cortes
and Vapnik, 1995) to handle partially labeled data. The
decision boundaries in these models attempt to satisfy
two criteria: first, to separate the positively and negatively
labeled examples by a large margin; second, to cross
through regions of low density in the unlabeled examples.
The models work well when the data satisfies the so-called
cluster assumption—that is, when points in the same
cluster are likely to share the same label (Chapelle and
Zien, 2005). The optimizations for S3VMs, however,
involve inherently non-convex loss functions; as a result,
they are notoriously more difficult than those for ordinary
SVMs.  Researchers have explored a vast arsenal of
techniques for training S*VMs, making use (for example)
of combinatorial search (Joachims, 1999a; Sindhwani and
Keerthi, 2006), convex-concave procedures (Collobert
et al., 2006) and annealing (Sindhwani and Keerthi, 2006;
Ogawa et al., 2013); see Chapelle et al. (2008) for a
comprehensive review.

In this paper we propose a latent variable model for the
semi-supervised learning of linear large margin classifiers.
Our model shares the same intuitions as S*VMs but en-
codes them in a fully probabilistic framework. Within this
framework, we are able to derive a simple Expectation-
Maximization (EM) algorithm (Dempster et al., 1977) that
alternately computes the posterior means of the model’s la-
tent variables (the E-step) and updates the model’s weight
vector by performing an unconstrained least-squares re-
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gression (the M-step). Our approach has certain especially
attractive properties. It scales extremely well to sparse,
high-dimensional data sets because we can leverage the
highly specialized solvers currently available for sparse
least-squares problems (Barrett et al., 1994). It also handles
unlabeled examples as transparently as labeled examples;
these examples differ only in the formula used to compute
the posterior means of their latent variables.

Our approach borrows key insights from null category
noise models (NCNMs) (Lawrence and Jordan, 2005) of
semi-supervised learning. As in NCNMs, we use latent
variables to encode the signed distance of examples to the
model’s decision boundary, and we use magnitude con-
straints on these variables to enforce large margin criteria.
However, our approach differs from NCNMs in two im-
portant ways. First, we focus on large-scale linear classifi-
cation as opposed to classification via Gaussian processes.
While our models cannot parameterize nonlinear decision
boundaries, they scale much better to large data sets. Sec-
ond, beyond previous work on NCNMs, we show how to
incorporate a class-balancing constraint into our latent vari-
able model. This is a critical constraint for avoiding unin-
formative solutions that assign all unlabeled examples to
the same class. Within our model the class-balancing con-
straint renders exact inference intractable, but as a further
technical contribution, we show that a Lyapunov central
limit theorem (Billingsley, 1995)—for sums of indepen-
dent, but non-identical random variables—provides an ex-
cellent working approximation to the true posterior distri-
bution.

We evaluate our latent variable models on six large prob-
lems in text classification and compare them to three lead-
ing implementations of S*VMs. Here we find significant
gains in speed from the specialized handling of sparse least-
squares problems, as well as significant gains in accuracy
from the use of unlabeled examples. A seeming advan-
tage of our probabilistic framework is the more principled
inference of target classes and “margins” for unlabeled ex-
amples. This advantage translates into consistently lower
error rates than the other implementations of S*VMs; we
see these improvements across all the data sets in our study
and over a wide range of experimental settings.

2 Model for labeled data

We begin by describing our model in the case of fully la-
beled data. Here we assume that the data consists of n ex-
amples {(x;,y;)}",, where x; € R and y, € {—1,+1}.
The model can be viewed as a variant of ¢s-regularized
probit regression (McCullagh and Nelder, 1989) with large
margin constraints; Fig. 1 shows its representation as a
Bayesian network. In typical fashion, the model parame-
terizes a linear decision boundary y = sign(w-x+b) by
a weight vector w € R? and bias b € R, and the magni-
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Figure 1: Bayesian network for large margin variant of /5-
regularized probit regression. See text for details.

tude ||w|| is regularized by a hyperparameter A > 0. We use
O = (w, b) to denote the model’s joint parameters.

2.1 Notation and preliminaries

The model’s observed variables are the inputs x € ¢ and
the labels y € {—1,0,+1}; these are represented by the
shaded nodes in Fig. 1. A label y==1 indicates that an ex-
ample is positively or negatively classified by a large mar-
gin; a label y =0 indicates that the example lies close (i.e.,
within one unit of distance) to the decision boundary. Al-
though we never observe the value y =0 in the labeled data,
the potential for this prediction still plays an important role
in the model’s development (Lawrence and Jordan, 2005).

The model’s observed variables x and y are connected by
the latent variable z. This variable z follows the simple
Gaussian distribution:

1
V21

The Gaussian latent variable z in turn determines the label
y € {—1,0,+1}; note that in this dependence there is no
uncertainty. In particular we have:

|

The dependence in eq. (2) incorporates a key insight of
large margin classification—namely, that correctly labeled
examples should lie at least one unit of distance away from
the decision boundary.

—%(z—w-x—b)2

P(z|x,0) =

ey

e

if|z] > 1
if |2] < 1.

sign(z)

; @)

Together egs. (1-2) reveal the model’s relation to probit re-
gression: we obtain the standard model of probit regression
by restricting the domain of y to {—1, +1} and replacing
eq. (2) by the simpler dependence y = sign(z) for all z. As
in {o-regularized probit regression, we also adopt a sym-
metric Gaussian prior w ~ N(0,A\"'I;) on the weight
vector w, where I; is the d x d identity matrix.

2.2 Inference

Inference in this model is entirely tractable: no more is re-
quired than integrating out the Gaussian latent variable z.
As shorthand, we use

3

= w-X+b 3)
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Figure 2: Left: dependence of the marginal probabilities P(y|x,0) in eq. (4) on the linear score of the classifier,
&=w-x+b. Right: comparison of the Gaussian prior P(z|x, ©) and the truncated Gaussian posterior P(z|x,y=+1,0)

for a positive example with £ =0.5.

to denote the (signed) linear score of the classifier. Then for
non-zero values of y, we obtain the marginal probabilities:

()
v2 )’
where erfc denotes the complementary error function.

Likewise, by normalization, it follows that:

P(y:O|X7@) =1- P(y:+1|xa 6) - P(y:_1|X7@)

1
Py=+1x,0) = —erfc

: )

Note that these probabilities depend on x, w, and b only
through the classifier score £. The left panel of Fig. 2 plots
the probabilities P(y = +1|¢) as a function of this score;
note that for |£| < 1, neither label y = £1 has probability
greater than 0.5.

Also of interest is the posterior distribution P(z|x,y, 9),
which we obtain in a straightforward fashion from Bayes
rule and conditional independence:

P(y|z) P(z]x, ©)
P(ylx, ©)

Recall that the label y is determined by the latent variable z;
in particular, for y = +1, the first term in the numerator
P(y|z) equals unity if yz > 1 and vanishes otherwise. It
follows that the posterior distribution in eq. (5) takes the
form of a truncated Gaussian. The right panel of Fig. 2
illustrates the truncating effect of conditioning the latent
variable z on the label y=+1.

P(Z‘vaa @) = )

The statistics of the posterior distribution in eq. (5) are re-
quired for the E-step of this model’s EM algorithm. Of
special importance are the posterior means, E[z|x,y, ©] =
[ dz z P(z|x,y, ©). For labeled examples, this calculation

gives
erfe(L (1= y€)) ] ©

1

exp(—3 (1 —y¢)?)

2
Elz|x,y=+1,0] = §+y\/;l
Nl

where the last term on the right hand side gives the correc-
tion (either positive or negative) to the posterior mean from
the prior mean E[z|x,©] = £. The right panel of Fig. 2
shows that this posterior mean may shift considerably from
the prior mean due to the model’s large margin constraints.
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2.3 Supervised learning

The parameters w and b of this model can be learned by
an especially simple EM algorithm. (As we shall see in
the next section, the same algorithm extends transparently
to the problem of semi-supervised learning.) The goal of
learning from labeled data {(x;, y;)}?_; is to maximize the
regularized log-likelihood of the model shown in Fig. 1.
This is given by:

- A
Liabetea(®) = Y log P(yi[x:,0) — §||W||2~ )
i=1

It can be verified for A > 0 that the log-likelihood in eq. (7)
is a strictly concave function of the parameters w and b.
Though eq. (7) cannot be maximized in closed form, we
can derive iterative EM updates that converge monotoni-
cally in the log-likelihood. As shorthand, let

z; = Elzi|xi,yi, O] (8)

denote the posterior means computed from eq. (6). Then at
each iteration of EM, the model parameters are updated by
solving the unconstrained least-squares problem:

| o

In a nutshell, the algorithm simply alternates between the
E-step of computing the posterior means in eq. (6) and
the M-step of solving the least-squares problem in eq. (9).
Henceforth we refer to this EM algorithm for Binary Large
Margin classification as EMBLEM.

n

Do E—weoxi—b)? + Aw|?

i=1

min
w,b

Two properties of EMBLEM make it highly scalable. First,
we note that the quadratic terms in eq. (9) do not change
from iteration to iteration. Thus, for small d, it is possi-
ble to perform one O(d?) matrix inverse at the beginning
of EMBLEM after which each solution to eq. (9) involves
only a single O(d?) matrix-vector multiplication. Second,
we note that in the opposite regime of large d, there ex-
ist highly efficient solvers for sparse least-squares prob-
lems (Barrett et al., 1994). We can leverage these solvers
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Figure 3: Bayesian network for semi-supervised classifica-
tion with n labeled and m unlabeled examples.

for data that is extremely high-dimensional but contains
many zero-valued features (e.g., word-document counts).
This latter property will prove especially important for
semi-supervised applications of EMBLEM to text data.

Finally we note a clever trick to accelerate EMBLEM with-
out sacrificing its guarantee of monotonic convergence.
Let w’ denote the updated value of the weight vector from
the least-squares problem in eq. (9). We can take a larger
step in the direction of this value using the method of suc-
cessive overrelaxation (Yu, 2011):

w <+ (1+n)w' — nw, (10)

where n € [0,1]. It is straightforward to show that for
latent variable models with quadratic auxiliary functions—
for example, eq. (9)—these overrelaxed updates also con-
verge monotonically in the log-likelihood. We achieved our
fastest results for EMBLEM by setting 1 = 1, running un-
til near-convergence, then setting n = 0 (the standard EM
update) and running until convergence.

3 Extension to unlabeled data

The algorithm in the previous section extends in a straight-
forward way to the problem of semi-supervised learning. In
this case, we have m unlabeled examples {x;}72; in addi-
tion to the n labeled ones {(x;,y;)}"_;. In this section we
show how to treat the unknown labels {7, }7, as missing
data which can be “filled in” and modeled by an EM al-
gorithm. Naturally this use of unlabeled examples requires
certain assumptions about the data. The assumptions we
make here are similar to those in TSVMs; however, the
algorithm that results is quite different. In particular, miss-
ing labels are inferred from Bayes rule (as opposed to, say,
an integer program), and the weight vector is updated by
a least-squares regression (as opposed to, say, a quadratic
program). These features of the algorithm make it highly
scalable.
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3.1 Large margin constraints

Our first assumption is that the unlabeled examples, like the
labeled ones, should also lie at least one unit of distance
away from the separating hyperplane. This assumption
leads to the “twinned” Bayesian network shown in Fig. 3.
In the top plate of the model, for the n labeled examples,
the node y is shaded to represent an instantiated label of
+1 for positive examples and —1 for negative examples. In
the bottom plate of the model, for the m unlabeled exam-
ples, the node ¥ is partially shaded to indicate that its label
equals either +1 or -1 but is never equal to zero. Both
plates share the same parameters w and b for large mar-
gin variants of /o—regularized probit regression. Note from
eq. (2) that the excluded label § # 0 implies |Z| > 1, thus
encoding the assumption that each unlabeled example lies
at least one unit of distance from the decision boundary.

Without labels, we cannot compute the probability that an
unlabeled example X; is correctly classified. However we
can compute the marginal probability

that one way or another the example is classified by a large
margin |Z| > 1. Fig. 4 plots the log of this probability,
whose shape recalls the loss function for unlabeled exam-
ples in TSVMs (Chapelle et al., 2008). From Bayes rule in
eq. (5), it is similarly straightforward to compute the poste-
rior distribution P(Z|x, §#0, ©). In this case the posterior
takes the form of a doubly truncated Gaussian, as illustrated
in the right panel of Fig. 4. As shorthand, let

P(j==£1%,0)
P(g#0[x,0)
denote the posterior probability that the label 3 of an unla-
beled input X is positive or negative given that the example
is classified by a large margin. Then the posterior mean of Z

for an unlabeled example is equal to the weighted sum:
E[Z|%, §#0,0] = p (% ©)E[5[%,5=+1,0] +
y=-1,0],

p+(%X,0) = (12)

13)

where the expected values on the right hand side are given
by eq. (6). The calculation of this posterior mean is the only
additional form of inference required for semi-supervised
learning.

X,

Finally we present the model’s EM algorithm for parameter
estimation. The model in Fig. 3 is learned by maximizing
the regularized log-likelihood of both the labeled and unla-
beled examples:

Lss(0) = Liabelea(©) + Zlogp(ﬂﬂémij,@), (14)

j=1

where the first term on the right hand side is the regularized
log-likelihood of labeled examples from eq. (7). This semi-
supervised objective function, unlike the log-likelihood in
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Figure 4: Left: dependence of the marginal log-probability log P(3 # 0/%,©) on the linear score of the classifier,
§ = w-x +b. Right: comparison of the Gaussian prior P(Z|x,©) and the truncated Gaussian posterior P(Z|X,§ #0,0)

for an unlabeled example with £ =0.5.

eq. (7), is not concave in the parameters w and b. How-
ever, the EM algorithm for maximizing eq. (14) takes the
same form as the one in the previous section. In particular,
analogous to the shorthand in eq. (8), we use

z; = E[%;]x,,7,#0,0] (15)
to denote posterior means of the model’s latent variables
for unlabeled examples; these are computed by eq. (13).
Then each iteration of the EM algorithm updates w and b
by solving the least-squares problem:

(16)

Once again the algorithm simply alternates between an E-
step of computing posterior means and an M-step of per-
forming a least-squares regression. The update in eq. (16)
has the same appealing properties as the update in eq. (9);
convergence (in this case, to a local maximum) can again
be accelerated by successive overrelaxation. Henceforth
we refer to this semi-supervised version of the algorithm
as EMBLEM;,.

n

>

i=1

min
w,b

(Z—w-x;—b)? + Z (2j—w-%;—b)> + )\|w||2}
j=1

3.2 Class-balancing constraint

The large margin constraints in the previous section en-
force that unlabeled examples lie at least one unit of dis-
tance from the separating hyperplane. With enough la-
beled examples, these constraints may suffice to learn an
improved model from the unlabeled ones. When there are
very few labeled examples, however, many studies have
shown that additional constraints are needed to avoid un-
interesting models in which all the unlabeled examples are
assigned to the same class (Joachims, 1999a; Chapelle and
Zien, 2005; Chapelle et al., 2006; Collobert et al., 2006;
Chapelle et al., 2008).

The Bayesian network in Fig. 5, with one extra node fi,
incorporates a class-balancing constraint into the model of
the previous section. The extra node has an especially sim-
ple dependence on its m parents (which encode the class
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Figure 5: Bayesian network for semi-supervised learning
with a class-balancing constraint.

labels of the unlabeled examples); in particular, it deter-
ministically computes their mean

1 m

S
We assume that a target range [ € [fimin, fimax] 1S known
for the class balance of unlabeled examples, and once
again, we use a partially shaded node to indicate that the
variable [ is only partially observed—i.e., not fully speci-
fied, but instead restricted to a subset of its complete do-
main of possible values. The interval [fimin, fimax] May

either be available from prior knowledge, or it can be es-
timated from the statistics of the labeled examples.

a7

Our use of an interval constraint differs crucially from ex-
isting implementations of S*VMs, which enforce an equal-
ity constraint on the class balance of unlabeled exam-
ples (Joachims, 1999a; Collobert et al., 2006; Sindhwani
and Keerthi, 2006). In practice, the exact ratio of positive
to negative examples is never known for unlabeled data,
and an interval constraint gives the model more flexibility
to fit the data. The experimental results in Section 4 suggest
strongly that the interval constraint leads to better models
than the equality constraint of previous implementations.

The model in Fig. 5 inherits much of its basic structure
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from the previous model in Fig. 3. The goal of learning
in this model is to maximize the regularized log-likelihood

L) = L(0) + Lba(0), (18)

where the first term is given by eq. (14) and the second term
is given by:

Ebal(g) = 10g P(/l € [ﬂmina ﬁmax] |{>~cjv g] 7é 0}jm:1> @) .
19)
Note that the marginal probability in eq. (19) does not have
a simple closed-form expression. However, for large num-
bers of unlabeled examples—the typical regime for semi-
supervised learning—we obtain an excellent approxima-
tion from the central limit theorem.

Our use of the central limit theorem is motivated directly
by eq. (17). In particular, for large m we expect the
node i, which simply computes the mean of the m inde-
pendent random variables §;, to be approximately Gaus-
sian distributed. The discrete labels §; are not identi-
cally distributed, but still a Lyapunov central limit theo-
rem (Billingsley, 1995) applies to their sum. Assuming
that the sum is Gaussian, it is possible to compute the log-
likelihood in eq. (19) and to derive an EM algorithm for
learning. To begin, we compute the conditional mean and
variance of ¢; under the constraint 3j; 7#0. We denote these
by:

y; = Elg;1%;,9; #0, 0]
57 = Var[g;[x;,5;#0,0] = 1 - 77 .

= p+()~(j7 9) - pf(f(ja @>7(20)
2

For large m we expect the node [i to be approximately
Gaussian distributed with mean i, = % > ;75 and vari-
ance 52 = 13 > i G3. As shorthand, let
u = ﬂmax - /1* Iamin - la*

V2 V2
denote the scaled deviations of jimax and fimin from fi..
Then the Gaussian approximation for the posterior distri-
bution P(fi | {X;,9; # 0}72,,0) gives the simple result:

¢ = 22)

Lon(0) ~ log%[erf(u)—erf(é)]. 23)

We expect this approximation to be highly accurate for
large numbers of unlabeled examples, m.

In practice, the marginal probability in eq. (19) may be ex-
tremely small, and in these cases, the calculation of the log-
likelihood L,,1(O) from eq. (23) is numerically unstable.
(The instability occurs when the error functions are nearly
equal, with a difference that is less than machine precision.)
A stable computation may be obtained from asymptotic ex-
pansions of the complementary error function. In particu-
lar, we have:

—0?— Zlog(4ml?) if 0 <l <u, o4)
—u?— Llog(4mu?) if ¢ <u <0,

Lpa1(0) ~ {
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in the regimes where both error functions in eq. (23) eval-
uate to the same answer (either plus or minus unity) within
machine precision.

Finally we consider the EM algorithm for parameter es-
timation in this model. For the E-step of the model we
must compute the posterior means 2, = E[Z;[{Xx, Jx #
0} 1, b € [fimin, fimax), ©] under both the large margin
and class-balancing constraints. It can be shown that these
posterior means are given by:

. o 0
z; = E[]x,,7;#0,0] + aﬁg_ﬁbal(@)v (25)

J
where the first term on the right-hand side is given by
eq. (13), and the second term gives corrections from the
class-balancing constraint. It is straightforward (though te-
dious) to differentiate £1,,(0) on the right hand side of
eq. (25) with respect to the classifier score &; = w-X;+bof
the jth unlabeled example. Once again the EM algorithm
simply alternates between computing posterior means and
solving a least-squares regression. In particular, the M-
step update with the class-balance constraint takes the same
form as eq. (16), but with the posterior means in eq. (25)
substituting for the target values Z;. Henceforth we refer to
this semi-supervised version of the EM algorithm with the
class-balancing constraint as EMBLEM::I.

4 Experiments

In this section, we evaluate EMBLEM,, and EMBLEM®"
on several large problems in text classification and compare
their performance to existing implementations of S*VMs.
Text classification is one of the oldest applications of semi-
supervised learning (Nigam et al., 2000); moreover, it lends
itself to linear models, as we consider here, due to the
sparse, high-dimensional nature of word-document counts.

4.1 Setup

We experimented on six tasks in binary text classification,
of which four were adopted from previous work in semi-
supervised learning (Sindhwani and Keerthi, 2006). The
aut-avn and real-sim tasks were derived from a col-
lection of UseNet articles (McCallum, 2001). After re-
moving zero vectors, the aut—-avn task has 71066 doc-
uments with a 20707-term vocabulary, and the real-sim
task has 72201 documents with a 20958-term vocabulary.
The ccat and gcat tasks were created from the top-level
categories in the RCV1 data set (Lewis et al., 2004); both
tasks have 23149 documents with a 47236-term vocabu-
lary. We created the fifth task from the 20-Newsgroups
data set (Rennie, 2008), combining the comp and sci top-
ics to form one class and collapsing the remaining docu-
ments into the other class, which resulted in 18774 doc-
uments with a 61188-term vocabulary. The last task was
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derived from a collection of job postings on a crowdsourc-
ing site Freelancer.com (Motoyama et al., 2011; Kim et al.,
2011). We considered the simple binary task of distinguish-
ing postings for benign versus abusive jobs. The data set
contains 355386 documents with a 27600-term vocabulary;
however, only a small subset of 5489 documents were man-
ually labeled by the researchers. We preprocessed all the
data sets by tf-idf weighting and normalized all the result-
ing document-vectors to have unit length.

Each experiment was done in a transductive setting: we
trained on a partially labeled data set then tested on its
unlabeled examples. All reported results were averaged
over our own twelve random labeled/unlabeled splits. We
ensured that both classes were represented among the la-
beled examples but otherwise did not balance the class la-
bels across splits. For both EMBLEM,; and EMBLEM™?,
we initialized the model parameters w and b by a linear
SVM trained by LIBLINEAR (Fan et al., 2008) on the la-
beled examples. The M-step — sparse least-squares re-
gression — was done by a preconditioned conjugate gra-
dients method (Barrett et al., 1994). The regularization
parameter \ was set to unity. For EMBLEM®, we esti-
mated the class balance of unlabeled examples from the
class balance of labeled ones. In particular, we constrained
|t — p| < 0.10/+/n, where p and o? were respectively
the sample mean and variance of the n training labels. We
made an exception for the Freelancer data set, however,
where Motoyama et al. (2011) manually estimated the pro-
portion of abusive job postings as 29.2% from a collection
of 2000 samples. We used this prior knowledge to constrain
the balance of classes in all the Freelancer experiments.

We compared our models to three popular implementa-
tions of S*VMs: SVM-Light (Joachims, 1999b), Uni-
verSVM (Collobert et al., 2006), and SVMlin (Sindhwani
and Keerthi, 2006). SVM-Light initializes labels for unla-
beled examples using a classifier trained from labeled ex-
amples; it then alternates between solving a quadratic pro-
gram and switching labels for individual pairs of unlabeled
examples. The hyperparameter C~! for SVM-Light was
set to the mean squared f3-norm of all examples (equal
to unity in all our experiments). The optimization in Uni-
verSVM is based on a convex-concave procedure. All the
hyperparameters of UniverSVM were set to the default val-
ues. SVMlin implements a modified finite newton method
for £5-SVMs (Keerthi and DeCoste, 2005). As in SVM-
Light, SVMIin swaps the labels of unlabeled examples, but
it does so for multiple pairs at a time (yielding a consider-
able speedup). The hyperparameters A and X' of SVMlin
were set to 0.001 and 1, respectively.

4.2 Results

Our first set of experiments compared the two versions
of the latent variable model in Section 3, one with class-
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Figure 8: Gain in accuracy of EMBLEM® over SVM vs.
gain in accuracy of SVMlIin over SVM.

balancing constraints (EMBLEM®), and one without
(EMBLEMy;). Does the class-balancing constraint lead to
more accurate classification of unlabeled examples, and if
so, by how much? Fig. 6 plots the gain from the class-
balancing constraint on three different tasks as a function
of the number of labeled examples. In these experiments,
we see that the class-balancing constraint was universally
helpful (i.e., the gain was always positive); it was especially
critical for semi-supervised learning from very few labeled
examples. As expected, though, the class-balancing con-
straint had a smaller effect on learning in the experiments
with larger numbers of labeled examples.

Our second set of experiments compared EMBLEM®
against other implementations of S*VMs, focusing again
on classification accuracies for unlabeled examples. Fig. 7
plots the average test error rates as a function of the num-
ber of labeled examples. (Some results are missing for data
sets that were too large for particular implementations: on
the Freelancer task, SVM-Light terminated without con-
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vergence, and on the three largest tasks, UniverSVM was
unable to store the kernel matrix.) The subplot for each
task shows results in the regime where semi-supervised
methods (i.e., those making use of the unlabeled data) ac-
tually lead to better performance than a baseline SVM.
On four out of the six tasks (except ccat and gcat),
EMBLEM" performs better in this regime than all the
other algorithms over the full range of labeled examples.
On ccat and gcat tasks, EMBLEM® does not always
perform best but only trails by a small amount. The most
competitive alternative to EMBLEM® is SVMlin. Fig. 8
collapses all the results for EMBLEM® and SVMlin in
Fig. 7 into a single scatterplot. The axes in this plot record
the gains of EMBLEM® (vertical) and SVMlin (horizon-
tal) over a baseline SVM. We see from the large concentra-
tion of points above the diagonal that with only a few ex-
ceptions EMBLEM" improves more over baseline SVMs
than SVMlin.

491

Finally, Fig. 9 compares average training times.
EMBLEM" is orders-of-magnitude faster than SVM-
Light and UniverSVM, though still somewhat slower than
SVMlin. This is partly due to the fact that EMBLEM®
is implemented in MATLAB, whereas SVMlin is imple-
mented in C.

5 Conclusion

We have introduced a Gaussian latent variable model for
semi-supervised learning of large margin classifiers. The
EM algorithm for this model—EMBLEM—is especially
well geared to sparse, high-dimensional data and generally
outperforms existing implementations of S°VMs. Our ex-
periments suggest that EMBLEM can scale to even larger
problems than we considered here: for example, we can
easily parallelize the E-step (which simply computes the
posterior mean for each example), and we can also paral-
lelize the M-step (least-squares regression) using MapRe-
duce (Chu et al., 2007). Though no single model of semi-
supervised learning is likely to provide a “silver bullet”
for all applications (Chapelle et al., 2008, 2006), EM-
BLEM has many attractive properties, including a crisp
probabilistic semantics, transparent handling of unlabeled
data, and a simple core optimization (sparse least-squares).
Our implementation of EMBLEM is available online at
https://github.com/dokyum/EMBLEM, and we hope
that others will find it equally useful in their work.
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