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Abstract – In extended target tracking, targets po-
tentially produce more than one measurement per time
step. Multiple extended targets are therefore usually
hard to track, due to the resulting complex data associa-
tion. The main contribution of this paper is the imple-
mentation of a Probability Hypothesis Density (phd)
filter for tracking of multiple extended targets. A gen-
eral modification of the phd filter to handle extended
targets has been presented recently by Mahler, and the
novelty in this work lies in the realisation of a Gaussian
mixture phd filter for extended targets. Furthermore,
we propose a method to easily partition the measure-
ments into a number of subsets, each of which is sup-
posed to contain measurements that all stem from the
same source. The method is illustrated in simulation ex-
amples, and the advantage of the implemented extended
target phd filter is shown in a comparison with a stan-
dard phd filter.

Keywords: multi target tracking, filtering, estima-
tion, extended targets, probability hypothesis density,
Gaussian mixture.

1 Introduction
The purpose of multi target tracking is to detect, track
and identify targets from sequences of noisy, possibly
cluttered, measurements. In most applications, it is as-
sumed that each target produces at most one measure-
ment per time step. This is true for some cases, e.g. in
radar applications when the distance between the tar-
get and the sensor is large. In other cases however, the
distance between target and sensor, or the size of the
target, may be such that multiple resolution cells of the
sensor are occupied by the target. This is the case with
e.g. image sensors. Targets that potentially give rise to
more than one measurement are denoted as extended.

Gilholm and Salmond [3] presented an approach for
tracking extended targets under the assumption that
the number of recieved target measurements in each
time step is Poisson distributed. They show an ex-

ample where they track point targets which may gen-
erate more than one measurement, and an example
where they track objects that have a 1-D extension (in-
finitely thin stick of length l). In [2] a measurement
model was suggested which is an inhomogeneous Pois-
son point process. At each time step, a Poisson dis-
tributed random number of measurements are gener-
ated, distributed around the target. This measurement
model can be understood to imply that the extended
target is sufficiently far away from the sensor for its
measurements to resemble a cluster of points, rather
than a geometrically structured ensemble. A similar
approach is taken in [1], where Track Before Detect
theory is used to track a point target with a 1-D ex-
tent.

Using Finite Set Statistics (fisst), Mahler has pre-
sented a rigorous framework for target tracking employ-
ing the so called Probability Hypothesis Density (phd)
filter [4]. A random finite set (rfs) is a set with a ran-
dom number of elements and where each element in the
set is a random variable. In the phd filter the targets
and measurements are treated as rfs, which allows the
problem of estimating multiple targets in clutter and
uncertain associations to be cast in a Bayesian filtering
framework [4]. An implementation of a linear Gaussian
phd-filter was presented in [7]. There the phd filter is
approximated with a mixture of Gaussians, hence the
realization is called Gaussian Mixture-phd (gm-phd)
filter. In the recent work [6], Mahler presented an ex-
tension of the phd filter to also handle extended targets
of the type presented in [2].

In this paper, we extend the work in [2, 6, 7], and
present a gm-phd-filter for extended target tracking.
To the best of our knowledge, such a filter has not
been presented before. We present and define the tar-
get tracking problem in the Section 2. The dynamic
and measurement models are both assumed to be lin-
ear Gaussian, and the number of measurements gen-
erated by each target in each time step is assumed to
be random samples from Poisson distributed variables.



The number of clutters generated is also assumed to be
Poisson distributed. For the measurement update step
of the extended target gm-phd filter, different parti-
tions of the set of measurements have to be considered.
In Section 3 a simple method for finding measurement
set partitions is presented. The underlying intuition
behind the paritioning method is that measurements
generated by the same target will be spatially close.
The measurement likelihood is presented in Section 4,
where the suggested gm-phd filter for extended tar-
get tracking is also derived. In Section 5 results from
simulations are presented, both for single and multiple
extended target tracking. Finally, Section 6 contains
conclusions and thoughts on future work.

2 The Target Tracking Problem
The aim of this work is to estimate an rfs of targets

Xk = {x(i)
k }Nx,k

i=1 , given a rfs of measurements Zk =

{z(i)k }Nz,k

i=1 , for discrete time instants k = 1, . . . ,K. Each

target x
(i)
k in the rfs Xk is assumed to be modelled

using a linear Gaussian dynamical model,

x
(i)
k+1 = Fkx

(i)
k +Gkw

(i)
k , (1)

wherew
(i)
k is Gaussian white noise with covarianceQ

(i)
k .

Each measurement is generated according to a linear
Gaussian model,

z
(j)
k = Hkx

(i)
k + e

(j)
k , (2)

where e
(j)
k is white Gaussian noise with covariance R

(j)
k .

Note that there is no known association between the
targets and the measurements.
In previous work, extended targets have often been

modelled as targets having a spatial extension or shape,
however the problem is sometimes simplified by assum-
ing that the targets are points [3]. In reality how-
ever, all targets have a spatial extension or shape.
Whether shape parameters should be included in the
target state vector largely depends on the size of the
target compared to the sensor resolution. Airplanes
that are tracked by radar typically give rise to at most
one measurement and can often be efficiently modelled
as points, while vehicles tracked by laser range sensors
typically give rise to multiple measurements from which
the shape and size of the vehicle can be inferred. To
the best of our knowledge, exactly what is meant by
extended target has not been definitely defined in the
target tracking literature. Therefore we propose the
following definition:
Definition: Extended targets are targets that po-

tentially give rise to more than one measurement per
time step.
In this work, the number of measurements generated

by each target at each time step, denoted N
(i)
m,k, is a

Poisson distributed random variable with rate βD mea-
surements per scan, thus the probability of generating

at least one measurement is 1 − e−βD . A target is de-
tected with probability pD, giving the effective proba-
bility of detection

pD,eff =
(

1− e−βD
)

pD. (3)

At each time step, clutter measurements are also gen-
erated. The number of clutters generated, N c

k , is a Pois-
son distributed random variable with rate βFA clutter
measurements per surveillance volume per scan. Thus,
if the surveillance volume is Vs, the mean value for the
Poisson variable N c

k is βFAVs clutter measurements per
scan. The spatial distribution of the clutter measure-
ments is uniform over the surveillance volume.

For example, we have at time k one target and

N1
m,k = 2 generated measurements z

(A)
k and z

(B)
k , and

Nc,k = 1 clutter measurement z
(C)
k . Then, at time k,

the set of measurements obtained by the sensor is

Zk =
{

z
(1)
k , z

(2)
k , z

(3)
k

}

. (4)

Note that the true nature of the measurements, i.e.
clutter or generated by a target, is not known to the
tracking filter, hence the different indexing A,B,C and
1, 2, 3. Let Z1:k denote the set of measurement sets
from time 1 to time k.

A track with cluttered measurements is shown in Fig-
ure 1, and the number of obtained measurements by the
sensor at each time step is shown in Figure 2.
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Figure 1: The example shows both target generated
measurements and clutter. A Grayscale is used to de-
note different time steps.

3 Partitioning the Measurement

Set
An integral part of extended target tracking with the
phd filter is the partitioning of the set of measure-
ments [6]. A partition p is defined as a division of
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Figure 2: Number of true target measurements gen-
erated for the example in Figure 1, i.e. clutter is not
included. The measurement per scan rate is βD = 10.

the set of measurements Z into subsets, called cells
W . The partitioning is important, since more than
one measurement can stem from the same target. Let
us exemplify the partitioning principle with a mea-
surement set containing three individual measurements,

Zk =
{

z
(1)
k , z

(2)
k , z

(3)
k

}

. This set can be partitioned in

the following ways [6]:

p1 : W 1
1 =

{

z
(1)
k , z

(2)
k , z

(3)
k

}

, (5a)

p2 : W 2
1 =

{

z
(1)
k , z

(2)
k

}

, W 2
2 =

{

z
(3)
k

}

, (5b)

p3 : W 3
1 =

{

z
(1)
k , z

(3)
k

}

, W 3
2 =

{

z
(2)
k

}

, (5c)

p4 : W 4
1 =

{

z
(2)
k , z

(3)
k

}

, W 4
2 =

{

z
(1)
k

}

, (5d)

p5 : W 5
1 =

{

z
(1)
k

}

, W 5
2 =

{

z
(2)
k

}

, W 5
3 =

{

z
(3)
k

}

.

(5e)

Here, pi is the i:th partition, and W i
j is the j:th cell

of partition i. In the remainder of the paper, to keep
notation uncluttered, we suppress indexes i and j for
the partitions and cells.
It is quickly realised that as the size of the measure-

ment set increases, the number of possible partitions
grows very large. Thus, in order to have a computa-
tionally tractable target tracking method, only a subset
of all possible partitions can be considered. We propose
a simple heuristic for finding this subset of partitions,
which is based on the distances between the measure-
ments.
Given a set of measurements Z and distance thresh-

olds {di}Nd

i=1, with di < di+1, ∀i, for each di we com-
pute partitions where the cells constitute sets of mea-
surements that are no more than di metres apart from
their closest cell neighbour. Thus, we get Nd partitions,
and since the di are increasing, each partition contains
fewer cells, and the cells typically contain more mea-
surements.
The underlying intuition behind this idea is that two

measurements generated by the same target are likely
to be “close” to each other, while two measurements
generated by different targets are likely to be “distant”
from each other.

For two measurements z
(1)
k and z

(2)
k , both measured

with covariance Rk = σ2
eI2, where I2 is a 2× 2 identity

matrix, the quantity

(z
(1)
k − z

(2)
k )TR−1

k (z
(1)
k − z

(2)
k ) (6)

is χ2 distributed with 2 degrees of freedom. Equa-
tion (6) is the Mahalanobis distance between the two
measurements, and can be seen as a measure of how
“close” they are. Using the inverse χ2 distribution, a
unit-less distance threshold δPG

can be computed for

a given probability PG. The test for whether z
(1)
k and

z
(2)
k are “close” becomes

(z
(1)
k − z

(2)
k )TR−1

k (z
(1)
k − z

(2)
k ) < δPG

. (7)

Since R−1
k = σ−2

e I2 this inequality reduces to

∥

∥

∥z
(1)
k − z

(2)
k

∥

∥

∥

2
< σe

√

δPG
. (8)

Thus, for different probability levels PG, different eu-
clidean distance thresholds σe

√

δPG
can be computed.

Now, for a measurement set Z, let {dmi }Nd

i=1 be the
set of unique measurement to measurement distances,
sorted such that dmi < dmi+1, ∀i. In this work, we have
found that using distance thresholds di that correspond
to the dmi that are larger than σe

√
δ0.30 and smaller

than σe

√
δ0.80 produces good sets of partitions.

An obvious problem with this approach occurs when
two, or more, targets are close to each other. The gen-
erated measurements will also be close, and are thus
likely to be deemed to belong to the same cell. In Sec-
tion 5, where we present our target tracking results,
we see that this is indeed a problem. It results in the
underestimation of the number of existing targets. It
remains within future work to find a better way to com-
pute a suitable subset of all possible partitions

4 The PHD Filter for Extended

Targets
The phd prediction equations for extended targets are
identical to those for single-measurement targets (tar-
gets that generate at most one measurement), hence
those equations are not repeated here. Refer to [5] for
the equations, and to [7] for the gm-phd-filter imple-
mentation.

In the gm-phd-filter by [7], the phd-intensity is rep-
resented by a Gaussian mixture of the form

vk (x) =

Jk
∑

i=1

w
(i)
k N

(

x |m(i)
k , P

(i)
k

)

, (9)

where w
(i)
k , m

(i)
k and P

(i)
k are the weights, mean vectors

and covariance matrices of the Gaussian components,

respectively. Note that the weights w
(i)
k need not sum



to one, i.e. it is not a probability distribution. When es-
timated target locations are needed, they are extracted
the same way as is done in [7]. An estimate of the
number of targets can be obtained by either computing
the sum of the weights, or by extracting targets and
counting the number of extractions.

In the single-measurement gm-phd-filter measure-
ment update, each measurement is used to update each
Gaussian component. In its extended target equiva-
lent, each cell of each partition is used to update each
Gaussian component. Both these measurement updates
increase the number of Gaussian components. To main-
tain a reasonable number of components Jk|k, in order
to keep computations tractable, pruning and merging
can be performed. For our extended target tracking, we
use the same pruning and merging as presented in [7].

The phd measurement update equations for the ex-
tended target Poisson model of [2] was derived in [6].
In Section 4.1 we present the measurement pseudo-
likelihood function from [6], and in Section 4.2 we
present a Gaussian Mixture implementation of the
phd measurement update based on this measurement
pseudo-likelihood function. In [5] Mahler derives a
slightly more rigorous measurement likelihood func-
tion for extended targets which generate geometrically
structured measurements, however this work will be
limited to investigation of the Poisson model measure-
ment likelihood.

4.1 Pseudo-Likelihood Function

If vk|k−1 (x|Z) is the predicted phd-intensity, the cor-
rected phd-intensity is

vk|k (x|Z) = LZk
(x) vk|k−1 (x|Z) , (10)

where the measurement pseudo-likelihood function [6]
is given by

LZk
(x) =1−

(

1− e−γ(x)
)

pD (x) + e−γ(x)pD (x)×

×
∑

p∠Zk

ωp

∑

W∈p

γ (x)
|W |

dW
·
∏

z∈W

φz (x)

λkck (z)
.

(11)

The first part of this equation, 1−
(

1− e−γ(x)
)

pD (x),
handles the targets for which there are no detections.
The second part handles targets for which there are at
least one detection.

Here, the notation p∠Zk means that p partitions the
measurement set Zk into cells W . The first summation
is taken over all partitions p of the measurement set
Zk. The second summation is taken over all cells W
in the current partition p, and the product is over all
measurements z in the cell W . For each partition, the
measurements in cells containing more than one mea-
surement can be interpreted as coming from the same

target. Measurements in cells with just one measure-
ment can be either clutter or target generated. Here

ωp =

∏

W∈p dW
∑

p′∠Z′

∏

W ′∈p′ dW ′

(12)

can be interpreted as a weight of the particular partion.
Further

dW =δ|W |,1+

vk|k−1

[

e−γ(x)γ (x)
|W |

pD (x)
∏

z∈W

φz (x)

λkck (z)

]

(13)

where δi,j is the Kronecker delta and |W | is the number
of elements in W . For any function h (x),

vk|k−1 [h] =

∫

h (x) vk|k−1 (x|Z) dx. (14)

The expected number of generated measurements is
denoted γ (x), and the probability of getting at least
one detection is

1− e−γ(x). (15)

With the probability of detection pD (x) the effective
probability of detection becomes

(

1− e−γ(x)
)

pD (x) . (16)

The spatial distribution of the measurements are de-
scribed by the function

φz (x) = φ (z|x) , (17)

and the clutter distribution is modelled by λkck (z).
Here, λk is the Poisson rate that determines the number
of clutter per scan, and ck (z) is the spatial distribution
of the clutter measurements.

4.2 Gaussian Mixture Implementation

Following the derivation of a gm-phd-filter for single
measurement targets in [7], a phd recursion can be de-
rived for the extended target case. Here, we have made
the same six assumptions that are made in [7]. Further,
we make the following assumption:
Assumption: The expected number of generated

measurements γ (x) can be approximated as functions
of the mean of the individual Gaussian components

γ(j) , γ
(

m
(j)
k|k−1

)

.

Remark: The assumption is resonable, since the
number of generated measurements is largely decided
by the target’s spatial extent. The spatial extent can
be modelled using parameters which are included in the
target state vector [1–3, 8], thus the number of gener-
ated measurements can be seen as a function of the
predicted mean of the Gaussian component.



The measurement updated phd intensity is then as
follows. Let the predicted intensity be a Gaussian mix-
ture of the form

vk|k−1 (x) =

Jk|k−1
∑

i=1

w
(i)
k|k−1N

(

x |m(i)
k|k−1, P

(i)
k|k−1

)

.

(18)
Then, the posterior intensity at time k is a Gaussian
mixture given by

vk|k (x) =vND
k|k (x) +

∑

p∠Z′

∑

W∈p

vDk|k (x,W ), (19)

where the Gaussian components handling no detections
are given by

vND
k|k (x) =

Jk|k−1
∑

j=1

w
(j)
k|kN

(

x |m(j)
k|k, P

(j)
k|k

)

, (20a)

w
(j)
k|k =

(

1−
(

1− e−γ(j)
)

pD

)

w
(j)
k|k−1, (20b)

m
(j)
k|k = m

(j)
k|k−1, (20c)

P
(j)
k|k = P

(j)
k|k−1, (20d)

and the Gaussian components handling detected tar-
gets are given by

vDk|k (x,W ) =

Jk|k−1
∑

j=1

w
(j)
k|kN

(

x |m(j)
k|k, P

(j)
k|k

)

, (21a)

w
(j)
k|k = ωp

Γ(j)pD
dW

Φ
(j)
W w

(j)
k|k−1, (21b)

Γ(j) = e−γ(j)
(

γ(j)
)|W |

, (21c)

Φ
(j)
W =

∏

z∈W

φz

(

m
(j)
k|k−1

)

λkck (z)
, (21d)

and the probability of the measurements in cell W is

φz

(

m
(j)
k|k−1

)

= N
(

z |Hkm
(j)
k|k−1, Rk +HkP

(j)
k|k−1H

T

k

)

.

(21e)

The partition weights ωp are given by

ωp =

∏

W∈p dW
∑

p′∠Z′

∏

W ′∈p′ dW ′

, (21f)

dW = δ|W |,1 +

Jk|k−1
∑

l=1

Γ(l)pDΦ
(l)
Ww

(l)
k|k−1. (21g)

The mean and covariance of the Gaussian components
are updated using the standard Kalman measurement

update,

m
(j)
k|k = m

(j)
k|k−1 +K

(j)
k













z1
...

z|W |






−Hkm

(j)
k|k−1






,

(22a)

P
(j)
k|k =

(

I −K
(j)
k Hk

)

P
(j)
k|k−1, (22b)

K
(j)
k = P

(j)
k|k−1H

T

k

(

HkP
(j)
k|k−1H

T

k +Rk

)−1

. (22c)

Here, if the current cell W contains |W | = 3 measure-
ments,

Hk =





Hk

Hk

Hk



 , (23a)

Rk = blkdiag (Rk, Rk, Rk) . (23b)

5 Simulation Results

This section presents results from simulations using the
presented extended target tracking method. Section 5.1
presents the simulation setup, and the following sub-
sections presents simulation results using our method
compared to results using standard gm-phd. TheMat-

lab code used to produce the simulations and figures
is available online1.

5.1 Simulation Setup

The targets’ centers of mass are modelled as points with
states variables

xk =
[

xk yk vxk vyk
]T

, (24)

where xk, yk is the planar position of the target in me-
ters, and vxk and vyk are the corresponding velocities in
meters per second. The sensor measurements are given
in batches of Cartesian x and y coordinates as follows;

z
(j)
k ,

[

x
(j)
k y

(j)
k

]T

. (25)

In many real world applications (e.g. radar, laser and
stereo vision), the sensor measures range r and azimuth
angle ϕ given as

z̄
(j)
k ,

[

r
(j)
k ϕ

(j)
k

]T

. (26)

The work here could be extended to such a case us-
ing the appropriate polar to Cartesian conversion equa-
tions, in order to convert the measurements into the

1http://www.control.isy.liu.se/publications/doc?id=2299

Contact the authors if the link is broken.
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Figure 3: The true x and y positions in black, and measurements in gray.

form (25). Using the following dynamic and measure-
ment models,

Fk =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1









, Gk =









T 2

2 0

0 T 2

2
T 0
0 T









,

Hk =

[

1 0 0 0
0 1 0 0

]

, Qk = σ2
w
I2, Rk = σ2

e
I2, (27)

with sampling time T = 1s and the implemented ex-
tended target measurement likelihood, target tracking
was performed on simulated data. Here, σw = 2m/s2

and σe = 20m. The presented tracking filter was first
tested in a scenario with one target present. The fil-
ter was then tested in a scenario with multiple targets,
target spawning and birth of new targets. In each sim-
ulation, there was also clutter measurements.
For both simulations, the surveillance area is

[−1000m, 1000m] × [−1000m, 1000m]. The probability
of survival is set to pS = 0.99, and the probability of
detection is pD = 0.99. The Poisson rate for the num-
ber of measurements generated per time step is set to
10 for each target, i.e. γ(i) = 10, ∀i.
The birth intensity is

vb (x) = 0.1N (x ; m
(1)
b , Pb) + 0.1N (x ; m

(2)
b , Pb),

(28a)

m
(1)
b = [250, 250, 0, 0]T, (28b)

m
(2)
b = [−250,−250, 0, 0]T, (28c)

Pb = diag([100, 100, 25, 25]). (28d)

The spawn intensity is

vβ (x|y) = 0.05N (x ; ξ,Qβ), (29)

where Qβ = diag([100, 100, 400, 400]), and ξ is the tar-
get from which the new target is spawned. This exam-
ple is very similar to the one presented in [7].

5.2 Single target

Figure 3 shows the cluttered measurement set used in
the simulation. The target extractions resulting from
extended target and single-measurement gm-phd filter-
ing are compared to ground truth in Figures 4 and 5.
The estimated number of targets is compared to ground
truth in Figures 6 and 7, from which it is obvious that
the suggested extended target gm-phd filter outper-
forms the standard singe-measurement gm-phd. In
terms of the locations of the extracted targets, the
extended target filter is again better than the single-
measurement filter. Using the presented extended tar-
get tracking method in a single target scenario, the right
number of targets is found, and the target location is
correctly estimated.

5.3 Multiple targets

The same comparison of tracking methods was per-
formed using simulated data for four targets. For this
data, shown in Figure 8, two of the true target tracks
cross at time k = 56, and one of the target tracks is
spawned at time k = 66. The results are shown in
Figure ??. Again, it is apparent that the number of
targets is overestimated when single-measurement tech-
niques are used, see Figure 12. Tracking performance is
much better when the suggested extended target track-
ing method is used.
Further, in Figure 11 it can be seen that the num-

ber of targets are not estimated correctly when two, or
more, targets are close to each other, i.e. when tracks
cross or when new targets are spawned. One potential



0 10 20 30 40 50 60 70 80 90 100
250

300

350

400

450

500

550

Time

X
 [

m
]

True vs extracted

0 10 20 30 40 50 60 70 80 90 100
−1000

−800

−600

−400

−200

0

200

400

Time

Y
 [

m
]

True vs extracted

(a) Our extended target gm-phd

0 10 20 30 40 50 60 70 80 90 100
200

300

400

500

600

Time

X
 [

m
]

True vs extracted

0 10 20 30 40 50 60 70 80 90 100
−1000

−800

−600

−400

−200

0

200

400

Time

Y
 [

m
]

True vs extracted
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Figure 4: Target tracking results — one target present. In (a) and (b), the true x and y positions are in black,
and the x and y position of the extracted gm-phd components are in gray. In (c) and (d), the black line is the
true number of targets, and gray rings are the extracted number of targets. Despite the high number of clutter
measurements, using our extended target gm-phd there is only one false extracted track at time k = 47.

reason for this is the rather naive approach to finding a
good set of partitions for the measurement set. When
the set of measurements is partitioned using different
distances, measurements from two closely spaced tar-
gets will also be closely spaced, and thus belong to the
same cell in the partition. To resolve this issue, a more
complex method for partitioning the measurement set
has to be used. Despite the underestimation of num-
ber of targets, the estimation of target location remains
good.

6 Conclusions and Future Work
In this paper we have presented a Gaussian mixture
probability hypothesis density filter for tracking of ex-
tended targets. Further, we have presented a simple
heuristic for finding a subset of all measurement set
partitions. With simulations, we have shown that our
filter is capable of tracking extended targets in cluttered
measurements. The number of targets is estimated cor-
rectly, with the exception of when tracks cross or new
targets spawn from existing targets.
In future work, we plan on investigating the possi-

bility of finding a better method for measurement set
partitioning. If the Poisson rate of the measurement
generating process is known, it could possibly be used
to find good partitions.

We also plan to use our gm-phd-filter to track tar-
gets which generate measurements that are geometri-
cally structured, and try to infer the spatial extension
or shape from these measurements. Work is underway
that tracks vehicles using laser range sensors. Under
the assumption that vehicles are rectangular in shape,
in preliminary results we are able to track not only po-
sition and heading of the vehicles, but also the width
and length. These results are at the time of writing not
ready for publication.
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Figure 5: Target tracking results — multiple targets present. In (a) and (b), the true x and y positions are in
black, and the x and y position of the extracted gm-phd components are in gray. In (c) and (d), the black line
is the true number of targets, and gray rings are the extracted number of targets.
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