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ABSTRACT

To date, the radial velocity (RV) method has been one of the most productive techniques
for detecting and confirming extrasolar planetary candidates. Unfortunately, stellar activity
can induce RV variations which can drown out or even mimic planetary signals – and it is
notoriously difficult to model and thus mitigate the effects of these activity-induced nuisance
signals. This is expected to be a major obstacle to using next-generation spectrographs to
detect lower mass planets, planets with longer periods, and planets around more active stars.
Enter Gaussian processes (GPs) which, we note, have a number of attractive features that
make them very well suited to disentangling stellar activity signals from planetary signals.
We present here a GP framework we developed to model RV time series jointly with ancillary
activity indicators (e.g. bisector velocity spans, line widths, chromospheric activity indices),
allowing the activity component of RV time series to be constrained and disentangled from
e.g. planetary components. We discuss the mathematical details of our GP framework, and
present results illustrating its encouraging performance on both synthetic and real RV datasets,
including the publicly-available Alpha Centauri B dataset.

Key words: methods: data analysis – techniques: radial velocities – stars: activity – planetary
systems – stars: individual: Gliese 15 A – stars: individual: Alpha Centauri B

1 INTRODUCTION

The radial velocity (RV) method, a.k.a. Doppler spectroscopy, has

been one of the most productive methods for discovering exoplan-

ets. To date, more than 500 confirmed planets1 have been discov-

ered using the RV method, and until quite recently, more planets

had been discovered with the RV method than with any other tech-

nique. Though more planets have now been discovered by transit

photometry – thanks to the unparalleled success of NASA’s Kepler

observatory in recent years (Batalha et al. 2013; Marcy et al. 2014)

– the RV method remains indispensable both in its own right for

discovering planets, and moreover for confirming and helping to

characterise candidate planets detected by other means, including

transit photometry.

Thanks to a number of technical developments, the precision

of RV surveys has been constantly improving. Whereas the spec-

trographs of fifty years ago produced RV measurements with er-

rors in excess of 1 km s−1(nominal precision per measurement),

today’s cutting-edge, so-called “second generation” spectrographs

can identify radial-velocity shifts down to a few tens of centime-

⋆ E-mail: vinesh.rajpaul@astro.ox.ac.uk
1 Based on counts from the NASA Exoplanet Archive, available online at

exoplanetarchive.ipac.caltech.edu.

tres per second – enough to locate many rocky, Earth-like planets

orbiting close to their host stars (Pepe et al. 2011; Lovis & Fischer

2011). Examples of such spectrographs include the HARPS (High

Accuracy Radial Velocity Planet Searcher) spectrograph hosted by

the ESO 3.6 m telescope in Chile; its Northern Hemisphere com-

ponent, HARPS-N, on the Italian 3.58 m Telescopio Nazionale

Galileo telescope on La Palma Island; and HIRES (High Resolu-

tion Echelle Spectrograph) at the Keck telescopes in Hawaii. Third

generation spectrographs, to come online in the next few years, are

expected to have measurement errors below 10 cm s−1(Pasquini

et al. 2008; Pepe et al. 2010).

This makes it possible, in principle, to discover exoplanets

with increasingly low masses and increasingly longer periods, po-

tentially reaching down to the Earth-mass and/or habitable regimes.

This has motivated intensive, multi-season monitoring campaigns

on current state-of-the-art instruments, and results from these cam-

paigns are in turn bolstering the science cases for next-generation

instruments to be deployed on the world’s largest telescopes.

One announcement in particular caused a significant stir in

the exoplanet community: that of a planet around the star αCenB
with an orbital period of ∼ 3.24 days, and a minimum mass sim-

ilar to that of the Earth, discovered using the HARPS instrument

(Dumusque et al. 2012). If confirmed, this discovery would be par-

ticularly remarkable not only because the minimum mass of the
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planet is so low (the lowest of any planet around a Sun-type star),

but also because the host star is the nearest Sun-like star to our

own system, and the RV semi-amplitude reportedly induced by the

planet (50 cm s−1) is the smallest to have been measured to date.

Unfortunately, though we live in an age of RV instruments

with ever-improving precisions, better instrumentation has meant

that exoplanet hunters are also being increasingly confronted by a

significant obstacle: the contaminating presence of RV signals from

stars themselves, which is arguably the most important source of

noise (or rather nuisance signal) in modern RV datasets.

This, then, establishes the broad context for the present work,

the focus of which is a Gaussian process framework we developed

for modelling the activity-induced variations in RV time series, in

order to disentangle activity from e.g. planetary contributions.

The balance of our paper is structured as follows. In the next

section (Section 2), we discuss these stellar nuisance signals in

some more detail; we note that signals related to stellar activity are

particularly difficult to mitigate. In Section 3 we present our new

framework for modelling stellar activity signals jointly with pos-

sible planetary signals, and discuss the potential advantages and

shortcomings of our new framework. In Section 4, we demonstrate

the successful application of our new framework to both simulated

and real datasets, including the publicly available αCenB dataset.

Finally, we present our conclusions in Section 5, and discuss future

plans for extending this work.

2 STELLAR NUISANCE SIGNALS

In order of increasing associated time-scales, the main physical

phenomena in stars giving rise to RV perturbations are the follow-

ing (see e.g. Dumusque 2012 for a detailed overview).

(i) Oscillation of the external envelopes in Sun-like stars. Inter-

ference of multiple p-mode oscillations can introduce RV variations

on the order of tens of centimetres per second, over time-scales

of minutes (Schrijver & Zwaan 2000; O’Toole et al. 2008; Michel

et al. 2008).

(ii) Granulation phenomena, driven by convective flows in the

external layers of Sun-like stars. Time-scales can range from sev-

eral minutes to up to two days (in the case of super-granulation),

with associated disk-integrated RV signals on the order of meters

per second (Dravins 1987; Michel et al. 2008; Mathur et al. 2011).

(iii) Rotationally-modulated phenomena associated with active

regions – dark spots and bright plages and faculae – which move

across the observed stellar disk and break the flux balance between

the redshifted and blueshifted halves of the disk (Dumusque et al.

2011; Boisse et al. 2012). The major contribution to RV perturba-

tions arises not directly from the presence of the spots and plages

themselves, but from the strong magnetic fields associated with

these active regions, which in turn lead to a suppression of the

net blueshift normally associated with convective cells (Meunier

et al. 2010). The strength of associated RV perturbations depends

on rotation and surface activity levels, and can be as high as tens of

meters per second (Saar & Donahue 1997); observations suggest

that even chromospherically-quiet stars can be expected to have

activity-induced RV signals on the order of 1–2 m s−1 (Isaacson

& Fischer 2010). The associated time-scales are linked to the rota-

tion period of the star, which can range from several hours to days

or even weeks, as is the case for the Sun (Tassoul 2000; Nielsen

et al. 2013).

(iv) Long-term magnetic activity cycles. In Sun-like stars with

long-term magnetic cycles, long-term modulations of activity levels

and numbers of surface magnetic regions can lead to variations in

stellar-origin RV perturbations of up to tens of meters per second

over the course of many years (Gomes da Silva et al. 2012; Meunier

& Lagrange 2013).

While observational strategies can be devised to mitigate nui-

sance RV signals associated with stellar oscillation and granula-

tion (Dumusque et al. 2011), activity-induced signals pose a big-

ger challenge. Apart from the larger amplitude associated with

these signals, their periodic or quasi-periodic nature means they can

sometimes mimic planetary RV signals (e.g. Desidera et al. 2004,

Bonfils et al. 2007; Carolo et al. 2014; Haywood et al. 2014; San-

tos et al. 2014). Moreover, the associated time-scales of these stellar

signals can be comparable to those expected for planets: on the or-

der of days or weeks for rotationally-modulated activity, and on the

order of years for periodic modulations due to long-term activity

cycles. Therefore, in the regime of small-amplitude RV variations

associated with lower-mass planets, planetary detection and char-

acterisation rapidly becomes limited not by the quality of available

spectrographs, but rather by nuisance signals which can be very dif-

ficult to disentangle from putative planetary signals. The Earth, for

example, induces a reflex motion in the Sun of about 0.09 m s−1;

however, though such a small RV signal could in principle be de-

tected with next-generation spectrographs, in practice it would be

masked by larger, activity-induced signals from the sun (Meunier

et al. 2010; Dumusque 2012).

There has thus been considerable interest, in recent years, in

developing ways to mitigate the impact of activity, using a variety

of methods ranging from exploiting simple correlations between

the radial velocity measurements and chromospheric activity or line

shape indicators (Boisse et al. 2009; Tuomi et al. 2014; Robertson

& Mahadevan 2014), pre-whitening of the RV time series (Queloz

et al. 2009), and using red-noise models (Tuomi et al. 2013; Feroz

& Hobson 2014), to fitting sine waves at the rotational period of the

star and its harmonics (Boisse et al. 2011; Dumusque et al. 2012)

and detailed modelling of stellar surface features (Lanza et al. 2010;

Boisse et al. 2012). Each of these approaches, though, has draw-

backs. For example, since activity variations cannot be expected to

be strictly periodic, modelling them using sinusoids (which are not

orthonormal in the case of unevenly sampled data) based on a naı̈ve

periodogram analysis can introduce harmonics of the subtracted si-

nusoids into the data, and bias one way from genuine signals in the

data (Tuomi et al. 2014).

Aigrain et al. (2012, hereafter A12) showed that there should

exist a relatively simple relationship between the photometric

brightness and radial velocity variations of a spotted star. This leads

to a straight-forward method to predict the RV variations from

the light curve, with only two free parameters. Because it uses

the stellar flux and its time derivative, this method was named the

FF ’ method, but it can be applied only when simultaneous high-

precision photometric and RV measurements are available.

When this is not the case, information can still be gained by

modelling the RV time series jointly with other parameters, which

are extracted simultaneously from the stellar spectra. In particular,

the width (FWHM) and degree of asymmetry of the spectral lines

(usually measured from the CCF bisector span or bisector inverse

slope), as well as chromospheric activity indicators (e.g. logR′
HK,

which measures the amount of emission in the cores of the Calcium

II H & K lines), are all sensitive to activity, but not to the presence of

planets. Pont et al. (2011) were among the first to carry out explicit

joint modelling of RVs and these ancillary activity indicators, in

the context of CoRoT-7. They fit a simple spot model to the FWHM
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and bisector span time series and used it to predict the RV variations

due to activity. However, spot models are always very degenerate,

making a robust exploration of the parameter space of the model

impractical.

In the next section we introduce an extension of the FF ’

method, which uses the same principles, but models the RVs jointly

with one or more of the aforementioned activity indicators. The

various time series are modelled as linear combinations of a single,

underlying Gaussian process (GP) and its time derivative, plus a

separate noise term which is specific to each time series.

3 PROPOSED FORMALISM

3.1 Formulation of the physical model

The physical model we propose to use is an extension of the FF ′

framework introduced in A12, which can be used to estimate RV

variations due to stellar activity using photometry. In this frame-

work, the fraction of the visible stellar hemisphere that is covered

in spots is represented by F (t). For the simplest case of a single,

small, equatorial spot, F (t) represents the projected area of the

spot, and varies as cos(2πt/P ), where P is the rotation period.

A12 then showed that the RV perturbation due to activity (even for

a non-equatorial spot) can be written:

∆RV = Vr F (t) Ḟ (t) + Vc F
2(t), (1)

where the first term represents the rotational modulation signal, and

the second term the suppression of convective blueshift in magne-

tized regions. This remarkably simple expression arises because the

radial velocity of the stellar surface varies as sin(2πt/P ), which is

proportional to Ḟ (t), whereas the projection of the convective up-

welling along the line of sight varies as cos(2πt/P ), which is pro-

portional to F (t). Both terms are multiplied by the projected spot

area, which is proportional to F (t). The two constants Vr and Vc

can be related to physical quantities such as the fractional coverage

and contrast of spots and faculae, the stellar equatorial velocity and

the convective blueshift velocity, but are treated as free parameters

for the present purpose. Equation (1) was derived by considering

a single active region, but is used to describe the combined effect

of all the active regions on the visible hemisphere. Though this is a

first-order approximation, A12 carried out a number of tests of this

formalism and showed that its performance was similar to that of

more sophisticated methods. A caveat, however, is that photometry

is insensitive to certain spot distributions, i.e. photometric signals

will not always contain sufficient information adequately to pre-

dict RV variations. This problem is addressed in this paper, where

we propose to use more than one activity indicator to constrain the

activity component in RV variations.

We thus seek similar expressions to estimate RV variations

due to stellar activity using activity diagnostics other than photom-

etry. We consider the case where we have a chromospheric activ-

ity indicator and a line asymmetry measurements available; for the

sake of concreteness, we take these to be the logR′
HK index and

the inverse slope of the bisector of the cross-correlation function,

or simply bisector inverse slope (BIS), respectively, as is the case

for HARPS datasets.

As a first approximation, it seems reasonable to expect

logR′
HK and to behave as F 2(t), the convective blueshift suppres-

sion term, which is close proxy for the fractional coverage of active

regions. On the other hand, like the RVs, the bisector inverse slope

also depends on the velocity of the stellar surface at the location

of active regions, so the expression for the BIS should include an

additional F (t) Ḟ (t) term:

logR′
HK = Lc F

2(t) (2)

BIS = Br F (t) Ḟ (t) +Bc F
2(t), (3)

where Lc, Bc and Bc are free parameters. Additionally, each time

series will have its own noise term, which is treated as white (this

is discussed in more detail in later sections).

Equations 2 and 3 relate two particular activity-sensitive ob-

servables (logR′
HK and BIS) to spot coverage, although analogous

relations could be constructed for other activity-sensitive observ-

ables. For example, the SHK chromospheric activity index can be

related to spot coverage in the same way as the logR′
HK index

(Isaacson & Fischer 2010). Similarly, FWHM data are usually very

tightly correlated with (if noisier than) logR′
HK data – especially

if there is a tight relation between the size and location of the pho-

tospheric spots and that of the chromospheric structures such as

faculae – and so the same form of relation could be used.

3.2 Gaussian process framework

Gaussian processes provide a mathematically-tractable and very

flexible framework for performing Bayesian inference about func-

tions. They are particularly suitable for the joint modelling of deter-

ministic processes with stochastic processes of unknown functional

forms (though with some known properties); they lend themselves

very naturally to rigorous error propagation; and they allow us to

relax the usually quite restrictive (e.g. linear) relationships which

have been assumed in previous attempts at the joint modelling of

RV with ancillary times-series (Tuomi et al. 2014).

GP regression enables us to model complex stochastic pro-

cesses by parametrising the covariance between pairs of datapoints,

rather than writing down an expression for the data themselves; de-

terministic components of the model can also be incorporated as

the mean of the GP. Mathematically, the prior joint distribution of

the outputs y (observables, in the case of our framework) is taken

to be a multi-variate Gaussian:

p(y) = N (y;m,K). (4)

The mean vector m is given by

m = m(x;θ), (5)

where m is a mean function of the inputs x (observation times, for

our framework) with parameters θ. The elements of the covariance

matrix K are given by

Kij = k(xi, xj ;φ), (6)

where k is a covariance kernel function with parameters φ. The

covariance kernel function k provides the covariance element be-

tween any two sample locations or times, xi and xj .

The elements of m and K are, in the strict sense of the term,

the parameters of the model; however, the values of these param-

eters are controlled by a small number of hyper-parameters θ and

φ, and in practice will never be inferred directly.

Gaussian distributions obey many convenient mathematical

identities, which allow us trivially to marginalise over unobserved

function values – even in the common case where there are an infi-

nite number of such values. This remarkable property enables us to

write down a marginal likelihood Lm,k(θ,φ) for the data, given a

GP model:

log [Lm,k(θ, φ)] = −1

2
r

T
K

−1
r

T − 1

2
log (detK)− n

2
log (2π) ,
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(7)

where r = y − m is the vector of residuals of the data after the

mean function has been subtracted, and n is the number of data-

points. This process is known as GP regression, and is described

in more detail in textbooks such as Bishop (2006) and Rasmussen

& Williams (2006); alternatively, see Roberts et al. (2013) for an

accessible, tutorial-style introduction to GP regression. The free

hyper-parameters θ and φ can then be varied to maximise Lm,k;

this process is known as Type-II maximum likelihood, or marginal

likelihood maximisation (Gibson et al. 2012). In so doing we refine

vague distributions over many, very different functions – the forms

of which are controlled by θ and φ – to more precise distributions

which are focused on functions that best explain our observed data.

To compare models with different mean and covariance func-

tions (m and k, respectively), we must compute the model evidence

for each model, which involves numerical integration of the likeli-

hood Lm,k and priors over hyper-parameters θ and φ. In practice,

the computational cost of doing this can be extremely expensive.

Furthermore, formulating physically motivated, statistically proper

priors for each hyper-parameter can be challenging. On the other

hand, it is often both theoretically-defensible and computationally-

convenient (see Gibson et al. 2012) first to maximise Lm,k with

respect to all hyper-parameters, next to fix the ‘uninteresting’ ones

(typically those in φ, which are often also degenerate) to their max-

imum a posteriori (MAP) values, and lastly to marginalise fully

over the remaining parameters of interest (typically those in θ).

This approximation avoids having to perform matrix inversion at

every step of marginalisation – in practice, this entails marginal-

ising over planet parameters, for example, but simply optimising

the parameters of covariance kernels. We adopt this approximation

throughout this paper.

3.3 GP model for multiple time series

Again for the sake of concreteness, we consider the case of a

HARPS-like dataset, where we might wish to model jointly three

observables: RV perturbations ∆RV, an activity index logR′
HK,

and the bisector inverse slope BIS. Further, to illustrate the way

deterministic components can be incorporated into the framework,

we assume – as is the case for the αCenB dataset, analysed in

Section 4.4 – that we wish to model dynamical effects in the RVs

(binary motion, possible planet, etc.).

In this case, we have N observations of one independent vari-

able, time t, and three dependent variables: ∆RV, logR′
HK, and

BIS. In order to treat all three as different manifestations of a single

underlying process, we re-arrange the data into 3N observations of

a 2-dimensional input x = [t, l], and of the corresponding output

y, where y(l)(t) = ∆RV if l = 1, logR′
HK if l = 2 and BIS if

l = 3.

The baseline mean function is taken to be a second order poly-

nomial, which in this example would suffice to represent the motion

of αCenB around the centre of mass of the αCen binary system

(Dumusque et al. 2012), for the RV data, and a constant (DC offset)

for the other time series:

m(x) = m(l)(t), (8)

m(1)(t) = a+ bt+ ct2, (9)

m(2)(t) = d, (10)

m(3)(t) = e, (11)

(12)

where θ = [a, b, c, d, e] are free hyper-parameters. One or more

Keplerian terms (each with an additional five hyper-parameters)

can be added to the mean function to represent planetary signals,

but this baseline model has no planet.

A white-noise component (to encapsulate observational noise,

and also activity-induced and other stellar signals not captured by

our model, arising e.g. from pulsation) is incorporated in the co-

variance function as follows:

k(xi,xj) = k
(li,lj)
act (ti, tj) + σ2

li
δ(ti − tj) (13)

where σli is the standard deviation of the noise associated with

each type of observation, and δ(x) is the Kronecker delta function.

We next introduce a new latent (unobserved) variable, G(t) ≡
F 2(t), which represents the activity term, and is described by a

zero-mean Gaussian process with covariance function γ. Conve-

niently, we can then re-write equations (1), (2), and (3) as

∆RV = Vc G(t) + Vr Ġ(t), (14)

logR′
HK = Lc G(t), (15)

BIS = Bc G(t) +Br Ġ(t), (16)

where a factor 2 has been incorporated into the constants Vr and

Br. We now make use of the fact that any linear combination of a

GP and its derivative2 is also a GP; following Osborne (2010), the

covariance between an observation of G at time ti and an observa-

tion of Ġ at time tj is

γ(G,dG)(ti, tj) =
∂

∂t
γ(G,G)(t, tj)

∣

∣

∣

t=ti

, (17)

where γ(G,G)(ti, tj) is used to denote the covariance between

(non-derivative) observations of G at times ti and tj . Similarly, the

covariance between two observations of Ġ at times ti and tj is

γ(dG,dG)(ti, tj) =
∂

∂t′
∂

∂t
γ(G,G)(t, t′)

∣

∣

∣

t=ti

∣

∣

∣

∣

t′=tj

. (18)

Using the above notation, the individual covariance func-

tions over the various inputs can then be related to γ as follows

(in the notation below, k
(12)
act = cov (∆RV, logR′

HK), k
(31)
act =

2 In fact, any affine operator (including linear, derivative, and integral oper-

ators) applied to a GP yields another GP. This enables our framework to ex-

ploit the well-known analytic identities for conditioning and marginalising

Gaussian distributions, and makes the problem computationally tractable.
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cov (BIS,∆RV), etc.):

k
(11)
act (ti, tj) = V 2

c γ(G,G)(ti, tj) + V 2
r γ(dG,dG)(ti, tj)

+Vc Vr

(

γ(G,dG)(ti, tj) + γ(dG,G)(ti, tj)
)

,

(19)

k
(22)
act (ti, tj) = L2

c γ
(G,G)(ti, tj), (20)

k
(33)
act (ti, tj) = B2

c γ
(G,G)(ti, tj) +B2

r γ
(dG,dG)(ti, tj)

+Bc Br

(

γ(G,dG)(ti, tj) + γ(dG,G)(ti, tj)
)

,

(21)

k
(12)
act (ti, tj) = Vc Lc γ

(G,G)(ti, tj) + Vr Lc γ
(G,dG)(ti, tj),

(22)

k
(13)
act (ti, tj) = Vc Bc γ

(G,G)(ti, tj) + Vr Br γ
(dG,dG)(ti, tj)

+Vc Br γ
(G,dG)(ti, tj) + Vr Bc γ

(dG,G)(ti, tj),

(23)

k
(23)
act (ti, tj) = Lc Bc γ

(G,G)(ti, tj) + LcBr γ
(G,dG)(ti, tj).

(24)

The final covariance matrix over the new input space is formed as

the following block matrix:

Kact =







k
(11)
act k

(12)
act k

(13)
act

k
(21)
act k

(22)
act k

(23)
act

k
(31)
act k

(32)
act k

(33)
act






. (25)

Provided γ is a valid covariance function, Kact is guaranteed to be a

valid covariance matrix: in particular, it will be symmetric and pos-

itive semi-definite. In practice, then, it is not necessary to compute

the blocks k
(21)
act , k

(31)
act , and k

(32)
act explicitly.

Thus, equipped with input vector x, output vector y, and co-

variance matrix Kact, we are in a position to use the standard ma-

chinery of Gaussian process inference to model all three time series

jointly as manifestations of a single underlying Gaussian process.

However, it remains for us to choose the form of the covariance

function, γ, defining this underlying stochastic process.

3.4 Choice of latent covariance function

We now seek the simplest form for the covariance kernel function,

γ, that satisfies our beliefs and ignorance about the activity process

we are modelling.

3.4.1 Squared-exponential covariance

For many time series, we expect the informativeness of past obser-

vations in explaining current data to be a function of how long ago

the past observations were made (for example, we might expect

two observations made minutes apart to have similar values, but

would not necessarily expect any connection between observations

made months apart); if this is the case, we can restrict our con-

sideration to stationary covariance functions which are dependent

solely on |t− t′|. Such covariance functions can be represented as

the Fourier transform of a normalised probability density function

(via Bochner’s Theorem Rasmussen & Williams 2006), which can

be interpreted as the spectral density of the process.

The most widely-used covariance function of this class – in-

deed, probably the most widely-used covariance function in GP in-

ference – is the squared-exponential or Gaussian kernel function,

given by

γ(G,G)(t, t′) = β2 exp

[

− (t− t′)
2

2λ2

]

. (26)

The hyper-parameter β governs the output scale (gain/amplitude)

of our function, and λ controls the time scale. In our problem the

amplitude parameter β is not strictly necessary since G(t) is never

directly observed, and β is absorbed by the model parameters Vc,

Vr, Lc, Bc, and Br, as in Equations 1–3.

The popularity of this covariance function stems not only from

its simplicity, but also the fact that it is infinitely differentiable,

meaning that a GP with this covariance function will generate func-

tions with no sharp discontinuities.

The squared-exponential covariance function is usually flex-

ible enough to model a wide range of smoothly-varying stochas-

tic processes. However, as discussed in Section 1, we expect RV

data and ancillary time series to show evidence for activity-induced

variations on up to three distinct time-scales: years (magnetic ac-

tivity cycle), weeks/months (rotation), and days (oscillation, gran-

ulation). Thus it makes sense to generalise the covariance function

in equation (26) to explicitly allow for multiple evolutionary time-

scales:

γ(G,G)
se (t, t′) =

N
∑

i=1

β2
i exp

[

− (t− t′)
2

2λ2
i

]

; (27)

here, the βi’s control the relative amplitude of the N > 1 compo-

nents, each with evolutionary time-scale λi.

We initially experimented with N = 3 separate additive

terms, to describe possible variations on the short, medium, and

long time-scales discussed in Section 2. These tests were carried

out using both synthetic data (see Section 4.1) that by design incor-

porated variations on multiple different time-scales, as well as real

datasets including the Gl 15 A and αCenB datasets considered in

Sections 4.3 and 4.4. However, we rapidly found that the longer

time-scale term was invariably unnecessary: any reasonable choice

for the medium time-scale term had to be fairly flexible, since rota-

tional signals generally evolve from year to year, and so the longer

term variations can be captured by the medium time-scale term. On

the other hand, we found a separate short-time scale term was gen-

erally required: without it, the residuals in all time series considered

often exhibited obvious correlations.

Appendix A1 gives expressions for the covariance between

observations of G and its derivative Ġ, and between two observa-

tions of Ġ, for the case when G is defined by a squared-exponential

covariance function as in equation (27).

3.4.2 Quasi-periodic covariance

While the squared-exponential covariance function given in the

previous section is both flexible and an obvious starting point when

not given much information about the stochastic process we are

modelling, we can do better. In particular, we have a physical rea-

son to expect a degree of periodicity in the activity signals, since

they are modulated by the periodic rotation of the star. We there-

fore consider the following quasi-periodic covariance function for

the latent process G(t) – as previously considered by A12 to model

observed variations in the Sun’s total irradiance, and by Haywood

et al. (2014) to model correlated noise in RV residuals following an
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application of the FF ′ method – formed by multiplying3 a station-

ary kernel with a periodic one:

γ(G,G)
qp (t, t′) = exp

{

− sin2 [π(t− t′)/P ]

2λ2
p

− (t− t′)2

2λ2
e

}

, (28)

where P and λp correspond to the period and length scale of the

periodic component of the variations, and λe is an evolutionary

time-scale. While λe has units of time, λp is dimensionless, as it

is relative to P . Once again there is no need to introduce an ampli-

tude parameter, as this will be controlled for various time series by

the model parameters Vc, Vr, Lc, Bc, and Br, as in Equations 1–3.

Examples of functions drawn from a Gaussian process with

this quasi-periodic covariance function are given in Fig. 1.

A word is in order about the interpretation of the hyper-

parameters. While they could be related to spot persistence life-

times, complexities of spot configurations, autocorrelation func-

tion decay time-scales, etc., such direct interpretations are rarely

straightforward or well-grounded theoretically, especially because

of degeneracies between the hyper-parameters. In the case of mod-

elling differential rotation and/or spot evolution, for example, the

hyper-parameter P might become almost irrelevant, with a large

value of λP and a very small value of λe allowing for complex,

rapidly evolving waveforms without any obvious characteristic pe-

riodicity. In future, an in-depth study of how the values of these

hyper-parameters translate into physically-interpretable properties,

for example using the large sample of Kepler light curves consid-

ered by Aigrain et al. (2015) – which in turn highlights the difficulty

of distinguishing between differential rotation and spot evolution –

might be useful.

In any event, the quasi-periodic covariance kernel function

defined in equation (28) is physically-motivated (albeit not al-

ways easy to interpret straightforwardly) and has only three hyper-

parameters; moreover, in tests with both real and simulated data,

we found it to produce as good or better results than when using a

squared-exponential covariance function with a similar number of

hyper-parameters. Therefore in all subsequent discussion the quasi-

periodic covariance function will be assumed by default. (We do

however discuss the squared-exponential covariance function be-

cause it is conceivable that there will be cases, though not con-

sidered here, where it might be a more appropriate choice than

the quasi-periodic covariance; alternatively, it might be appropriate

to generalise the function to include more than one quasi-periodic

component.)

Appendix A2 gives expressions for the covariance between

observations of G and its derivative Ġ, and between two observa-

tions of Ġ, for the case when G is defined by a squared-exponential

covariance function as in equation (28).

3.4.3 Other possible covariance functions

There exists a wide variety of functions that can be used to specify

the correlation between pairs of inputs, and thence to generate a

covariance matrix over a set of observations and predicants. These

functions can further be combined and modified in a multitude of

ways, giving one great flexibility in how functions are modelled.

3 As described in Rasmussen & Williams (2006), a valid covariance func-

tion under any arbitrary (smooth) map remains a valid covariance function.

Valid covariance functions can also be constructed by adding or multiplying

simpler covariance functions.

In the preceding subsections, we considered two simple such func-

tions that were deemed adequate for the cases considered in this

paper; however, it would certainly be possible to replace these and

use, within our same framework, other covariance functions (e.g.

Rasmussen & Williams 2006).

For example, as an alternative to using a sum of squared-

exponential kernels, one might use a rational-quadratic kernel,

given by:

γ(G,G)
rq (t, t′) = β2

(

1 +
(t− t′)

2

αλ2

)−α

; (29)

it may be shown that this is equivalent to a scale mixture of squared-

exponential kernels with different length scales, with the latter be-

ing distributed according to a Beta distribution with parameters α
and λ−2.

On the other hand, if one has reason to expect that the latent

process being modelled is not as smooth as functions drawn from a

GP with squared-exponential kernel, one could consider the Matérn

class of covariance functions, defined by:

γ
(G,G)
M (t, t′) =

β2

Γ(ν)2ν−1

(√
2ν

|t− t′|
λ

)ν

Bν

(√
2ν

|t− t′|
λ

)

,

(30)

where β is an output scale, λ is the input scale, Γ() is the standard

Gamma function such that Γ(ν) = (ν−1)!, and B() is the modified

Bessel function of second order. The hyperparameter ν controls the

degree of differentiability of the resultant functions modelled by a

GP with Matérn covariance function, such that they are only k-

times differentiable if ν > k. For example, taking ν = 5
2

leads

to twice-differentiable functions, and as ν → ∞, the Matérn ker-

nel becomes the squared-exponential one. Though a Matérn covari-

ance function with ν < ∞ might be deemed more physically re-

alistic than a squared-exponential one, its use does of course come

with the penalty of some additional mathematical and computa-

tional complexity. For the purposes of the present work, then, we

did not carry out any tests with these more sophisticated covariance

kernels; their use might, however, feature in future work.4

3.5 Summary and appraisal of the framework

The key aspects of the above framework are sketched schematically

in Fig. 2. Though it may appear quite mathematically complex, es-

pecially to those unfamiliar with GP regression, its underlying ideas

are quite simple. To summarise:

(i) we assume that the underlying stochastic process giving rise

to activity signals in observables (RVs and ancillary time series) can

be described by a GP, with suitably-chosen covariance function;

(ii) we can then use physically-motivated or empirical models to

provide analytical links between this GP and available observables;

(iii) finally, with the addition of noise and deterministic compo-

nents (e.g. dynamical effects for the RVs), all observables can be

modelled jointly as GPs, with the ancillary time series serving to

constrain any activity component of the RVs.

4 Initial tests with the rational-quadratic kernel function led to very similar

results as when using the squared-exponential kernel. A rigorous approach

to choosing between models with different kernel functions would require

computation of Bayes factors for all models considered, an extension to this

work we defer to future consideration.
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Figure 1. Examples of functions drawn from a Gaussian process with a quasi-periodic covariance function, as defined in Equation 28, in each panel with

different hyper-parameter values (three function draws per panel). The hyper-parameter P sets a characteristic period for the function’s variations, λP controls

the extent to which the function varies within one period, and λe controls the time-scale over which the (quasi-)periodic component evolves (variations become

strictly periodic as λe → ∞). In all cases, the function amplitudes are arbitrary, and a constant mean function (offset) is assumed.

Our framework offers a number of advantages over existing

approaches. Firstly, modelling all available activity-sensitive time

series (line widths, asymmetries, chromospheric activity indices

etc.) jointly with RVs should allow tighter constraints to be placed

on activity signals in RVs, compared to exploiting only simple

correlations between RVs and (typically) one of these other time

series. Secondly, our general framework is flexible in that it uses

Gaussian process draws (and derivatives thereof) as basis functions

to model available time series, rather than e.g. sinusoids or other

simple parametric models, the inappropriate use of which could

lead to the inadvertent introduction of correlated signals into model

residuals; in the case our GP framework, the properties of basis

functions are informed in a more principled way by the observables.

Thirdly, our framework facilitates smooth interpolation between

observables, as well as extrapolation to future times (prediction).

Lastly, being based on GPs, the entire framework can be accom-

modated very naturally within the broader framework of Bayesian

inference, allowing uncertainties to be handled in a principled way:

overly-complex models are automatically penalised, nuisance pa-

rameters can be marginalised over, and rigorous model compar-

isons can be performed (Rasmussen & Williams 2006).

A possible disadvantage of our framework is that, in its current

form, it can only use the latent ‘activity’ GP and linear transforma-

tions thereof (including derivatives) to generate the activity signals

in observables; this is sufficient for linking e.g. RVs and photometry

via the FF ′ method, but the latter is only a first-order model. Al-

lowing for more general relationships between the latent Gaussian

process and the observables might be possible, although it is not im-

mediately clear that doing so would result in a computationally- or

Figure 2. Simplified, schematic sketch of the our GP-based scheme for the

joint modelling of an RV time series with ancillary activity diagnostics. The

unobserved, stochastic process giving rise to activity-related RV variations

(left panel) is assumed to be describable by a GP. The way in which this

propagates into observable time series (middle panels) is computed analyt-

ically, using a simple physical model, and so all observed time series can

be modelled jointly. A noise model and deterministic physical component

(right panel, e.g. Keplerian model to describe exoplanet-induced RV varia-

tions) completes the basic framework.
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mathematically-tractable framework. Another potential disadvan-

tage is that ‘vanilla’ Gaussian-process regression is not well-suited

to modelling large datasets (N ≫ 1000 observations): GP regres-

sion hinges on matrix inversion, with naı̈ve inversion algorithms

scaling as N3. Fortunately there do exist a number of approxima-

tion techniques which hold great promise for allowing efficient GP

regression on larger datasets (Lázaro-Gredilla et al. 2010; Chalupka

et al. 2012; Ambikasaran et al. 2014). In the case of time-series

analysis, there exist very efficient O(N) approaches for Gaussian

process regression based on approximate re-interpretation as filters

(Reece & Roberts 2010; Sarkka et al. 2013; Reece et al. 2014).

It should be noted that this is not the first instance of GPs being

used to model temporally-correlated stellar nuisance signals: Hou

(2014) presented a framework for using GPs to model stochastic

stellar oscillations in RV data, while Barclay et al. (2014) used GPs

to model photometric granulation signals in a Kepler-91 dataset.

The only published instances (to our knowledge) of GPs being used

specifically to model stellar activity signals are the work of Hay-

wood et al. (2014), who used a GP to mitigate the effects of active

regions without photometric counterparts in the CoRoT-7 system,

and the work of Grunblatt et al. (2015), who used a GP to model ac-

tivity in Kepler-78 datasets. In both cases, quasi-periodic GPs were

trained on photometric data, and a GP model with the same covari-

ance properties then used to model available RV data. The frame-

work we have presented may be seen as a more general and flexible

version of the aforesaid approach, in the sense that our framework

allows all available activity-sensitive time series to be modelled

jointly, and does not necessarily require simultaneous RV and pho-

tometry data. When both RV and photometric data are available,

the FF ′ formalism is built directly into the modelling; unlike the

FF ′ method, however, our framework would not require all active

regions to have photometric signatures in order to constrain their

RV contributions, provided at least one other activity-sensitive time

series (e.g. BIS) were available.

4 TESTS AND APPLICATIONS

4.1 Simulated data using naı̈ve physical model

As a first test of our GP framework, we used a number of different

functions (e.g. polynomials; sinusoids; wavelets; function draws

from GPs; etc.) to generate a range of synthetic time series to rep-

resent possible latent, activity-driving processes. We included peri-

odicities and correlations on many different time-scales, to test our

models’ ability to deal simultaneously with the three different time-

scales for variations discussed in Section 2 (as a simple example, a

sine wave with evolving amplitude, added to a long-term parabolic

trend). These time series were densely-sampled and noise-free. We

then used the relations in equations (14), (15), and (16) to simulate

∆RV, logR′
HK and BIS “observables”, computing derivatives nu-

merically using finite-difference approximation where applicable.

In other words, we generated the observables we would obtain for

arbitrary activity processes, assuming the physical model we used

to link the activity process to observables corresponded exactly to

reality.

Using a number of different covariance functions (including

those discussed in Section 3.4), our general findings were the fol-

lowing.

(i) By performing unconstrained optimisation of the free param-

eters in model likelihood functions Lm,k(θ,φ), all observed time

series could be modelled very accurately, with fits that appeared

“exact” upon visual inspection (though in fact with small residuals

consistent with numerical error due to finite precision arithmetic,

matrix inversion, derivative approximations, etc.).5

(ii) In all such cases, the fitted model’s latent process (GP) was

also correspondingly close to the latent process used to generate

the observables. In cases where the latent process used to generate

the observables was itself a GP, the hyper-parameters of this latent

process could be recovered accurately.

(iii) Imposing constraints on the hyper-parameters of chosen

mean and covariance functions led to the expected changes in fits.

For example, constraining the evolutionary time-scale λe (for the

quasi-periodic covariance kernel) to be longer than a certain time

prevented physically unrealistic, short-time scale “contortions” in

the fits. Similarly, forcing a finite period parameter P (again in

the quasi-periodic covariance kernel), with long evolutionary time-

scale λe, led to poor fits when the simulated observables contained

no actual periodicities.

(iv) When adding white Gaussian noise to the simulated observ-

ables, the quality of fits remained good – as measured by a reduced

chi-square statistic – provided that the estimated amplitudes of the

added noise were reasonable.

In sum, all aspects of the modelling worked as expected; we estab-

lished that the analytical aspects of (if not the physical assumptions

underlying) our framework were watertight, and that when this

framework was implemented numerically, we could indeed jointly

model multiple time series generated by an unobserved stochastic

process and its derivative.

4.2 Simulated data from SOAP 2.0

SOAP (Spot Oscillation and Planet) 2.0 is a software package de-

veloped by Dumusque et al. (2014) that simulates the effect of stel-

lar spots and plages on radial velocity and photometry; it extends

an older code, SOAP, developed by Boisse et al. (2012). The tool is

available online at http://www.astro.up.pt/soap2.

In brief, the original SOAP code works by dividing up a simu-

lated stellar disk into tens of thousands of resolution elements, with

a CCF (cross-correlation function, representing the typical spectral

line) for each element then being modelled by a Gaussian. Each

CCF is Doppler-shifted according to the projected rotational veloc-

ity, and weighted by a linear limb-darkening law. In this way, the

non-spotted emission of the visible disk may be computed in pho-

tometry and in RV. SOAP then calculates the positions of rotating

surface inhomogeneities, which are defined by their latitudes, lon-

gitudes, and sizes; the weighted CCF and flux for cells inside the

inhomogeneities are added to (in the case of bright spots or plages)

or removed from (in the case of dark spots) those of the non-spotted

star. Finally, SOAP delivers the integrated spectral line, the flux, the

RV, and the BIS as a function of stellar rotational phase.

SOAP 2.0 extends SOAP by considering, additionally, the

inhibition of convective blueshift inside active regions, the limb

brightening effect of plages, a quadratic limb darkening law, a re-

alistic active region contrast, and the resolution of the spectrograph

used for the (simulated) observations.

5 Multi-modality did not seem to pose a significant problem with the like-

lihood functions in question: a single run of a simple Nelder-Mead (“down-

hill simplex”) algorithm often sufficed to locate globally-optimal solutions,

though in a few cases the algorithm did benefit from multiple starting loca-

tions.

http://www.astro.up.pt/soap2
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Figure 3. GP model MAP fit to noise-free SOAP 2.0 data, based on a simulation of a single rotating spot at latitude φ = 45◦, and radius 10% of the stellar

radius. The dots indicate the simulated observations; the solid lines are model posterior means, and the shaded regions denote ±σ posterior uncertainty. The

posterior uncertainty in each time series is directly related to the amount of additive noise (σli terms) favoured in the MAP model.

A number of stellar, spot, and spectral parameters can be pro-

vided as inputs to the SOAP 2.0 code. In particular, the code allows

up to four active regions (each specified by a size, brightness, lati-

tude and longitude) to be included in the simulation.

The SOAP 2.0 code does incorporate simplifications in its

modelling: for example, the observed spectrum of a plage is con-

sidered to be the same as that of a spot, and some of the stellar

physics included in the modelling is informed only by Solar photo-

sphere and spot spectra, which are assumed to be representative of

all quiet photosphere regions and active regions. It also does not in-

clude long-term magnetic activity cycles in its simulations. Its out-

put nevertheless provides a far more realistic set of test cases than

those considered in Section 4.1 – especially because it does not im-

pose any ad hoc constraints on the functional relationship between

photometric, RV and BIS time series. Moreover, Dumusque et al.

(2014) showed that SOAP 2.0 manages to reproduce the activity-

induced variation on the early-K dwarfs HD 189733 and αCenB;

modelling the activity-induced variation on the latter star with our

new GP framework is considered in Section 4.4.

Given the wide range of possible outputs we could generate

from SOAP 2.0 (and then modify in various ways), we adopted the

following scheme in order to make a systematic study of how our

GP modelling framework could be applied to realistic data.

(i) Generate noise-free, densely-sampled outputs for a number

of different spot configurations, and perform fits to these outputs

(modelling photometric flux in place of logR′
HK, i.e. using the

FF ′ model; see Section 3.1). Based on these results, select a few

qualitatively different configurations – including the configuration

for which the poorest fits are obtained – for further study.

(ii) Study the residuals from the fits in the selected noise-free

cases, and examine how much additive white noise – i.e. the σli

terms in Equation (13) – should be allowed in the various time se-

ries to ensure that activity is accurately filtered from RVs.

(iii) Repeat the fitting as above (now allowing for additive white
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Figure 4. GP model MAP fit to noise-free SOAP 2.0 data, based on a simulation of four rotating spots (each with radius 5% of the stellar radius) at latitudes

φ = 0◦, 30◦, 45◦, 60◦, equally spaced in longitude. The dots indicate the simulated observations; the solid lines are model posterior means, and the shaded

regions denote ±σ posterior uncertainty. The posterior uncertainty in each time series is directly related to the amount of additive noise (σli terms) favoured

in the MAP model.

noise in the GP model), but this time modifying the SOAP code’s

output to include observational noise, realistic time sampling, etc.

(iv) Repeat the fitting as above, but with the injection of a Kep-

lerian signal into the RVs, and study whether the Keplerian signal

can be disentangled from the activity signal.

It should be emphasised that although this resembles a prin-

cipled approach to studying our modelling framework using the

SOAP 2.0 tool, we did not attempt to make a comprehensive study

of (amongst other things) the inter-related effects of different lev-

els of observational noise, different time samplings, different Ke-

plerian amplitudes, periods or phases, etc. Apart from being be-

yond the scope of this work, such an all-encompassing study would

likely have been misguided, given that both our model and the

SOAP 2.0 tool incorporates simplifying assumptions which are not

easily quantified. As such, discrepancies between SOAP output and

our GP models would not necessarily represent shortcomings of our

model; conversely, good agreement between SOAP output and our

model would not necessarily imply equally good agreement could

be expected with real observational data. Rather, the purpose of

these tests was to ascertain whether our framework would work at

all with fairly realistic simulated data, to understand how the σli

terms in our model should be constrained, and to get a conservative

though quantifiable estimate of the possible shortcomings of our

model.

We found that by allowing proportionately more additive noise

(the σli terms in Equation 13) in the ancillary time series than

the RV time series – in effect, attaching less weight in the fitting

to these time series, though still using them to constrain the la-

tent process’ hyper-parameters – we were generally able to obtain

RV residuals that resembled white Gaussian noise. In other words,

we were only interested in modelling activity-induced variations

in ∆RV accurately, and we could achieve this goal provided we

“loosened” the assumed relationships between ∆RV and ancillary,

activity-sensitive time series (see Section 3.3). When we did not
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Figure 5. GP model MAP fit to SOAP 2.0 data, based on the same one-spot configuration as in Fig. 3, but this time with time sampling and noise levels taken

from a real HARPS dataset. Each time series is split into four panels, to avoid plotting large gaps where no data are present. Residuals in the ∆RV time series

are plotted below the simulated data and fitted model, but for the sake of clarity, with an arbitrary vertical offset from the main time series.

allow for any white-noise in any of the time series, or set equal up-

per bounds on the white noise in all time series (effectively giving

equal weight to all time series), we generally ended up with better

fits to the ancillary time series, poorer fits for ∆RV, and correlated

residuals in all time series.

In particular, we deduced the following approximate upper

bounds to allow on the σli terms, if we wanted to ensure white

Gaussian RV residuals:

• σ∆RV: up to 5% of rms(∆RV);
• σflux: up to 10% of rms(flux);
• σBIS: up to 20% of rms(BIS).

Constraining the additive white noise in terms of the root mean

square (rms) variability of a given time series reflects the fact that

there are certain features in these time series that our model cannot

capture accurately (e.g. an inflection point in the flux time series,

when none exists in ∆RV), regardless of the details of the scaling,

offsets, etc. of the time series in question. These constraints are sim-

ply upper bounds on σli , and serve to quantify the extent to which

our framework fails to model all three time series simultaneously;

in practice, the values of σli will usually be smaller than these up-

per bounds, and will be determined by optimisation or marginali-

sation, as for any of the other free parameters in our framework.

To illustrate our findings, we consider the two representative

configurations of a single spot (spot radius 10% of the stellar ra-

dius) at latitude φ = 45◦, and of four equally-sized spots (each

with radius 5% of the stellar radius) at φ = 0◦, 30◦, 45◦, 60◦,

equally spaced in longitude. These configurations are representa-

tive of cases that were particularly easy and difficult, respectively,

to model with our GP framework. In both cases, the observed star in

the simulation had Solar parameters (5778 K effective temperature,

5115 K spot temperature, 25.05 d rotation period, Solar limb dark-

ening coefficients, etc., as per Dumusque et al. 2014), and the sim-

ulated instrument resolution (115,000) corresponded to a HARPS-
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Figure 6. GP model MAP fit to SOAP 2.0 data, based on the same four-spot configuration as in Fig. 4, but this time with time sampling and noise levels taken

from a real HARPS dataset. Each time series is split into four panels, to avoid plotting large gaps where no data are present. Residuals in the ∆RV time series

are plotted below the simulated data and fitted model, but for the sake of clarity, with an arbitrary vertical offset from the main time series.

like instrument. The observations we simulated were noise-free,

and spanned three rotation periods (approximately 75 days), with

uniformly randomised temporal sampling.

We obtained MAP fits of our GP model to the simulated

data; we used a quasi-periodic covariance kernel, and placed non-

informative priors on all free model parameters. Uniform priors

were used for parameters with known scales (e.g. P , expected to

correspond to a stellar rotation period; or Vr and Vc, which set the

amplitude for RV variations), while scale-invariant Jeffreys priors

were used for all other parameters (e.g. λP, λe). Typical computa-

tion time (on a modern laptop) was on the order of a few minutes

to obtain a MAP solution, using a single run of a Nelder-Mead

(downhill-simplex) algorithm. We established (probable) global

optimality by making sure downhill-simplex runs from different

starting points converged to the same optimum.

Fig. 3 shows results for the ‘easy’ (one-spot) configuration,

while Fig. 4 shows results for the ‘difficult’ (four-spot) configura-

tion. In both cases, the ∆RV time series could be modelled ex-

tremely accurately (rms of residuals on the order of 0.01 m s−1 in

both cases). The ancillary time series were, necessarily, modelled

less accurately – especially in the case of the four-spot configu-

ration, where the equatorial spot contributed the most problematic

features to the ancillary time series. The magnitude of the σli terms

(additive white noise) used in the modelling is indicated by the size

of the ±σ posterior uncertainties plotted in these figures.

We next considered using more realistic time sampling

and adding noise to the simulated observations. To do so we

used temporal sampling taken directly from the publicly-available

αCenB dataset from Dumusque et al. (2012), which featured

nearly four years’ worth of data, with gaps of several months be-

tween observing seasons. We also added white Gaussian noise to

the SOAP 2.0 output: for each time series, the noise was scaled so

to be the same fraction of the rms variation of the time series itself

as was the corresponding αCenB noise estimate.
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Figure 7. GP model MAP fit to SOAP 2.0 data, based on the same four-spot configuration as in Fig. 4, with time sampling and noise levels taken from one

season of a real HARPS dataset, plus an injected Keplerian signal. Here the injected signal has an amplitude comparable to, but period different from, the

rotationally-modulated activity signals. The top panel shows the model fit to the ∆RV time series, including residuals (fits to ancillary time series not shown

here); the middle panel shows the Keplerian component of the fit (open circles represent injected signal before noise was added); and the bottom panel shows

the normalised Lomb-Scargle periodogram of the ∆RV residuals, along with false alarm probability thresholds. The dotted grey peak in the periodogram

around 10.0 d indicates the significant excess power that remains in the ∆RV residuals when performing a fit without a planet (the rest of the power spectrum

remains qualitatively similar, and for clarity is not included in full).

Again we found that we could model ∆RV very accu-

rately: for both spot configurations, the rms of ∆RV residuals was

marginally smaller than the rms of the observational noise, indicat-

ing that our fits were limited only by our (simulated) noise floor.

Figs. 5 and 6 show results for the ‘easy’ and ‘difficult’ spot con-

figurations, as before. Despite the gaps in the observational cover-

age, the fitted models accurately recovered the structure of the pe-

riodic variations in all time series (with the exception of a few out-

lier points, reflecting our model’s inability to reproduce very sharp

changes in one time series when another changes less sharply, since

all time series are modelled with combinations of a single function

and its first derivative). It is worth emphasising that when the data

to be modelled include observational noise, the σli terms in our

model serve to account for both this noise and any features in the

ancillary time series that our model cannot accurately reproduce

(we could artificially split the white-noise terms in the covariance

matrix into ‘observational’ and ‘model imperfection’ components,

although this would not affect in any way the practical implemen-

tation of our model).

Finally, having ascertained that our framework allowed

activity-induced RV variations to be modelled accurately in iso-

lation, we turned our attention to planet injection tests. We wanted

to answer the question: Could we use our framework accurately

to disentangle activity-induced RV variations from other injected
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Figure 8. GP model MAP fit to SOAP 2.0 data, based on the same four-spot configuration as in Fig. 4, with time sampling and noise levels taken from

one season of a real HARPS dataset, plus an injected Keplerian signal. Here the injected signal has an amplitude comparable to, and period identical to, the

rotationally-modulated activity signals. The top panel shows the model fit to the ∆RV time series, including residuals (fits to ancillary time series not shown

here); the middle panel shows the Keplerian component of the fit (open circles represent injected signal before noise was added); and the bottom panel shows

the normalised Lomb-Scargle periodogram of the ∆RV residuals, along with false alarm probability thresholds.

(non-activity) signals, e.g. planetary signals? Our general finding

was that, as expected, modelling the ancillary, activity-sensitive

time series in conjunction with ∆RV did indeed allow the activ-

ity component of ∆RV to be very well constrained, but – crucially

– without the non-activity RV signals being subsumed by the same

GP model. Broadly speaking, we found that it became more and

more difficult to disentangle injected Keplerian signals from activ-

ity signals as the amplitude of the injected signals grew smaller

relative to the activity signals (and, of course, relative to observa-

tional noise). Having a Keplerian signal with a period very similar

to that of the activity signal generally did not make disentangling

activity and injected signal any more difficult, provided the ampli-

tude of the Keplerian signal was not also much smaller than the

activity signal.

To illustrate these findings, we present as examples

three qualitatively-different Keplerian signals injected into the

∆RV time series arising from the ‘difficult’ four-spot configura-

tion considered earlier. The activity-induced ∆RV variations aris-

ing from this configuration had a semi-amplitude of 1.65 m s−1,

and a period of 25.05 days. We simulated observational noise using

the αCenB template as before, and we used time sampling corre-

sponding to only one season of the αCenB data, spanning approx-

imately half a year (such that the simulated data sampled about 7

stellar rotations). The injected Keplerian signals we consider have

the following properties (where K is the RV semi-amplitude, and

PK is the period of the variations; we use PK to distinguish this

period from the period hyper-parameter P in our quasi-periodic

covariance kernel):
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Figure 9. GP model MAP fit to SOAP 2.0 data, based on the same four-spot configuration as in Fig. 4, with time sampling and noise levels taken from one

season of a real HARPS dataset, plus an injected Keplerian signal. Here the injected signal has an amplitude five times smaller than, and period identical to, the

rotationally-modulated activity signals. The top panel shows the model fit to the ∆RV time series, including residuals (fits to ancillary time series not shown

here); the middle panel shows the Keplerian component of the fit (open circles represent injected signal before noise was added); and the bottom panel shows

the normalised Lomb-Scargle periodogram of the ∆RV residuals, along with false alarm probability thresholds.

(i) K = 1.4 m s−1, PK = 10.0 d;

(ii) K = 1.4 m s−1, PK = 25.05 d;

(iii) K = 0.28 m s−1, PK = 25.05 d.

Other orbital parameters were identical in all three cases; in partic-

ular, eccentricity was fixed at e = 0.1. Case (i) corresponds to an

orbiting planet which induces an RV signal with amplitude com-

parable to the activity signal, and with a period that is not close to

the stellar rotation period or any of its harmonics. Case (ii) adds

the complication of the planet having a period very similar – iden-

tical, in fact – to the period of the rotational activity signal, while

case (iii) goes one step further by representing a planetary signal

with periodic identical to, but amplitude fives times smaller than,

the activity signal.

Fits to data including these injected signals are presented

in Figs. 7, 8, 9 (the Keplerian component was included in our

GP model through its mean function; non-informative priors were

placed on all Keplerian orbital parameters). MAP parameter esti-

mates for selected Keplerian orbital elements in the planet injection

tests, along with ±σ posterior uncertainties, are presented in Ta-

ble 1. All parameter inference was performed using the MultiNest

nested-sampling algorithm (Feroz & Hobson 2008; Feroz et al.

2009, 2013), with the GP hyper-parameters first fixed at their MAP

values, as per the computational approximation motivated in Gib-

son et al. (2012). Typical computation time to obtain posterior dis-

tributions for physical parameters, using MultiNest on a modern

laptop, and using MultiNest’s default convergence criteria, was on

the order of tens of minutes. Posteriors were generally unimodal
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(although in general, of course, this would depend on the model in

question, the data sampling, etc.)

In cases (i) and (ii), the fitted Keplerian amplitudes and peri-

ods agree with the true values to within a small fraction of a percent.

In case (iii), the absolute errors in the fitted values are larger (the

recovered amplitude, for example, is clearly a little smaller than

the true amplitude), but of course one could never expect perfect

fits given an imperfect model, noise, and discrete time sampling.

Nevertheless, it is reassuring that the true values do still lie within

the ±2σ credible intervals around the MAP values.

In all cases, the rms of the ∆RV residuals was on the order of

0.2 m s−1. The Lomb-Scargle periodogram6 of the ∆RV residuals

Figs. 7, 8, 9 all show significant peaks at 6.5 d: we interpret this as

the fourth harmonic of the activity signal, as this feature remained

present in the ∆RV residuals even when the injected Keplerian sig-

nal had a period that is not similar to the stellar rotation or any of

its harmonics, e.g. as in case (i). The only other significant peaks in

the periodogram of the residuals, clustered around 1 d, arise from

the window function (time sampling) in the αCenB dataset.

In cases (i), when we did not include a Keplerian component in

the modelling, the power spectrum of the ∆RV residuals contained

significant excess power at 10.0 d, i.e. the planet’s period - a telltale

sign that the periodic ∆RV variations could not be explained by ro-

tational activity alone. When not including a Keplerian component

in cases (ii) and (iii), visual inspection of the periodogram of resid-

uals did not by itself point clearly to the presence of a planet with

period 25.05 d (the same as the stellar rotation period); however,

the reality of the Keplerian components could be inferred by the

significant improvement in the likelihoods of the models (approx-

imated e.g. using Bayesian Information Criteria; see Section 4.3)

that included a planet.

Thus we have demonstrated that our GP framework is able to

disentangle activity signals from Keplerian signals, even when the

Keplerian signal has a period identical to that of the activity signal,

and an amplitude much smaller than the activity signal (close to the

noise floor, in fact). Although the example we presented featured

imperfect removal of the activity signal from the ∆RV data (since

the residuals contained a signature of one of the activity signal’s

harmonics), the ancillary time series served the role of constrain-

ing very tightly the activity component in the ∆RV time series,

allowing the Keplerian signal to be modelled accurately. Presum-

ably, a more physically-realistic incarnation of our GP framework

(see Section 5) will allow activity signals to be even more tightly

constrained by the ancillary time series. We also note that the har-

monic of the activity signal was not present in the ∆RV residuals

when modelling the signal arising from the same configuration but

with more data, as in Fig. 6, where nearly four years’ worth of data

were included in the modelling. Nevertheless, the presence of a cor-

related, periodic artifact of the activity signal in the RV residuals

in this test underscores the importance of accurate activity mod-

elling, and the dangers of hastening to a planetary interpretation of

signals in residuals. It would be worth checking, in future work,

whether a Bayesian model comparison test would clearly penalise

and disfavour a model that included a second Keplerian component

to explain this signal.

We conclude the discussion of our SOAP 2.0 tests by noting

6 We computed normalised Lomb-Scargle periodograms based on the im-

plementation described by Press (2007); false alarm probabilities were esti-

mated by randomly permuting the original data, keeping observation times

fixed.

the following shortcomings of these tests, along with possibilities

for future extensions.

(i) Though the covariance kernel we used can naturally accom-

modate quasi-periodic signals (see Fig. 1), our simulations did not

include any spot evolution; the SOAP 2.0 code does not directly

facilitate such evolution. In principle, though, activity signals aris-

ing from different spot configurations could be combined, perhaps

with large gaps in between the different signals, to simulate evolv-

ing active regions. Long-term magnetic cycles could be simulated

in a similar fashion.

(ii) Non-informative (uniform and Jeffreys) priors were placed

on all model parameters/hyper-parameters. Improved fitting could

be expected if we were to use priors informed by a better under-

standing of e.g. the hyper-parameters of our quasi-periodic covari-

ance kernel, or more physically-motivated priors for Keplerian sig-

nals.

(iii) We did not include any plages in the active regions simu-

lated by SOAP 2.0. At the time of writing, the SOAP 2.0 code’s

output appeared to include a non-trivial amount of high-frequency

noise when including plages in the simulations. Preliminary tests

with a smoothing filter applied to the SOAP 2.0 output suggest

that even when plages are included, the activity components in

∆RV time series can still be modelled accurately, although the

large residuals in the ancillary time series in these tests underscore

the simplicity of the physical model used in our framework. Com-

plications arising from the use of smoothing filters notwithstanding,

these tests suggest the need for a better understanding of the short-

comings of the physical model (ultimately to be replaced, hope-

fully, by a more sophisticated one) currently incorporated into our

GP framework.

4.3 The planet around Gl 15 A

Howard et al. (2014) – hereafter H14 – reported the discovery

of low-mass planet orbiting Gl 15 A, part of the Gl 15 binary

system, based on RVs from the Eta-Earth survey using HIRES.

They characterise Gl 15 Ab as a planet with minimum mass

M sin i = 5.35 ± 0.75M⊕, based on an RV semi-amplitude

of K = 2.94 ± 0.28 m s−1. The planet has an orbital period

PK = 11.4433 ± 0.0016 d, and an orbit that is consistent with

circular. The detection and characterisation of Gl 15 Ab was based

on data with a 15-year baseline (1997 January through 2011 De-

cember).

Gl 15 A itself is a modestly-active, M2 V dwarf. Over their

15-year baseline, H14 detected a 9± 2.5 year activity cycle with a

semi-amplitude of ∼ 0.05, in the dimensionless units of SHK (de-

rived from logR′
HK), which represents a ∼ 10% fractional change;

this variation may be a magnetic cycle analogous to the solar cy-

cle. On shorter time-scales, they detected a strong periodicity in

SHK measurements with period near 44 d, which they interpreted

as rotationally-modulated activity. The fact that they also detected

these ∼ 44 d modulations in optical photometry and RV time se-

ries supported this interpretation. On the other hand, the 11.44 d

RV signal was not detected in photometry or SHK, strengthening

the planetary interpretation of the 11.44 d signal.

Since the 11.44 d period of Gl 15 Ab could easily be mistaken

for the fourth harmonic of the ∼ 44 d stellar rotation period, H14’s

publicly-available dataset provides an interesting test case for our

GP model: an obvious (though perhaps unfounded) concern in this

case would be that the GP activity model would simply absorb the

planetary signal.
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Table 1. MAP parameter estimates for selected Keplerian orbital elements in the planet injection tests, along with ±σ posterior uncertainties. Parameter

inference was performed using the MultiNest nested-sampling algorithm, with non-informative priors placed on all GP mean function (Keplerian) parameters.

∆ RV semi-amplitude K [m/s] Period PK [days] Eccentricity e

Model Truth Model Truth Model Truth

Case (i) 1.400± 0.045 1.40 9.9941± 0.0086 10.0 0.118± 0.016 0.10
Case (ii) 1.372± 0.070 1.40 25.09± 0.26 25.05 0.1050± 0.0081 0.10
Case (iii) 0.334± 0.047 0.28 25.10± 0.89 25.05 0.1051± 0.0080 0.10

Accordingly, we modelled the 15 years of data published by

H14, comprising 117 RV and SHK measurements, 59 of which

were taken in the 2011 season (BJD >2,455,500). As for our ear-

lier tests, we used a quasi-periodic covariance kernel for the la-

tent process driving activity; we also included a linear RV trend

in both our single-planet and planet-free models, to account for the

∼ 2 m s−1 yr−1 acceleration of Gl 15 A by its companion Gl 15 B.

When we did not include a Keplerian component in the mean

function for the ∆RV time series, the Lomb-Scargle periodogram

of the residuals contained multiple significant peaks, including one

at around 11.4 days, indicating that the putative planetary signal

was not absorbed by the activity model: since this periodic mod-

ulation was not present in the SHK time series, our model did not

allow it in the ∆RV time series. On the other hand, when includ-

ing a Keplerian component with circular orbit in the ∆RV mean

function, the quality of the fit improved significantly, and a Lomb-

Scargle periodogram of the residuals indicated that no significant

periodicities remained. Using Bayesian Information Criteria (BIC)

as a first-order approximation to Bayes factors (Berger & Peric-

chi 1996; Raftery 1999), our single planet model was strongly pre-

ferred with ∆BIC = 27; H14 arrived at the same conclusion, with

∆BIC = 24.

Our GP model, one-planet fit to H14’s data is presented in

Fig. 10, while detailed diagnostics of the ∆RV residuals (rms:

0.69 m s−1) are presented in Fig. 11. Our MAP estimate for the

∆RV semi-amplitude of the planetary signal was K = 2.22 ±
0.36 m s−1, and our estimate for its period PK = 11.4431 ±
0.0010 d. H14 obtained K = 2.94 ± 0.28 m s−1, and PK =
11.4433± 0.0016 d; thus our approach to modelling H14’s dataset

led us to detect a planet with period and amplitude consistent with

those derived by H14, to within our respective 95% (2σ) credi-

ble intervals for these parameters. The MAP estimate of the pe-

riod hyper-parameter in our quasi-periodic covariance kernel was

P = 43.8 ± 0.9 d, which is consistent with the ∼ 44 d stellar

rotation period derived by H14.

We did not consider any multiple-planet models. We defer

such analyses of this and other datasets to future work, in which

we aim to leverage a better understanding of appropriate priors

over our GP model’s hyper-parameters to perform more rigorous

Bayesian model comparison.

4.4 The α Cen B dataset

The announcement by Dumusque et al. (2012) of the detection of

a planet around the modestly-active, K1 V star αCenB caused

a major stir in the exoplanet community: if verified, the claimed

planet αCenBb would be the closest (distance: 1.34 pc) exo-

planet to Earth ever discovered, and the lowest-minimum-mass

planet detected around a Solar-type star. In particular, the claimed

planet has an orbital period of 3.24 d, and a minimum mass of

1.13± 0.09 M⊕.

Dumusque et al. (hereafter D12) obtained 459 HARPS RV

datapoints, along with ancillary FWHM, BIS and logR′
HK time

series, over a period of 4 years. The D12 RVs are dominated by a

long-term linear trend, which is due to the orbit of αCenB around

the centre of mass of the αCen binary system. Once this trend is

subtracted, a gradual rise and fall over the 4-year span of the obser-

vations is evident, as well as variability on shorter time-scales. D12

interpreted the gradual rise and fall as a signature of the star’s activ-

ity cycle, and the quasi-periodic variations on time-scales of a few

weeks as caused by the rotational modulation of star spots. Lastly,

there are short-term variations evident in all time series. These vari-

ations are correlated in time, with a time-scale of a few days, as well

as with each other (across all three time series), albeit in a some-

what complex way. It is unclear whether these variations might be

due to activity, observational noise, or a combination of both. Of

course, in the case of the RV data in isolation, a part of this vari-

ability could also be explained by a planetary companion with a

relatively short orbital period.

In any event, D12 used a variety of mathematical transfor-

mations to try to filter out many sources of RV variance – in-

cluding starspots, photospheric granulation, and binary motion due

to the presence of companion star αCenA – to isolate the puta-

tive planet’s RV signal. The amplitude of the binary-motion signal

they removed was on the order of hundreds of m s−1; the com-

bined amplitude of the nuisance signals ascribed to stellar activ-

ity they removed was on the order of 10 m s−1; and the final,

claimed planetary signal they isolated had a semi-amplitude of

about ∼ 0.5 m s−1. For comparison, the long-term precision of

HARPS is 0.8 m s−1(Mayor et al. 2003).

However, the detection was a contentious one, with a num-

ber of authors calling into question the planet’s existence (see e.g.

Hatzes 2012, 2013). Some of the possible reservations about the

approach used by Dumusque et al. include the following.

(i) Short-term stellar rotational activity was dealt with by fitting

sinusoidal waves at the rotational period of the star, and a variable

number of harmonics. The constraint that all activity-induced vari-

ations should be strictly sinusoidal is very hard to motivate phys-

ically (Lanza et al. 2001; Brinkworth et al. 2005), and subtracting

multiple sinusoids from the ∆RV time series opens the possibility

of inadvertently introducing periodic signals (or harmonics thereof)

that weren’t present in the original data.

(ii) Available activity-sensitive time series (BIS and logR′
HK)

were not jointly modelled with the ∆RV time series – even though

it is in the logR′
HK time series that the rotational signal was most

prominent. Instead, a low-pass smoothing filter was applied to the

logR′
HK time series; it was then simply noted that the smoothed

time series looked similar to the ∆RV time series, and the shape

of this smoothed time series was then used to fit the radial velocity

variations in order to mitigate the effects of long-term activity.

(iii) Each of the four observing seasons was fitted independently

of the others, thus ignoring any information about possible long-

term trends/correlations in the time series, and resulting in a model

with almost four times as many degrees of freedom as might’ve
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Figure 10. GP model MAP fit to the publicly-available Gl 15 A data from H14. The fit was performed to the full 15 years of data, comprising 117 observations;

since most of the observations were made during the 2011 season (BJD >2,455,500), however, only data from this season are plotted here. The dots indicate

H14’s data (with estimated errors, where applicable); the solid lines are model posterior means, and the shaded regions denote ±σ posterior uncertainty.

been the case if fitting were performed for all seasons simultane-

ously.

(iv) The model used to fit the ∆RV time series alone, without a

planet, contained 23 free parameters, and the combined fit for ac-

tivity and a planet contained at least 26 free parameters. The ques-

tion of possible over-fitting was not addressed in either case. For

comparison, our baseline/planet-free GP model – discussed below

– models multiple time series simultaneously, yet contains signifi-

cantly fewer free parameters than D12’s model.7

(v) No rigorous model comparison was performed to quantify

the evidence for the existence of the planet, i.e. the extent to which

a planetary model is (or isn’t) preferred.

Given that our GP framework for modelling activity would

allows us, in principle, to avoid all of these limitations, we decided

to apply it to the publicly-available D12 dataset.

As in all previous tests, we used a quasi-periodic covariance

kernel for our latent process. We modelled all 459 datapoints in

each of the ∆RV, logR′
HKand BIS time series jointly using this

single latent process and its derivative.8 The ∆RV time series was

corrected for binary motion, with a residual DC offset removed

7 Of course, a more meaningful application of Occam’s razor would re-

quire marginalisation over the full volumes of respective model parameter

spaces.
8 The FWHM data are noisier than, but very tightly correlated with,

logR′
HK, and thus are unlikely to contain useful extra information. Both

can be seen as proxies for the integrated spot coverage of the visible hemi-

for each season (in general we obtained identical results whether

we removed long-term drifts prior to the GP modelling, or in-

cluded extra terms in the GP mean functions to take these into ac-

count; as a computational convenience to reduce the dimensional-

ity of our hyperparameter space, then, we opted for the former ap-

proach). Error estimates were published by D12 for the ∆RV and

logR′
HK time series; these estimates were included in our mod-

elling. Though not directly provided, BIS errors were estimated

(following D12’s prescription) using provided photon-noise esti-

mates. Finally, as before, non-informative priors were placed on all

model (hyper)parameters.

Our baseline GP model did not incorporate any Keplerian

component in the mean function for the RVs. In total, the combined

model for all three time series contained 14 free (hyper)parameters

– in particular, it should be noted that all three time series across

all four observing seasons were fitted using this same model. This

stands in contrast to the approach used by D12, where the activity

signal in each of the four seasons was fitted independently, since

the model they used required that stellar features did not evolve

significantly during the time considered, whereas spots and plages

and spots are known to evolve on a time-scale of a few rotations.

The MAP fit using this model is presented in Fig. 12, while detailed

diagnostics of the ∆RV residuals are presented in Fig. 13.

The ∆RV residuals appear to be normally-distributed, with

sphere. On the other hand, the BIS also depends on the velocity of the

stellar surface at the location of the spots (or active regions).
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Figure 11. Diagnostics of the ∆RV residuals for Gl 15 A, after subtracting our MAP GP model (stellar activity, plus binary orbit and one planet). The top left

panel contains the residuals plotted as a function of time, spanning some 15 years; the top right panel contains a histogram of the residuals (rms: 0.69 m s−1);

and the bottom panel shows the normalised Lomb-Scargle periodogram of the residuals, along with false alarm probability thresholds.

rms 0.70 m s−1. The only significant features in the power spec-

trum of the ∆RV residuals, presented in Fig. 13, is a complex of

peaks tightly clustered around 1.00 d (< 0.1% false alarm proba-

bility), and a broad complex of peaks clustered near the ∼ 37.8 d

stellar rotation period (> 1% false alarm probability). The lack of

other peaks in the residuals suggests that the ∆RV variations can

be explained as arising from activity alone.

The presence of residual power near the stellar rotation period

indicates that our framework does not do a perfect job of describ-

ing the rotationally-modulated activity signals – at least, not when

fitting all four seasons with a single model. This might be indica-

tive of either differential rotation, as suggested by D12, or of spot

pattern evolution; a more detailed investigation of this possibility is

deferred to a future study.

As noted in Section 4.2, the peaks around 1.00 d arise from

the window function in the αCenB dataset. In particular, there are

peaks at f1 = 0.97 d−1 and f2 = 1.03 d−1; these peaks appear

in the power spectra of both the model and the observations, and

may be interpreted as the first-order daily aliases of the 1/37.8 d−1

rotational frequency. A third peak at f3 = 1.00 d−1 appears only

in the ∆RV residuals, but not in the model or the observations: this

may be interpreted as a beat frequency arising during the computa-

tion of residuals, on account of interference between the other two

closely-spaced frequencies, f1 and f2.9

When we did include a Keplerian component in the mean

function for the RVs, we were unable to extract any significant

(non-activity) signal. Even when forcing the Keplerian signal to

have a period of close to 3.24 d, the MAP solution favoured a

Keplerian signal with an arbitrarily small (within the bounds of

a Jeffreys prior) amplitude. Conversely, when forcing the Keple-

rian signal to have an amplitude of about ∼ 0.5 m s−1, the MAP

solution favoured either a very short (PK ≪ 1 d) or very long

(PK ≫ 1 year period), so that this signal essentially became a

DC offset to the ∆RV time series. Furthermore, our non-detection

of the planetary signal was also robust against different choices

of covariance kernel functions (e.g. squared exponential, rational

quadratic). Nor did allowing for somewhat tighter or looser links

between the RVs and the activity-sensitive logR′
HK and BIS time

series, by modifying the priors on the three σli terms in our model,

allow us to detect a 3.24 d Keplerian signal in the data.

In summary, using the activity-sensitive logR′
HK and BIS

time series to constrain the activity component of the RV time se-

ries suggests that all of the significant variation in the RV time se-

9 To understand the beat phenomenon, it is useful to re-

call the trigonometric identity: sin(2πf1t) ± sin(2πf2t) =

2 sin
(

2π f1±f2
2

t
)(

2π f1∓f2
2

t
)

.
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ries can be explained as being induced by stellar activity, without

requiring any additional Keplerian component.

We do not claim that this finding demonstrates that the claimed

planet αCenBb definitely does not exist; however, the difficulty

we have in recovering the signal as something unrelated to activity

underscores just how important it is to model activity carefully and

robustly, if we are to detect and characterise planets at the sub-

m s−1-level.

In the near future, we aim to make a more rigorous and com-

prehensive study of D12’s αCenB dataset. We would like to in-

vestigate in which situations our planet-free models lead to a signal

with a 3.24 d period in the RV residuals. This should happen at least

in some cases, since our GP framework should be able to reproduce

the model of Dumusque et al. as a special case – even if only with

a non-optimal model (see Fig. 14), and/or when loosening signifi-

cantly the links between the ancillary, activity-sensitive time series

and the RVs. Concurrently, we would like to undertake detailed

studies of planetary detection limits using both our GP framework

and a model akin to that used by Dumusque et al., for synthetic

data similar to the αCenB dataset. To draw definitive conclusions

about whether the data really suggest the presence of a planetary

signal, we would like to perform rigorous Bayesian model compar-

ison, i.e. of planet vs. no-planet models. Finally, planetary consid-

erations aside, we would like to investigate whether the inability of

our model to remove all of the rotationally-modulated activity in

the ∆RV time series might be indicative of either differential ro-

tation, or spot pattern evolution; one approach might be to use our

GP framework to model each of the four seasons of data indepen-

dently, and to study the changes (if any) in characteristic periodicity

for each season. These analyses will form the focus of a separate

paper.

In the longer term, more measurements with denser time sam-

pling – coupled with a better understanding of the noise characteris-

tics of the RV data – could also lead to more definitive conclusions

about the existence of αCenBb.

5 DISCUSSION AND CONCLUSIONS

Stellar activity can induce RV variations that can drown out or even

mimic planetary signals, and it is notoriously difficult to model and

thus mitigate the effects of these activity-induced nuisance signals.

This is expected to be a major obstacle to using next-generation

spectrographs to detect lower and lower mass planets, planets with

longer periods, and planets around more active stars. We have pre-

sented here a new framework for modelling RV time series jointly

with one or more ancillary, activity-sensitive time series (including

photometry, line widths, chromospheric activity indices, line asym-

metries, etc.), with a view to better constraining activity signals in

RVs, and thus better detecting and characterising possible planets.

Our framework treats the underlying stochastic process giving

rise to activity signals in all available observables (RVs and ancil-

lary time series) as being described by a GP, with suitably-chosen

covariance function. We then use physically-motivated and empir-

ical models to link this GP to the observables; with the addition of

noise and deterministic components (e.g. dynamical effects for the

RVs), all observables can be modelled jointly as GPs, with the an-

cillary time series thus serving to constrain the activity component

of the RVs.

We demonstrated the performance of our framework using

both synthetic (Sections 4.1 and 4.2) and real (Sections 4.3 and 4.4)

data. We started by noting that our framework can model all avail-

able time series jointly, and exactly, in the simplest case where the

physical/empirical relationships between all time series holds ex-

actly. Next, using more realistic data simulated using the SOAP 2.0

tool (including noise and realistic time sampling), we showed that

our framework does a good job of constraining activity signals in

RV data, provided we allow for additive white-noise terms in each

time series we model; these additive noise terms may be interpreted

as accounting for the extent to which our assumed relationships be-

tween the time series does not hold exactly, observational noise

notwithstanding. We also showed that the framework can be used

to disentangle activity and planetary signals – even when the plan-

etary signal is weaker than and has a period identical to the activ-

ity signal – thus serving its intended purpose. Moving to real data,

we applied our framework to the Gl 15 A system; we were able

to disentangle activity and planetary components in a HIRES RV

dataset, and obtained a fitted planetary model which was consistent

with one published by Howard et al. (2014). Finally, we turned our

attention to the much-discussed αCenB dataset: we showed that,

contrary to the analysis of Dumusque et al. (2012), we were able

to attribute the observed radial velocity variations to stellar activity,

without requiring a planet.

Although our framework hinges, at least partly, upon a num-

ber of approximations and empirical relationships, its performance

appears promising, and it offers a number of advantages over ex-

isting approaches to mitigating activity in RV datasets. It is flexi-

ble; though algebraically non-trivial, it is conceptually simple, and

makes minimal assumptions about the properties of the underly-

ing processes inducing activity signals in observables; it facilitates

smooth interpolation between observables, as well as extrapola-

tion to future times (prediction); and lastly, the entire framework

is accommodated very naturally within the broader framework of

Bayesian inference. As such, we hope that our new framework will

form a useful addition to the toolbox of those confronted with mit-

igating stellar activity signals in RV datasets.

An investigation of ways in which our framework could be

improved would represent a natural extension to this work. Some

possibilities worth studying include the following.

(i) Developing a more realistic relationship between RV and an-

cillary time series, especially the BIS time series – perhaps based

on theoretical considerations, or perhaps through empirical means,

e.g. by studying simulated data. Preliminary tests suggest the in-

clusion of a curvature term (second derivative of the latent pro-

cess) could be helpful for more accurately coupling the RV and BIS

time series; though it would add significant algebraic complexity, it

would only add one free parameter to the overall model.

(ii) Performing more comprehensive studies of planet detection

rates and false-positive rates under our framework.

(iii) Extending the SOAP 2.0 tests to include plages and spot

evolution.

(iv) Investigation of a more physically-motivated GP covariance

function, e.g. a function from the Matérn class of covariance func-

tions, which are differentiable only a finite number of times, and

have the squared exponential function as a smooth limiting case

(Rasmussen & Williams 2006).

(v) Investigation of more physically-motivated priors for all

model (hyper)parameters, with a view to computing Bayes factors

and performing rigorous model comparison. In particular, this will

require marginalisation over GP hyper-parameters, rather than fix-

ing them at their MAP values.

(vi) Using raw, high-resolution spectra to construct a quantity

that is a more sensitive proxy to stellar activity than ones currently
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in widespread use (BIS, logR′
HK, etc.). An artificial neural network

might be useful for machine-learning such a quantity from a large

dataset.

(vii) Investigation of including a GP component to model cor-

related instrumental noise, rather than forcing such noise to be ar-

tificially absorbed by an additive white-noise component, as is the

case in our current framework.

In tandem with the above, as discussed in Section 4.4, we aim to

present in the near future a far more detailed and rigorous analysis

of the much-discussed αCenB dataset. We would like to inves-

tigate in which situations our fitted planet-free models lead to a

signal with a 3.24 d period in the RV residuals (this should happen

at least in some cases, since our framework should be able to re-

produce the model of Dumusque et al. as a special case); we would

like to undertake detailed studies of planetary detection limits us-

ing both our GP framework and a model akin to that used by Du-

musque et al., for synthetic data similar to the αCenB dataset;

and we would like to perform Bayesian model comparison (planet

vs. no-planet models) in order to draw definitive conclusions about

whether the data really suggest the presence of a planetary signal.

These analyses will form the focus of a separate paper.
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APPENDIX A: COVARIANCE BETWEEN

OBSERVATIONS AND DERIVATIVE OBSERVATIONS

Note that some of the equations given below already appear, albeit

without further explanation, in the main body of the paper. The

aim of this appendix is to provide some further details to allow

these covariance kernels and their derivatives to be implemented

computationally.

Suppose we have a Gaussian process G characterised by a co-

variance function γ. Then the covariance between an observation

of G at time ti, and an observation of its derivative Ġ at time tj , is

given by

γ(G,dG)(ti, tj) =
∂

∂t
γ(G,G)(t, tj)

∣

∣

∣

t=ti

, (A1)

where γ(G,G)(ti, tj) is used to denote the covariance between

(non-derivative) observations of G at times ti and tj . Similarly, the

covariance between two observations of Ġ at times ti and tj is

γ(dG,dG)(ti, tj) =
∂

∂t′
∂

∂t
γ(G,G)(t, t′)

∣

∣

∣

t=ti

∣

∣

∣

∣

t′=tj

. (A2)

For convenience, we present below the relevant expressions

for γ(G,dG), γ(dG,dG) etc. for the two covariance functions con-

sidered specifically in this paper. The above relations are, however,

valid for any covariance function γ; as such, the two examples be-

low serve as an illustration of how the relevant expressions can be

derived for any covariance function.

A1 Squared-exponential covariance

Using our ‘generalised squared-exponential’ covariance function,

the expression for the covariance between two observations of a

process G at times t and t′ is:

γ(G,G)
se (t, t′) =

N
∑

i=1

β2
i exp

[

− (t− t′)
2

2λ2
i

]

; (A3)

the βi’s control the relative amplitude of the N > 1 components

with evolutionary time-scales λi. For the case N = 1, this reduces

to the standard square-exponential covariance function.

Following equation (A1), the covariance between an observa-

tion of G at time t and an observation of Ġ at time t′ is given by

γ(G,dG)
se (t, t′) = −

N
∑

i=1

β2
i

(t− t′)

λ2
i

exp

[

− (t− t′)
2

2λ2
i

]

, (A4)

and, by equation (A2), the covariance between an observation of G
at time t′ and an observation of Ġ at time t is given by

γ(G,dG)
se (t′, t) = −γ(G,dG)

se (t, t′). (A5)

The covariance is symmetric, by definition, from which it follows

that γ
(G,dG)
se (t′, t) = γ

(dG,G)
se (t, t′). Finally, the covariance be-

tween two observations of Ġ at times t and t′ is given by

γ(dG,dG)
se (t, t′) =

N
∑

i=1

β2
i

[

1

λ2
i

− (t− t′)
2

λ4
i

]

exp

[

− (t− t′)
2

2λ2
i

]

.

(A6)

A2 Quasi-periodic covariance

Using a quasi-periodic covariance function formed from a squared

exponential kernel, the expression for the covariance between two

observations of a process G at times t and t′ is:

γ(G,G)
qp (t, t′) = exp

{

− sin2 [π(t− t′)/P ]

2λ2
p

− (t− t′)2

2λ2
e

}

, (A7)

where P and λp correspond to the period and length scale of the

periodic component of the variations, and λe is an evolutionary

time-scale. While λe has units of time, λp is dimensionless, as it

is relative to P .

Defining φ ≡ 2π(t−t′)/P , we then obtain the expressions for

the covariance between derivative and non-derivative observations:

γ(G,dG)
qp (t, t′) = gqp(t, t

′)

[

−π sinφ

2Pλ2
p

− t− t′

λ2
e

]

, (A8)

and

γ(G,dG)
qp (t′, t) = −γ(G,dG)

qp (t, t′); (A9)

by symmetry of the covariance, γ
(G,dG)
qp (t′, t) = γ

(dG,G)
qp (t, t′).

Finally, the covariance between two observations of Ġ at times t
and t′ is given by

γ(dG,dG)
qp (t, t′) = γ(G,G)

qp (t, t′) ×
[

−π2 sin2 φ

4P 2λ4
p

+
π2 cosφ

P 2λ2
p

− φ sinφ

2λ2
pλ2

e

− (t− t′)2

λ4
e

+
1

λ2
e

]

.

(A10)

This paper has been typeset from a TEX/ LATEX file prepared by the

author.
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