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Ontologies have proven very useful for capturing knowledge as a 

hierarchy of terms and their interrelationships. In biology a major 

challenge has been to construct ontologies of gene function given 

incomplete biological knowledge and inconsistencies in how this 

knowledge is manually curated. Here we show that large networks 

of gene and protein interactions in Saccharomyces cerevisiae 

can be used to infer an ontology whose coverage and power are 

equivalent to those of the manually curated Gene Ontology (GO). 

The network-extracted ontology (NeXO) contains 4,123 biological 

terms and 5,766 term-term relations, capturing 58% of known 

cellular components. We also explore robust NeXO terms and 

term relations that were initially not cataloged in GO, a number 

of which have now been added based on our analysis. Using 

quantitative genetic interaction profiling and chemogenomics, 

we find further support for many of the uncharacterized terms 

identified by NeXO, including multisubunit structures related to 

protein trafficking or mitochondrial function. This work enables 

a shift from using ontologies to evaluate data to using data to 

construct and evaluate ontologies.

Ontologies are central to many branches of biomedical research. In 

recent years, numerous ontologies have been developed to capture 

structured knowledge about taxonomy, anatomy and development, 

cellular and molecular function, bioactive compounds, and clinical 

diagnosis and disease, and other areas1,2. One very successful ontol-

ogy is the GO, which aims to unify all knowledge about biological 

processes, cellular components and molecular functions through a 

hierarchy of biological terms which are, in turn, used to describe 

genes3. GO is widely used for systematic assessment of the key func-

tions and processes enriched in a set of genes identified by genomic, 

transcriptomic or proteomic data. The development of GO was trans-

formational because it provided a gold-standard reference of gene 

functions against which any data set could be assessed.

Historically, GO (and most other ontologies1,2) has been built and 

curated manually by teams of domain experts. However, as ontologies  

grow in size and complexity—GO currently represents a total of 

34,765 terms and 64,635 hierarchical term-term relations annotating 

genes from >80 species—manual curation is encountering a series of 

hurdles that are becoming increasingly difficult to surmount4,5. First, 

despite stringent curation standards and the availability of advanced 

text-mining tools6,7, it has been difficult to maintain consistency in 

how literature and domain expertise translate to terms and relations 

in GO. Second, there has been a strong bias in coverage within GO 

toward processes that are well-studied, and a corresponding lack of 

coverage of processes that have been more recently identified. Such 

problems are difficult to assess due to the lack of any definitive gold 

standard for the rigorous validation of GO.

One solution to these problems would be to systematically struc-

ture an ontology using large-scale data sets. Such data sets could be 

used not only to assign genes to existing terms8 but also to directly 

infer new terms and their hierarchical relationships. Systematic infer-

ence of ontologies is an area of active research9,10 but has not, to our 

knowledge, been applied to construct gene ontologies from omics data 

(although doing so has been suggested4). High-throughput measure-

ments of genetic and protein interactions11–15 and mRNA expression 

profiles16, for example, are available and are already being used to 

build network maps of the cell17–20. Although these networks are often 

analyzed using hierarchical clustering methods21–23, the full hierarchy 

is almost always reduced to a flat set of gene clusters in which one can 

test for enrichment of existing GO terms24–26. In a few cases, it has 

been shown that some clusters of interactions can be grouped to form 

larger clusters that represent higher-order biological units27–32. The 

key question, however, is whether the interaction networks can be 

used to systematically infer a hierarchy of clusters that is analogous to 

the complete hierarchy of terms represented by GO. If so, one enticing 

possibility is that the existing collection of high-throughput network 

maps for an organism could be analyzed to automatically (or semi-

automatically) reconstruct and improve GO.

RESULTS

Gene networks embed hierarchical structure consistent with GO

To analyze the agreement between gene networks and GO, we focused 

on four fundamental types of large interaction networks: physical pro-

tein-protein interactions, genetic interactions (synthetic lethality and 

epistasis), co-expressed genes and an integrated functional network 

known as YeastNet20 (Online Methods and Supplementary Table 1).  

Within each of these networks, we examined the interactions fall-

ing within and between existing GO terms. The interaction density  

of each term was computed as the fraction of gene pairs assigned  

to that term for which an interaction was present in the network 
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(Fig. 1a and Online Methods). In all four networks, we found that  

the interaction density of GO terms was substantially greater than  

that expected for random networks (Fig. 1b), indicating general  

agreement between the network and GO. Although the highest  

interaction density was observed for specific GO terms (those with 

few annotated genes), elevated density was also observed for more 

general terms at all levels of the GO hierarchy. Notably, interaction 

density for general terms could not be explained simply by the den-

sity of more specific terms contained within them (Fig. 1c). Rather, 

dense patterns of network interactions span the specific GO terms 

that fall underneath the same general term, providing evidence 

that networks embed hierarchical information consistent with that  

captured by GO.

Inferring ontologies from networks

Motivated by these results, we developed a multistep automated 

system for the assembly of gene ontologies based on network data 

(Online Methods). First, biological networks are integrated and a 

hierarchy of network communities is identified based on a proba-

bilistic model for community detection32,33. This approach seeks to 

construct a binary tree, or dendrogram, that maximizes the overall 

probability of the network data by hierarchically joining sets of genes 

with similar patterns of interactions (Fig. 1d, Step 1). These gene 

sets, represented by nodes in the tree, identify biological entities cor-

responding to terms in an ontology. Joining two sets, represented by 

connecting two nodes beneath a third, identifies specialized terms 

that are part of a more general term.

Although the binary tree enables a computationally tractable 

approximation of the term ‘hierarchy’, it artificially requires that every 

term (except those at the root and leaves) connect to exactly two 

specialized terms below it and a single, more general, term above it.  

However, many cellular processes, components and functions are 

composed of more than two parts and participate in multiple parent 

processes—types of relations that are well-represented by GO. Hence, 

we transformed the original binary tree to match this more flexible 

ontology structure. In particular, we identified binary joins in the tree 

that can be replaced by multiway joins to increase the overall prob-

ability score. In addition, the tree was supplemented with optional 

new connections from nodes to second parents when such relations 

were supported by the network data (Fig. 1d, Step 2).

To directly map and compare this computed ontology to manu-

ally curated ontologies such as GO, we had to develop an algo-

rithm for alignment of gene ontologies (Fig. 1d, Step 3). Our 

approach extends general methods for ontology alignment from the  

computational and cognitive sciences34, and matches terms between 

ontologies based on similar gene assignments and similar positions in 
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Figure 1 Automated assembly and alignment of gene ontologies. (a) Specific GO terms correspond to small gene communities in an interaction network, which 

are nested within larger communities corresponding to more general terms. Gray ovals represent terms, blue squares represent genes and links represent gene 

interactions that fall within (dark blue) or between (red) terms. (b) The density of interactions within terms in the input networks is plotted as a function of term 

size (term sizes are binned). Different colors represent each input network controlled for the number of interactions. (c) Network density of general terms of size 

k ≥ k0 in the YeastNet (blue bars) in comparison to a random network in which interactions falling within specific terms of size k < k0 are preserved and others 

are shuffled (gray bars). The difference between the blue and gray bars represents the additional network density contributed by terms of size ≥ k0. (d,e) A data-

driven ontology is created using a multistep procedure. First, probabilistic community detection within the input networks yields a binary tree in which nodes 

correspond to ontology terms and links correspond to parent-child term relations (dotted lines indicate additional branches). Second, unsupported terms in the 

tree are removed and substituted by multi-way joins, and additional parent-child relations are added based on network data. Third, the resulting ontology is 

aligned against the reference GO, in a way (e) that prohibits non-unique mappings and ancestor-descendant criss-crossing (indicated by dotted red lines).
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the hierarchy. In contrast to simpler measures that rely strictly on gene 

assignment, for example, a hypergeometric test or gene set enrich-

ment35, term mappings are unique (each term is mapped to at most 

one term in the other ontology) and respect topological constraints 

(Fig. 1e). The effects of this alignment procedure are threefold:  

to allow for immediate transfer of term labels and definitions from 

GO, to identify novel terms not found in GO, and to identify consist-

ent and conflicting term-term relations.

The yeast NeXO

We next applied this pipeline to assemble an ontology from the 

four large yeast networks we had previously obtained. The resulting  
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network-extracted ontology, NeXO, contained a total of 4,123 terms 

and 5,766 term-term relationships; the complete ontology is pro-

vided in both OBO (Open Biological and Biomedical Ontologies) 

and Cytoscape formats (Supplementary Note 1 and Supplementary 

Files 1, 2). NeXO’s central tree structure (Fig. 2a) has three major 

branches, which correspond to the intracellular compartment, the 

membrane and the mitochondrion, respectively. Within the major 

branches, in particular the intracellular compartment, many subtrees 

align with major cellular components that are annotated in GO, such 

as the ribosome and actin cytoskeleton (Fig. 2a, insets), as well as the 

proteasome, chromatin remodeling complexes and the spliceosome. 

The NeXO hierarchy not only identifies these components but also 

captures their internal organization. For example, the proteasome con-

sists of the core complex and regulatory particle, which in turn contain 

the alpha and beta subunits and the base and lid complexes, respec-

tively, all of which are captured by the NeXO ontology (Fig. 2b). This 

hierarchical organization is determined completely by the network 

based on the density of interactions between and within the different 

proteasome components (Fig. 2c,d). Some of this structure is visual-

ized in a force-directed layout of the raw interaction data (Fig. 2c), 

which broadly segregates the proteasome into two clusters of protein 

interactions, but the full structure becomes apparent only after hier-

archical module detection and alignment against GO (Fig. 2b).

Based on the ontology alignment, we found that 33% of terms in 

NeXO map to terms in the three GO ontologies (Biological Process, 

Cellular Component, Molecular Function) with many terms map-

ping to more than one ontology (Fig. 3a). Conversely, NeXO captures 

nearly 60% of terms in the Cellular Component ontology and roughly 

a quarter of terms in the other two GO ontologies (Fig. 3b). Thus, 

NeXO largely represents an ontology of cellular components, which 

might indicate that these are the structures best highlighted by the 

input networks. In addition, we found that NeXO captures all levels 

of the GO hierarchy including both general and specific GO terms 

(Fig. 3c). Finally, genes in GO terms that align to NeXO were much 

more densely connected than genes in unaligned GO terms (Fig. 3d), 

verifying that NeXO tends to correctly identify GO terms if they have 

good network support. We considered that some of this observed 

correspondence between NeXO and GO might occur by construc-

tion, since cut-off thresholds for two of the input networks (YeastNet 

and co-expression) had been optimized to connect genes with similar 

GO Biological Process annotations. However, very similar alignment 

results were obtained when these two networks were removed and 

NeXO was built using the remaining protein-protein and genetic 

interaction networks that have not been influenced by GO in any 

explicit way (Online Methods and Supplementary Fig. 1). Moreover, 

the NeXO-GO alignment remained relatively stable over a wide range 

of thresholds for identifying protein-protein and genetic interactions 

(Supplementary Fig. 2). Finally, we found that the alignment results 

were stable when excluding gene-to-term associations in GO based on 

high-throughput interaction data (Supplementary Fig. 3).

To further validate NeXO in comparison to GO, we used both ontol-

ogies to perform a functional enrichment analysis of gene sets, the 

task for which GO is most often used24,26. To this end, we downloaded 

two large data sets that had not been used in ontology construction:  

a genome-wide screen for genes required for growth across 418 exper-

imental conditions36 and a database of direct gene targets for each of 

183 transcription factors37. NeXO identified significantly enriched 

(false discovery rate < 5%) terms in the sets of required genes for 

244 of the experimental conditions (58%)—an improvement over all 

three GO hierarchies (Fig. 3e). NeXO also yielded enriched terms for 

126 transcription factor target sets (69%), matching the best result 

for GO but with a smaller number of terms (Fig. 3f). Thus, the data-

driven ontology provides functionally relevant terms covering a wide 

spectrum of yeast biology to an extent comparable with manually 

curated efforts.

Using NeXO to identify ontology terms and relations

Many NeXO terms aligned well with GO terms, but perhaps even 

more interesting are the terms and relations in NeXO that were not 

cataloged in GO. Of these 449 terms and 123 relations had particu-

larly strong network support (Online Methods and Supplementary 

Tables 2 and 3). To further explore previously uncataloged terms and 
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relations, we generated quantitative genetic 

interaction profiles (Online Methods and 

Supplementary Table 4) for 73 genes anno-

tated beneath term NeXO:9965. This term 

aligned strongly to the ‘Golgi apparatus’ com-

ponent of GO and contained known Golgi 

subcomponents as well as 32 uncataloged 

descendent terms. Notably, the genetic inter-

action profiles of genes annotated to Golgi 

were much more highly correlated than those of a background set 

of genes (Fig. 4a). We observed higher correlations for gene pairs 

annotated to a common small term, and lower correlations for gene 

pairs annotated to larger terms, lending support for the hierarchical 

organization recovered by NeXO.

For example, the uncharacterized term NeXO:9763 represents sev-

eral layers of substructure corroborated by the new genetic interac-

tion profiles (Fig. 4b). These profiles are, on average, more highly 

correlated to each other (R = 0.27) than are random gene pairs  

(R = 0.02) or gene pairs assigned generally to Golgi (R = 0.20). Within 

this new term NeXO identifies a highly specific term joining NNF2 

and the gene encoding YEL043W (NeXO:8060, Fig. 4b). Comparison 

of the genetic interaction profiles generated from nnf2∆ and yel043w∆ 

revealed a strikingly high correlation (R = 0.84) (Fig. 4b,c), suggesting 

a close functional relationship. Indeed, of all the genetic interaction 

profiles measured, the nnf2∆ profile is most correlated with that of 

yel043w∆ (Fig. 4d). High genetic interaction correlations are also 

observed with deletions of MTC1 and SFT2—genes that, together with 

GMH1, form another new term (NeXO:9270) that is adjacent to NNF2 

and YEL043W in NeXO (Fig. 4b,d). Thus, the genetic profiling data 

are highly consistent with the NeXO structure, that is, genes assigned 

to the same specific terms have higher genetic profile correlations 

than genes assigned to the same general terms (Fig. 4b,e).

These new terms are positioned next to the retromer, a complex that 

regulates recycling transmembrane receptors from endosome to the 

trans-Golgi network38, and the HOPS and Corvet complexes, which 

serve as tethering complexes by capturing endosomal vesicles39,40 

(Fig. 4e), strongly suggesting that the new terms represent integral 

components in endosomal and Golgi regulation. Consistent with this 

notion, we observed strong negative genetic interactions of nnf2∆ and 

yel043w∆ with deletions of components of the (i) retromer (VPS5 

and VPS17); (ii) HOPS (VPS41 and VAM6); (iii) the COG complex 

(COG6 and COG8), a regulator of the Golgi-glycosylation machin-

ery; (iv) RIC1, RGP1 and YPT6, a pathway required for fusion of  

endosome-derived vesicles with the Golgi, in which Ric1 and Ypt6 are  

co-complexed and act as a nucleotide exchange factor for the GTPase 

YPT6; and (v) VPS30 and VPS38, which encode components of the 

PI3-kinase Complex II (Fig. 4e). A number of other uncharacterized 

terms are supported by the new genetic interaction profiles, including 

the term NeXO:8891, which is composed of VPS8, VPS21 and VPS9 

and is placed directly next to retromer subcomponents VPS5 and 

VPS17, with which it shares very strong genetic profile correlations 

(Fig. 4e and Supplementary Fig. 4a). Although additional work will be 

required to understand the exact function of these factors, the genetic 

analysis provides good evidence for NeXO’s ability to identify new com-

ponents and functions and to pinpoint hierarchical relationships with  

known components.

In addition to terms supported by genetic interaction profiling, we 

also found 115 uncharacterized terms that were enriched for genes 

required for growth under specific environmental conditions, providing  
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Figure 4 Evaluation of protein trafficking  

terms using genetic interaction profiling.  

(a) Correlation of genetic interaction profiles 

among genes associated with Golgi apparatus in 

NeXO, for gene pairs annotated to subterms of 

different sizes. For each gene pair, the smallest 

subterm common to both genes is considered. 

(b) NeXO branch for term NeXO:9763 

containing NNF2, YEL043W, MTC1 and SFT2. 

Green lines indicate high genetic interaction 

profile correlations (R > 0.4). Node colors 

indicate similarity of genetic interaction profiles 

within each nested module (mean profile 

correlation is provided in parenthesis). NeXO 

IDs are provided for terms that are discussed 

in more detail in the text. (c) Comparison of a 

subset of the genetic interaction scores from 

the profiles generated from nnf2∆, yel043w∆, 

mtc1∆, sft2∆ and gmh1∆. Yellow and blue 

correspond to positive and negative interactions, 

respectively. (d) Distribution of correlation 

coefficients of the nnf2∆ genetic interaction 

profile versus a selection of ~750 other genes, 

highlighting the yel043w∆ profile as an 

extremely high correlation. (e) Nested modules 

or protein complexes in close proximity to 

NeXO:9763. Border colors indicate similarity of 

genetic interaction profiles within each nested 

module. Nodes in gray are discussed in more 

detail in the text.
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useful insight into the functions of these terms (Fig. 5a and 

Supplementary Table 5). For example, term NeXO:6375 was com-

posed of six poorly characterized genes: MTC2, MTC4, MTC6, DLT1, 

YBR197C and YPR153W, of which the first three had been associ-

ated with maintenance of telomere capping41 (Supplementary Fig. 5). 

This term was placed under the mitochondrial component by NeXO 

next to genes annotated with oxoreductase activity and antimonite 

transport. Interestingly, deletion of any of the six genes increases yeast 

sensitivity to mercury chloride (HgCl2) (Supplementary Fig. 5), an 

agent that promotes oxidative stress and has been found to induce 

apoptosis through a mitochondrial-dependent pathway42. Although 

the association of these genes with mitochondrial function has not 

yet been established, some telomere maintenance genes, including 

telomerase and MTC3, are known to localize to the mitochondria43,44 

(telomerase, in particular, under oxidative stress), supporting the 

localization of the new term in NeXO.

We pursued several other bioinformatic means of gaining biological 

insight into the terms identified by NeXO (Fig. 5b and Supplementary 

Table 2). In particular, we identified many cases in which an unknown 

term could be assigned a temporary name based on (i) its relationship 

with a known parent or child term, (ii) alignment to a term in the GO 

Biological Process or Molecular Function hierarchy or (iii) text mining 

the ‘Description’ field of the Saccharomyces Genome Database45 for 

text phrases that are common among the genes assigned to the term 

(Fig. 5b and Supplementary Table 2). We also found that the network 

data can be further mined to suggest the type of relationship between 

terms, such as the ‘part_of ’ and ‘is_a’ relations used in the GO Cellular 

Component ontology (Supplementary Fig. 6). ‘Part_of ’ relations indi-

cate the child is an actual portion of the parent (such as subunits of a 

protein complex), whereas ‘is_a’ relations define the child as a particular 

kind or subtype of the parent (such as a family of complexes related by 

function). Further work will be required to determine the best strategy 

to automatically specify the types for all relations in NeXO.

Using NeXO to systematically update and expand GO

We were also able to recognize many NeXO-derived terms and term 

relations as absent from GO but having strong support in the litera-

ture. For instance, term NeXO:6164 groups together BLS1, SNN1, 

CNL1—encoding subunits of the BLOC complex, which was recently 

defined in yeast46 but not yet incorporated in the yeast GO. In chroma-

tin remodeling (Fig. 5c, insets 1,2), the SWI/SNF and RSC complexes 

are grouped under the same robust new parent term, as are the INO80 

and SWR1 complexes. Although neither of these parent terms was 

documented in GO (Fig. 5d), both are well documented in the litera-

ture47. An additional NeXO-derived term also joins SWR1 and NUA4, 

two chromatin-modifying complexes with overlapping functions and 

components48, which have been proposed to function as the single 

Tip60 complex in humans49,50 including homologs of the INO80 com-

plex50. NeXO correctly places both histone acetyltransferases (HATs)  

and histone deacetylase complexes (HDACs) under the parent term 

‘Chromatin Remodeling Complex’51 whereas, in GO, HATs are 

descendants of this term but HDACs are not (Fig. 5d). NeXO also 

correctly identifies the Piccolo NUA4 complex as part of the parent 

NUA4 complex (Fig. 5c, inset 2, and Fig. 5d) and the CMG complex as 

part of the DNA replication preinitiation complex52 (Fig. 5c, inset 3),  

relations that were missing from the current GO.

All of these NeXO-derived terms and relations were submitted to 

the GO Consortium for inclusion in the ontology and the follow-

ing changes were incorporated by the ontology editor: GO:0043189:

H4/H2A histone acetyltransferase complex was made a child of 

GO:0016585:chromatin remodeling complex, GO:0035267:NuA4 

histone acetyltransferase complex was made a parent of GO:0032777:

Piccolo NuA4 histone acetyltransferase complex, and GO:0031261:

DNA replication preinitiation complex was made a parent of 

GO:0071162:CMG complex. A new term named ‘INO80 type com-

plex’ was made a parent of GO:0000812:SWR1 and GO:0031011:

INO80, and GO:0070603:SWI/SNF type complex is now a parent of 

GO:0016586:RSC and GO:0016514:SWI/SNF complex. In addition 

the products of yeast genes BLS1, SNN1 and CNL1 were annotated to 

the BLOC-1 complex. Thus, NeXO provides a systematic means of 

directing literature curation efforts to biological mechanisms that are 

known but have not yet been considered by curators. A cursory inspec-

tion of the complete list of additional terms and relations derived 

using NeXO indicates that many more of these may already have some  

literature support and are good candidates for further GO curation.

DISCUSSION

A key challenge in biology is to capture knowledge about the cell 

in a way that is accurate, unbiased and scalable. Toward this goal,  

we have described our efforts to systematically construct an entire 

gene ontology directly from large-scale network data and compare it 

to the manually constructed GO. Our approach involves (i) probabi-

listic clustering of networks to yield a hierarchy of putative terms and 

relations, (ii) transformation of the hierarchy to match the structure of 

an ontology and (iii) alignment of the resulting NeXO ontology with 

GO in order to name the terms and term relations of known biology 

and to identify those that are newly identified by NeXO.

Although NeXO and GO have similar functionalities—browsing 

the hierarchy of terms, searching for gene-to-term associations and 

performing functional enrichment—a key difference is that NeXO 

does not assign common English language names and definitions to 

all terms. In NeXO, terms that do not align with previous knowledge 

(by alignment to GO, text mining or functional enrichment in omics 

data) have only a systematic ID assigned. Lack of a common name 

does not imply lesser importance, however, but only that the term rep-

resents a biological entity not previously named by a human investiga-

tor. This process of systematically identifying and naming entities in a 

cell is not unlike the process of gene finding in a sequenced genome. 

Whereas genes are defined by their nucleotide sequences, cellular 

components and functions are defined by the intrinsic patterns of 

interaction shared by their subunits. Sequence analysis of genomes 

routinely identifies unknown genes that are initially assigned system-

atic IDs, and it is precisely these uncharacterized entities that present 

some of the most interesting opportunities for future study.

GO and NeXO complement each other in mutually beneficial ways. 

One of GO’s main values lies in providing a uniform gold-standard 

vocabulary for referencing well-characterized cellular components 

and functions, but we also see room for a parallel ontology that is tied 

directly to data and is not limited by prior knowledge and curation.  

In this respect, ontology alignment provides the means to map between 

these two types of ontologies to enable the bidirectional transfer of 

both well-established and new information. As we have shown, this 

process can be used to objectively identify additional terms and rela-

tions that are missing from GO, some of which have now been added 

by the GO Consortium. An intriguing question is whether the most 

robust terms and relations in a data-driven ontology should be auto-

matically created in GO, perhaps with special evidence codes akin to 

the codes already in use for gene-to-term associations53.

Networks have long been instrumental in representing and visual-

izing biological relationships. The challenge now is to transform these 

networks into representations that capture the multiscale modularity 

inherent in all biological systems. Although such representations are 
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present in manually curated gene ontologies, we have shown that 

gene ontologies can also be assembled and curated automatically from 

high-throughput network data. The research reported in this manu-

script raises the possibility that, given the appropriate tools, ontologies 

might evolve over time with the addition of each new network map or 

high-throughput experiment that is published. More importantly, it 

enables a philosophical shift in bioinformatic analysis, from a regime 

in which the ontology is viewed as gold standard to one in which it 

is the major result.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Input networks. We obtained four yeast networks from public databases, 

corresponding to physical protein-protein interactions (BioGRID54), syn-

thetic-lethal and epistatic genetic interactions (DRYGIN database14; http://

drygin.ccbr.utoronto.ca/), co-expression relationships (Stanford Microarray 

Database55) and an integrated functional network (YeastNet20; http://www.

yeastnet.org/) (Supplementary Table 1). Genetic interaction data contained 

precomputed Pearson correlations between all pairs of genetic interaction 

profiles of 4,417 genes. Expression data (5,053 genes, 1,683 arrays) were filtered 

to remove genes not present in the majority of arrays and arrays not covering 

at least 80% of genes, retaining 1,113 arrays and 4,660 genes for which pairwise 

Pearson correlation coefficient was computed.

To create Figure 1b,c, we selected the same number of top-scoring inter-

actions from each data set to match the 62,885 physical protein-protein 

interactions in BioGRID for yeast (Supplementary Table 1). All remaining 

analyses were conducted using a single high-confidence interaction data set 

that included all physical protein-protein interactions from BioGRID that 

were observed in at least two independent studies, genetic interaction profiles 

with Pearson correlation coefficient ≥ 0.2 (cutoff as previously determined14) 

and gene co-expression profiles with Pearson correlation coefficient ≥ 0.93 

(determined to provide the same enrichment for biological process co-mem-

bership as the genetic interactions with correlation ≥ 0.2), and high-scoring 

interactions from YeastNet (log-likelihood score (LLS) ≥ 3) that had not yet 

been covered by any of the previous networks (Supplementary Tables 1 and 

6). We also attempted to use a single integrated network and corresponding 

LLS threshold based on YeastNet alone. However, YeastNet was released in 

2007 and updating it with more recently published interaction data (e.g., in 

refs. 12,14) requires multiple nontrivial optimizations involving the original 

raw data sets (Insuk Lee, Yonsei University, Seoul, Korea, personal communi-

cation), which we elected not to attempt here.

Determining network support for specific and general GO terms. We 

defined the network density of a term t in the GO as Density t
NE t

NP t
( )

( )

( )
= , 

where NE(t) is the number of edges between genes assigned to t, and NP(t) is  

the number of gene pairs in the term, that is, 
2

n( ), where n is the number of genes 

in t. To rule out the possibility that small terms in the ontology could account 

for the significant density of larger terms (Fig. 1b), we devised a permutation 

scheme that preserved the interactions within small terms (of size k < k0), and 

permuted all other interactions while preserving node degrees (Fig. 1c).

Assembly of the NeXO. The goal is to construct a gene ontology O = (G, M), 

where G is a directed acyclic graph in which nodes are terms and directed 

edges are parent→child term relations, and M: t→x is a function that maps 

each term t to a set of genes x. To construct an ontology from networks, we 

first identify a hierarchy of network communities using a probabilistic algo-

rithm for community detection32. This method constructs a binary tree T in 

which the leaves are genes and each internal non-leaf node represents the 

join of two child nodes (c1, c2). The probability of the network data D given 

T is expressed as: 

P D T Pc c
c c joins T

( | ) ,
, ( )

=
∈
∏ 1 2

1 2

where the probability Pc1,c2 takes the form: 

P B e hc c c c c c1 2 1 2 1 21 1, , ,( , )= + +

where B is the Beta function, and ec1,c2 and hc1,c2 refer to the edges and 

non-edges (holes) crossing between genes assigned to the left subtree  

c1 and genes assigned to the right subtree. The Beta function scores highly  

if the gene pairs of interest are primarily edges or primarily holes, that is,  

have coherent behavior. A maximum-likelihood optimization of T is 

performed. We found that this method performs better in the ontology 

construction pipeline than several other standard hierarchical cluster-

ing algorithms21–23 that could also be used to produce a binary tree T 

(Supplementary Figs. 7 and 8).

T serves as a computationally tractable approximation of the ontology graph 

G, but it artificially imposes that every term (except those at the root and leaves) 

connects to exactly two specialized terms and a single more general term (the 

root has two children terms and no parents, whereas leaves have a single parent 

term and no children). Hence, we modify T as follows. First, we test the degree 

to which each non-leaf node contributes to the overall score. Nodes that do not 

contribute to the score are removed such that the node’s parent is connected 

directly to each of its children. The procedure is based on a previously proposed 

post-processing step that uses Bayesian model selection to remove nodes in 

the top and bottom layers of the tree32. In the present work this procedure is 

extended and applied to all nodes in the tree (first to the nodes joining genes, 

as proposed previously, and then to all other internal nodes). The criteria for 

removing an internal parent node p is based on evaluating the probability of the 

data under the original tree and under an updated version in which p is replaced 

by its children (c1, c2,..,cn) as expressed by the following ratio: 

lc c cn
p s

c s c s cn ss

K P

P P P
1 2

1 21

, ,..,
,

, , ,

=
=

∏ 

where s (1 ≤ s ≤ K) is one of K siblings of the node p. We chose to remove p and 

substitute its position by the children nodes when λc1, c2,..,cn<1, additionally 

requiring that the interaction density between the children c1, c2,..,cn is not 

greater than that between p and its siblings. By replacing p with its children 

we create a multiway (>2) join associated with the parent of p.

Second, we provide a simple heuristic for supplementing T with new con-

nections from child nodes c to second parents p when such relations are sup-

ported by the network data (such that T is no longer a tree but remains a 

directed acyclic graph). Starting from the leaves we iteratively consider all node 

pairs (c, p) such that the number of genes assigned to c is less than the number 

assigned to p. Node p is identified as an additional parent of c if:

1. Nodes p and c are not already on the same path or children of the  

same node.

2. There is a dense pattern of interactions connecting genes assigned to c and 

genes assigned to p (Density ≥ 0.3; hypergeometric P-value < 0.05).

3. The sets of genes associated with p and c together form a dense cluster 

( ) ( ( )).Density p C Density p( ∪ ≥ 1
2

The final result is a DAG T where non-leaf nodes correspond to terms 

and leaves correspond to genes. To return the NeXO ontology, G is defined 

as T minus its leaves. M is defined by mapping each term to the set of genes 

below it in T.

Preparation of GO. The GO OBO and annotation files were downloaded from 

http://www.geneontology.org/GO.downloads.ontology.shtml (files used to gener-

ate the results were current as of Dec. 19, 2011). We considered four basic types of 

GO relations: “is_a”, “part_of ”, “regulates” and “has_part” and excluded relations 

annotated with a “NOT” clause. To prepare GO for ontology alignment against 

NeXO, we removed GO terms that did not have any (direct or indirect) gene 

annotations in S. cerevisiae. We also identified redundant GO terms that had the 

same gene content as their direct descendants. Because these terms may obscure 

information about the actual functional hierarchy in yeast (by imposing artificial 

layers in the hierarchy), we iteratively replaced each mutually redundant parent-

child pair by the more specific term (the child in the parent-child relationship). 

In total, 709, 1,960 and 2,849 were retained in the GO Cellular Component, 

Molecular Function and Biological Process ontologies, respectively.

Ontology alignment. Given two ontologies, O1 with n1 terms and O2 with 

n2 terms, an ontology alignment A is a mapping of terms between ontologies 

such that each term in O1 maps to at most one term in O2, and vice versa.  

To provide a method for aligning gene ontologies in which the terms refer to 

sets of genes (technically, the set of genes assigned to a term defines the ‘label’ 

of that term), we developed an algorithm motivated by a previously proposed 

method called ASMOV34 for aligning semantic ontologies. Term mapping in 

our alignment procedure is evaluated using a score function that considers  

the similarity of the sets of genes assigned to the terms (the so-called intrinsic 
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term similarity) and the relative position of the terms in the hierarchy (rela-

tional similarity). The alignment process is iterative, with iteration k produc-

ing an ontology alignment Ak. First, an n1 × n2 term similarity matrix Tk is 

calculated, where 0 ≤ Tk(i,j) ≤ 1 represents the similarity of term i ∈ O1 to term 

j ∈ O2. Tk(i,j) is composed of the intrinsic similarity I(i,j) and the relational 

similarity Rk(i,j): 

T i j
I i j k

I i j R i j kk
k

( , )
( , ),

. ( , ) . ( , ),
=

=
+ >





0

0 75 0 25 0

I(i,j) is taken as the Jaccard Index of the sets of genes assigned to i and j: 

I i j
x x

x x

i j

i j
( , )

| |

| |
=

∩
∪

. The matrix I is precomputed and does not change through-

out the alignment process. The relational similarity Rk(i,j) is calculated by 

determining the similarity between the sets of terms (Pi, Pj) that are the par-

ents of i and j, and the similarity between the sets of terms (Ci, Cj) that are the 

children of i and j: 

R i j
S P P S C C

k
i j i j

S Ci C j

( , )
( , ) ( , ) , ( )

, (( , )

=
+





2

internal nodes

rooot)

The set similarity S is calculated using the term similarity matrix Tk–1 from 

the previous iteration: 

S X Y
SOS

X Y SOS

SOS T x yk
x y L

( , )
| | | |

( , )
( , )

=
+ −

= −
∈

∑ 1

where L is a local alignment of X to Y, determined by greedily choosing 

pairs (x,y) with the highest T k–1 while ensuring that each element of X or 

Y participates in no more than one pair. Based in Rk(i,j) we can now calcu-

late Tk(i,j) and determine the new alignment Ak according to the following  

greedy algorithm:

0. Initializations: Initialize Ak as the empty mapping. Initialize L as a sorted 

list of term pairs (i,j) in decreasing order of T k(i,j).

1. Select the top pair (i,j) from L.

2. Check if (i,j) conflicts with any pair already contained in Ak. Two map-

pings (e1, e2) and (e1′, e2′) conflict if:

a. Non-uniqueness: e1 = e1′ or e2 = e2′.
b. Parent-child crisscross: Either e1 is a descendant of e1′ in O1 and e2 is 

an ancestor of e2′ in O2, or e1′ is a descendant of e1 in O1 and e2′ is an ancestor 

of e2 in O2.

3. If there is no conflict with any of the mappings already in Ak, add (i,j) 

to Ak.

4. Remove (i,j) from L.

5. If all of the elements of O1 or O2 are mapped, or L contains only mappings 

below a threshold similarity value (set to 0.01), then alignment Ak is complete. 

Otherwise, go to step 1.

If Ak matches a previous Ai (i < k), this mapping is returned as the final 

alignment and the final alignment score Sk for each term t is determined as: 

S t
T t A t t A

k

k k k
( )

( , ( )),

,
=




if ismapped by thealignment

O otherwise

Otherwise, the above algorithm is restarted at iteration k+1.

Calculating the false-discovery rate for ontology alignment. The false- 

discovery rate (FDR) of term alignment was calculated as: 

FDR t
n

N t

N t

Rii

n

( )

( )

( )
=

=∑1 1

 where N tRi
( ) is the number of terms in the random permutation i that have 

an alignment score ≥ t, and N(t) is the number of terms in the actual computed 

ontology that have an alignment score ≥ t. We set a minimum score threshold 

value t ≥ 0.1 for large terms and higher threshold values for small terms so as 

to maintain an FDR < 10% within each size group (Supplementary Fig. 9).

Scoring robustness of NeXO terms. To determine the most confident terms in 

NeXO, we devised a measure of term quality that considers the network support 

of the term and its robustness to random perturbations of the input data. The 

network support NS(t) for a term t is defined as the enrichment for interactions 

connecting genes assigned to the term (−log(P-value) estimated based on the 

hypergeometric distribution). The bootstrap score B(t) for term t is calculated 

by randomly removing 5% of the edges in the input network and reconstructing 

a new bootstrapped ontology and aligning it to the original NeXO: 

B t

n S tii

n
( )

( )
=

=∑
1

1

where Si is the alignment score for term t when NeXO is aligned to the i-th 

bootstrapped ontology. The final robustness score for each term is calculated as 

a geometric mean of network support for the term and its bootstrap value: 

R t NS t B t( ) ( ) ( )=

This robustness score significantly enriches for terms in NeXO that align to 

GO terms (Supplementary Fig. 10) and thus is used to prioritize novel term 

candidates that are highly robust but are not yet present in GO.

Genetic interaction profiling. Genetic interaction profiling was done as previ-

ously described56,57 based on a 73 × 741 (query × array) design. The 73 query 

genes were chosen arbitrarily from the entire set of 162 genes annotated at or 

beneath NeXO term 9965 (Golgi Apparatus). The 741 array genes were chosen 

to cover a representative sample of genes more broadly related to protein traf-

ficking and lipid metabolism, including the 73 genes used as queries. Measured 

colony sizes for each double mutant (combining a deletion of a query gene 

with a deletion of an array gene) were processed to yield quantitative ‘S-scores’, 

indicating the degree to which the observed growth was greater than (positive 

S-score) or less than (negative S-score) expected56. The complete set of genetic 

interaction profiles for all 73 queries is given in Supplementary Table 4. The 

background set of genetic interaction profiles considered in Fig. 4a,d was drawn 

from unpublished data covering the entire space of 741 × 741 interactions.

54. Stark, C. et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids 

Res. 39, D698–D704 (2011).

55. Hubble, J. et al. Implementation of GenePattern within the Stanford Microarray 

Database. Nucleic Acids Res. 37, D898–D901 (2009).

56. Collins, S.R., Roguev, A. & Krogan, N.J. Quantitative genetic interaction mapping 

using the E-MAP approach. Methods Enzymol. 470, 205–231 (2010).

57. Schuldiner, M. et al. Exploration of the function and organization of the yeast early 

secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

n
p
g

©
 2

0
1

3
 N

a
tu

re
 A

m
e

ri
c

a
, 

In
c

. 
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.


	A gene ontology inferred from molecular networks
	RESULTS
	Gene networks embed hierarchical structure consistent with GO
	Inferring ontologies from networks
	The yeast NeXO
	Using NeXO to identify ontology terms and relations
	Using NeXO to systematically update and expand GO

	DISCUSSION
	Methods
	ONLINE METHODS
	Input networks.
	Determining network support for specific and general GO terms.
	Assembly of the NeXO.
	Preparation of GO.
	Ontology alignment.
	Calculating the false-discovery rate for ontology alignment.
	Scoring robustness of NeXO terms.
	Genetic interaction profiling.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Automated assembly and alignment of gene ontologies.
	Figure 2 The NeXO ontology.
	Figure 3 Validation.
	Figure 4 Evaluation of protein trafficking 
terms using genetic interaction profiling.
	Figure 5 Updating GO with additional terms and term relations.


