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Abstract

Identifying the connections between molecular and physiological processes underlying the diversity of drought stress
responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular
pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first
inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus)
genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix
microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired
water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination,
plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression
patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their
interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with
genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material.
We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower
hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network
allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field
conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the
importance of these traits in agronomical conditions.
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Introduction

Water scarcity, widely known as drought, is defined as the

unbalance between the available water in the soil and the actual

evaporative demand resulting from the climatic conditions [1].

This major environmental stress hinders plant growth and

development as well as crop yield [2] . Moreover, water-limiting

conditions will be increasingly common due to global warming

and demographical pressure. As a result, water scarcity has been

pointed out as the biggest agronomical problem worldwide, thus

hampering food production in the future [3]. In this scenario,

proper water management in agriculture is vital and, therefore, the

use of crops that are capable of using water efficiently under a low

input regime is a major farming objective.

Sunflower (Helianthus annuus L.) has been widely regarded as a

plant able to grow under low water-input regimes. Besides, wild

and domesticated Helianthus annuus ecotypes have successfully

colonized most diverse climatic niches in North America,

including harsh desert habitats, which indicates the richness of

the gene pool of this species [4–6]. Nevertheless, sunflower

genotypes are not homogeneously efficient in the use of water. In

fact, this crop might on one hand waste water when this is

available [7] and on the other hand maintain some productivity

under when water is scarce. Furthermore, available soil water

content and genotypic sensitivity to water status are interacting to

influence plant development and productivity [8]. Thus, as the

result of genotype * environment interaction under drought, the

processes underpinning carbon assimilation, tissue expansion,
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biomass production and seed quality imply, among other

regulatory mechanisms, the control of genes expression.

Several mechanisms help plants maintain their water status.

First, at the plant organ level, the thickening of the cuticle, mainly

by means of wax accumulation, helps reducing non-stomatal

transpiration [9]. Then, decreasing the stomatal conductance

remains the major short-term mechanism to limit water loss. The

sooner the stomata close in response to water deficit, the longer the

water potential in the leaves will be maintained. Stomatal closure

may depend on the genotype [10], as well as on the developmental

stage of the plant [11]. Another mechanism consists for plants to

reduce their leaf surface and/or accelerate leaf senescence,

reducing water loss and placing themselves in a more adapted

phenotypic situation if the water stress goes on. At the cellular

level, two factors determine leaf growth and expansion: cell wall

extension and turgidity [12,13]. Turgidity allows plants to carry on

with their physiological functions under drought stress despite an

eventual decrease in Relative Water Content (RWC) in the cells.

Three mechanisms are involved in maintaining cell turgidity:

osmotic adjustment by means of active osmolyte accumulation

(essentially inorganic ions, soluble sugars, and carboxylic and

amino acids), increasing cell wall elasticity and modifying water

content repartition between the apoplast and the symplasm [14].

The ability of sunflower to manage osmotic adjustment in leaves

depends on the genetic background [15–17], the characteristics of

the water stress itself and the age of the leaf [18,19].

Those diverse mechanisms demand tight genetic regulation. It

has been described that thousands of Arabidopsis or rice genes are

modulated in response to drought stress [20]. Not all of these genes

are necessarily involved in drought tolerance: the modulation of

expression of many of them under drought stress indirectly reflects

the way the plant is coping with the stress. Moreover, genes that

are modulated under water deprivation are not equally expressed

or regulated during the whole duration of the stress [21]. Four

distinct regulatory pathways controlling drought-responsive genes

have been described, those pathways being either dependent on

abscisic acid (ABA) or, on the contrary, ABA-independent [22,23].

Thus, signal transduction mechanisms implemented under the

perception of drought stress might be different according to the

role that ABA might have in sensing the constraint factors [24–

28].

The drought stress signal transduction pathways are complex

and interconnected, involving not only ABA but also ethylene and

jasmonate in Arabidopsis [29] and sunflower [30]. Furthermore,

the downstream phenotypic responses at the molecular and

physiological levels are numerous and driven by different signaling

pathways. This complex system represents an archetypical model

for network modeling approaches to embrace the global rules

coordinating molecular processes and phenotypic responses during

drought stress response.

Integrating and modeling protein biochemical and molecular

functions, transcriptomic regulation during organism development

and stress responses, and other genetic interactions can be

achieved through graphs reviewed by Newman [31]. Resulting

gene networks may be of various nature depending on the

mathematical models they are based on, the nature of information

used to generate them, and if they connect only genes or combine

genes with phenotypic data and physiological processes. Expres-

sion data from microarray or second generation sequencing

technologies allow the characterization of most if not all gene

expression profiles according to genetic and/or environmental

factors [32]. In this context, gene network inference has become

widely used and allows the identification of central nodes or hubs

that may serve as drivers in plant responses [33,34] and ‘‘guilt-by-

association’’ approaches to predict gene functions. However,

solving direct versus indirect relationships in gene regulation is still

challenging given the usually limited number of conditions tested,

compared to the large number of gene assessed. Furthermore, the

key functional genomics question of identifying relations between

heterogeneous datasets such as gene expression and phenotypes

has rarely been addressed in the past partly because of the lack of

adapted biostatistical tools and the difficulty to run very computer-

intensive statistical methods such as regularized Canonical

Correlation Analysis [35] and partly because of the inherent

difficulty of integrative biology approaches. Thanks to recent

developments in sunflower genomics and performing mathemat-

ical tools, we present in this work, for the first time in plant

biology, statistically integrated gene expression and phenotype

data in an gene-phenotype network.

Besides the identification of gene functions and physiological

traits in model plants under controlled conditions, another major

objective of plant researchers is to transfer this knowledge to

applied biological systems such as field crops to help breeding

classical traits and develop new ones To date, only a few

transcriptomic studies in field conditions have been published

[36,37], likely because of statistical issues due to the variability of

environmental conditions. It is crucial to relate field condition

studies and those performed under controlled conditions in

greenhouses or growth chambers. Indeed, it remains central to

know how far the key factors exhibited in controlled conditions are

accounting for at least part of the plant responses in the field.

Current statistical tools and genomics knowledge allowed us to

pursue these approaches and combine results of drought stress

responses both in controlled and natural environments.

Global transcriptomics and morpho-physiological phenotyping

represent major sources of information in order to unravel gene

networks accounting for drought responses in model and

agronomic plants. However, such approaches have major caveats:

genetic variability in drought sensitivity, and transferability to

agronomic conditions. This is particularly the case for crops such

as maize or sunflower, which are grown as hybrids in non-

controlled field conditions. In this work, we exploit controlled-

condition transcriptomics data to better understand the crop

behavior under drought in natural environment.

By combining gene expression patterns and physiological

descriptors in experiments revealing drought, genotypic and

drought*genotypic effects, we produced gene-phenotype networks.

This allowed us to disentangle the genetic and molecular

mechanisms underpinning drought responses of sunflower in

controlled conditions and to subject this model to agronomic

reality.

Results and Discussion

Genotype-dependent water consumption
Eight genotypes were chosen for this study, paying attention to

previous phenotyping data that provided evidence of genotype-

dependent responses to different environmental cues, including

water deprivation. SF193 (also known as XRQ) and SF326 (also

known as PSC8) are parental lines of the ‘‘INEDI’’ RIL

population developed by INRA [38,39]. SF193 is a maintainer

line whose pedigree includes the Progress cultivar, which improves

the tolerance to Phomopsis and the resistance to Downy mildew,

and the widely used HA89. Both SF193 and SF326 behaved

differently in response to water deprivation in our preliminary

studies. For instance, it was observed that SF193 closes its stomata

at much lower water constraint in the soil than SF326 at the same

developmental stage. INEDI, another genotype used in this work,

Gene-Phenotype Network for Drought in Sunflower
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corresponds to the F1 hybrid SF193*SF326. SF109, (also known as

2603) is an INRA-bred line that, despite its susceptibility to some

diseases like Phomopsis, has been widely used as a female parental

line in hybrids cultivated in Spain and other Southern European

countries due to its good agronomic adaptation to dry conditions.

Two other genotypes, SF028 and SF107, have previously been

used as male parental lines in field test-crosses, and both show

highly contrasted yields between irrigated and non-irrigated

conditions, depending on the location. Finally, TEKNY and

MELODY are widely cultivated sunflower hybrids.

Water irrigation of treated plants was stopped 25 days after

sowing. From this moment on, the Fraction of Transpirable Soil

Water (FTSW, chosen to reflect the soil water constraint)

decreased differently according to the genotype in pots containing

treated plants (see Fig. 1). The pace at which plants deplete their

available water is directly related to their response to lack of

irrigation. Our results show that all three hybrids (i.e INEDI,

TEKNY and MELODY, in this order) are the genotypes that

most hastily reduce their FTSW, along with line SF109. Then

SF193 and SF326, the parental lines of INEDI, present similar

water consumption, whereas FTSW in pots containing SF028 and

SF107 plants decreases most slowly in our assay.

Drought stress scenarios
The intrinsic genotypic differences in drought responses are

difficult to unravel because they might be confounded with

inherent differences in developmental stage. Hence, two distinct

stress assessment scenarios were implemented. First, Fixed

Duration Stress (FDS) was established to decipher the progressive

sunflower response to water deprivation using genotypic differ-

ences in order to generate a range of timely comparable water

constraints. Plants were thus harvested when 50% of the treated

plants reached a FTSW below 0.35. This state happened to arrive

seven days after stopping irrigation, when estimated FTSW values

of the treated plants ranged from 0 to 0.57 (Table S1). Second,

Fixed Intensity Stress (FIS) scenario was implemented with the

purpose to unravel plant responses at a comparable, more severe

drought constraint. Hence, tissue was collected from every treated

plant and its corresponding control when the former reached an

estimated FTSW value below 0.1, i.e. ranging from 0 to 0.09. In

practice, this harvest was pursued over four days. Incidentally,

both FDS and FIS harvests took place on the same day for INEDI

plants.

In order to measure the extent of the water constraint under

each scenario, the Integrated Transpired Water (ITW) variable

was calculated by integrating the transpired water (i.e. 1-FTSW)

over the treatment duration. Consequently, ITW under FDS

reflects the transpired water at harvest day, whereas under FIS, it

reflects treatment duration. (as shown in Fig. 1).

Sunflower oligonucleotide array and HELIAGENE
database

The HELIAGENE database (http://www.heliagene.org) hosts

and curates the information concerning the assembly of 284 340

ESTs from seven different Helianthus species, mainly produced in

frame of Compositae Genome Project (http://compgenomics.

Figure 1. Evolution of Fraction of Transpirable Soil Water (FTSW) during water deprivation. Each line reflects the average values of three
values for each genotype either under FDS or under FIS. Vertical dotted line indicates the date of the FDS tissue collection. Horizontal dotted line
indicates the FTSW level at which FIS collection was carried out. Triangles correspond to treated plants whereas circles correspond to their untreated
counterparts. Genotypes are color-coded as follows: Inedi (black), Tekny (gray), Melody (red), SF109 (turquoise), SF326 (yellow), SF193 (magenta),
SF028 (green) and SF107 (blue).
doi:10.1371/journal.pone.0045249.g001

Gene-Phenotype Network for Drought in Sunflower
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ucdavis.edu/compositae_index.php). From the resulting 87 237

clusters, 72 372 were predicted to encode a peptide using

FrameDP [40], 24 799 of them being likely full length. This

public tool allows multi-criteria searches based on, for instance,

accession numbers, keywords, Gene Ontology (GO) terms,

InterPro domains, Helianthus species similarities etc. It also

permits BLAST queries and it offers several FASTA sequence-

handling workflows in order to optimize different in silico studies.

The Affymetrix H GeneChip H WT array, which was built in the

frame of a consortium associating L. Rieseberg at UBC

(Vancouver, Canada), S. Knapp at UGA (Athens, Georgia,

U.S.A), the companies BIOGEMMA and SYNGENTA Seeds,

and INRA (France). It contains 2 389 915 probes whose

sequences derive from the same 87 237 Helianthus EST clusters

(7 species). For this study, even if we hybridized the entire chip and

therefore all the probes, only probesets containing at least one

Helianthus annuus EST were considered. By doing so, we aimed

at (i) avoiding redundant transcripts in the analysis, which might

have been clustered apart due to high polymorphism rate among

the seven species used to generate the EST database and (ii)

reducing hybridization noise due to high polymorphism between

targets and probes. This led us to keep 32 423 probesets

containing at least one Helianthus annuus EST. Overall,

897 642 probes were therefore considered, averaging 28 probes

per probeset (Fig. S1).

This transcriptomic tool allowed us, under our experimental

design, to perform (i) descriptive analysis of gene expression in

different sunflower genotypes under distinct drought stress

implementation scenarios; (ii) differential studies in order to

determine factors altering gene transcription under such stress;

and (iii) covariance analysis with the aim of establishing links

between gene expression alterations and morpho-physiological

variations.

Global Comparison of FDS and FIS classifications
Double hierarchical classifications of genes and individuals were

performed independently for either stress implementation scenar-

ios, taking into account only the genes going through statistically

significant modulation under genotype, treatment or genotype*-

treatment (g*t) interaction (see below for an explanation on the

Bonferroni-corrected ANOVA results). The resulting dendograms

and subsequent heatmaps are shown in figure 2. It can be

observed in figure 2 that individuals under FDS are mainly

grouped by their genotype, with treated and control plants

clustered together. However, there are some remarkable excep-

tions: plants of INEDI and TEKNY genotypes are grouped

according to treatment. Moreover, treated plants of both

genotypes are clustered together, forming a clearly distinct group

from the rest of individuals under FDS.

The classification under FIS provides a very different picture.

Two main groups emerge, which split apart treated and control

plants under this stress implementation strategy. The repartition of

individuals in both clusters is, nevertheless, uneven. Indeed, all six

individuals, whether treated or not, of SF193, SF107 and SF028

genotypes cluster together. Remarkably, SF193 control plants are

grouped within the main cluster containing most of the treated

plants of other genotypes, showing that, even when well-irrigated,

SF193 displays gene expression levels similar to stressed plants. On

the contrary, SF107 and SF028 plants were grouped within the

main cluster containing most of the control individuals of the other

genotypes. This indicates that control and drought-treated plants

of those two genotypes are largely modulating their gene

expression in the same way and that maybe these genotypes

exhibit intrinsic differences in their response to the drought when

compared to the other genotypes in our study.

Differential analysis
Two independent ANOVAs were performed, one for each

stress scenario implemented in our study. In order to handle false

positives, Family Wise Error Rate (FWER) was corrected on the

obtained p-values for each tested effect using Bonferroni’s method

[41]. Transcript expression levels producing corrected p-values

,0.05 were considered significantly different. The results of the

ANOVA, which are given in detail in Table S2, are summarized

in Table 1.

Differential analysis of plants subjected to Fixed
Duration Stress. The ANOVA on FDS plants revealed a total

of 6 919 genes differentially expressed, out of which 6 771

displayed genotype-dependent expression profiles and 679 showed

treatment-responsive modulation. Interestingly, 505 genes dis-

played significant expression modification under g*t interaction,

meaning that those genes might be responsible for the different

responses of each genotype to water deprivation. Tukey’s test for

Honest Significant Differences (HSD) revealed that 476 and 257

out of those 505 genes modulated under g*t interaction responded

to treatment under FDS in INEDI and TEKNY plants,

respectively (Table S2). On the contrary, very few genes produced

treatment-related HSD in the other genotypes. This is in

agreement with what was observed in the double classification,

where INEDI and TEKNY were the only genotypes whose treated

and untreated individuals emerged in separate clusters. This would

imply that vigorous genotypes such as INEDI and TEKNY, would

deplete available water more hastily because of their higher growth

rate and bigger leaf surface and, therefore, would reach

homeostasis-menacing soil water levels sooner than the other

genotypes. Subsequently, gene expression regulation aimed at

reacting to water scarcity would be implemented in these vigorous

genotypes at an earlier date.

Gene Ontology enrichment tests were performed in order to

unravel which Biological Processes were overrepresented in genes

sharing the same effect(s) in the ANOVA (Table 2). Genes

presenting treatment effect in FDS plants were particularly

enriched in terms related to different responses to abiotic stress,

including ‘‘response to water deprivation’’ (GO:0009414), and,

interestingly, ‘‘response to abscisic acid’’ (GO:0009737). Genes

whose expression responds to the g*t interaction under FDS were

particularly enriched in similar terms. In contrast to this, genes

whose expression under FDS is modulated according to the

genotype were not enriched in any GO terms concerning stress or

hormone responses.

Gene Ontology (GO) enrichment tests revealed that the

505 g*t-modulated genes were significantly enriched in ‘‘response

to water deprivation’’ annotation. All the g*t-modulated genes

with such GO annotation rendered significant HSD in at least one

genotype, i.e. INEDI. Those genes included homolog sequences to

well-known drought-responsive genes in Arabidopsis such as ABI2

(HuCL15555C001) and RD26 (HuCL01003C001). The ABI2

homolog was significantly upregulated in water-deprived TEKNY

and, especially, INEDI individuals, with fold changes higher than

7 and 17, respectively. ABI2 encodes a protein phosphatase 2C

homolog to ABI1 and it was primarily spotted because its mutation

decreases ABA sensitivity. Both ABI1 and ABI2 transcripts have

been shown to accumulate in response to ABA, suggesting a role of

these two genes in a negative feedback mechanism, though at

different levels, in the ABA-mediated signaling pathway [42].

Another gene homolog to AHG3/PP2CA (HuCL03720C001),

which encodes a different phosphatase 2C presenting ‘‘response to

Gene-Phenotype Network for Drought in Sunflower
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water deprivation’’ annotation, is also g*t-modulated and thus

significantly upregulated in treated plants of three genotypes under

FDS, namely INEDI, TEKNY and SF109. It has been reported

[43] that this gene may act as a negative regulator of the ABA

signaling. However, some authors propose that its function might

be limited to embryogenesis and early vegetative development,

whereas others postulate that the gene might be involved in

stomatal movement [44,45]. More intriguingly, it has been shown

that suppression of the expression of this gene accelerates cold

acclimation [46]. Notwithstanding this, it had been previously

reported that the closest homolog to PP2CA in tobacco enhances

drought resistance [47].

A homolog to the Arabidopsis gene LOX2 (HuCL00491C001), a

chloroplast-localized lipoxygenase annotated as responsive to

water deprivation, is significantly modulated under g*t in treated

FDS individuals of INEDI and TEKNY genotypes. This gene has

repeatedly been linked to wound-induced jasmonic acid accumu-

lation [48,49]. It has also been shown that it is sharply

Figure 2. Dendograms and heatmaps of genes and individuals both under FDS (A) and FIS (B). Triangles correspond to treated plants
whereas circles correspond to their untreated counterparts. Genotypes are color-coded as follows: Inedi (black), Tekny (gray), Melody (red), SF109
(turquoise), SF326 (yellow), SF193 (magenta), SF028 (green) and SF107 (blue).
doi:10.1371/journal.pone.0045249.g002

Table 1. Genes showing ANOVA effects for two drought scenarios.

FDS

All g_o g_t g*t_g g*t_o g*t_t t_o Eff t g g*t None

total 265 6009 300 197 31 12 102 6916 679 6771 505 25507

FIS All effects (All) 15 3 6 1 2 0 0 2 14 6 12 5 1

Only genotype effect (g_o) 4285 5 3239 29 40 1 0 4 3318 38 3313 46 967

Genotype and Treament effects (g_t) 939 84 491 105 43 1 0 12 736 201 723 128 203

Genotype and g*t effects (g*t_g) 12 0 7 0 2 0 0 0 9 0 9 2 3

Only g*t effect (g*t_o) 18 0 0 0 0 0 0 0 0 0 0 0 18

Treatment and g*t effects (g*t_t) 6 3 1 0 1 0 0 0 5 3 5 4 1

Only treatment effect (t_o) 1701 163 354 126 78 16 12 67 816 368 721 269 885

No effect (None) 25447 7 1911 39 31 13 0 17 2018 63 1988 51 23429

At least one effect (Eff) 6976 258 4098 261 166 18 12 85 4898 616 4783 454 2078

At least treatment effect (t) 2661 253 852 232 124 17 12 81 1571 578 1461 406 1090

At least genotype effect (g) 5251 92 3743 135 87 2 0 18 4077 245 4057 181 1174

At least g*t effect (g*t) 51 6 14 1 5 0 0 2 28 9 26 11 23

Counts of genes showing genotype, treatment and/or genotype*treatment interaction (g*t), based on the ANOVA analysis carried out with eight sunflower genotypes
undergoing two drought stress scenarios in controlled environement: Fixed Duration Stress (FDS) and Fixed Intensity Stress (FIS).
doi:10.1371/journal.pone.0045249.t001

Gene-Phenotype Network for Drought in Sunflower
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Table 2. GO term enrichment test results for genes showing ANOVA effects for two drought scenarios.

Effect GO ID GO term
Query item/
total

Reference
item/total p-value FDR

FDS At least treatment GO:0050896 response to stimulus 131/497 1375/8415 4.60E-05

GO:0006950 response to stress 85/497 787/8415 0.0001

GO:0009414 response to water deprivation 20/497 80/8415 0.00025

GO:0009415 response to water 20/497 85/8415 0.00034

GO:0042221 response to chemical stimulus 78/497 736/8415 0.00034

GO:0009628 response to abiotic stimulus 63/497 562/8415 0.00061

GO:0009737 response to abscisic acid stimulus 20/497 127/8415 0.041

At least genotype GO:0044281 small molecule metabolic process 357/3373 659/8415 0.0085

Only genotype GO:0044281 small molecule metabolic process 319/3033 659/8415 0.029

At least g*t GO:0009414 response to water deprivation 15/368 80/8415 0.0046

GO:0050896 response to stimulus 95/368 1375/8415 0.0046

GO:0009415 response to water 15/368 85/8415 0.0046

GO:0042221 response to chemical stimulus 58/368 736/8415 0.0046

GO:0006950 response to stress 60/368 787/8415 0.0056

GO:0009628 response to abiotic stimulus 47/368 562/8415 0.0056

GO:0010035 response to inorganic substance 19/368 159/8415 0.026

Only g*t GO:0050896 response to stimulus 64/202 1375/8415 1.70E-05

GO:0009414 response to water deprivation 14/202 80/8415 1.70E-05

GO:0009415 response to water 14/202 85/8415 1.70E-05

GO:0006950 response to stress 41/202 787/8415 0.00032

GO:0009628 response to abiotic stimulus 33/202 562/8415 0.00032

GO:0042221 response to chemical stimulus 39/202 736/8415 0.00032

Genotype and treatment GO:0006412 translation 25/237 302/8415 0.0029

GO:0050896 response to stimulus 63/237 1375/8415 0.012

GO:0006950 response to stress 42/237 787/8415 0.012

GO:0044249 cellular biosynthetic process 61/237 1324/8415 0.012

GO:0009058 biosynthetic process 64/237 1381/8415 0.012

GO:0009628 response to abiotic stimulus 33/237 562/8415 0.012

GO:0031408 oxylipin biosynthetic process 5/237 17/8415 0.037

GO:0044283 small molecule biosynthetic process 20/237 292/8415 0.042

GO:0031407 oxylipin metabolic process 5/237 19/8415 0.044

FIS At least treatment GO:0009628 response to abiotic stimulus 171/1687 562/8415 0.0043

GO:0050896 response to stimulus 352/1687 1375/8415 0.013

GO:0006950 response to stress 215/1687 787/8415 0.031

Only treatment GO:0009628 response to abiotic stimulus 118/1127 562/8415 0.021

At least genotype GO:0008152 metabolic process 1142/2710 3091/8415 0.0016

GO:0044237 cellular metabolic process 954/2710 2573/8415 0.012

GO:0044281 small molecule metabolic process 283/2710 659/8415 0.036

GO:0009987 cellular process 1219/2710 3414/8415 0.042

Only genotype GO:0008152 metabolic process 926/2217 3091/8415 0.042

GO:0044237 cellular metabolic process 781/2217 2573/8415 0.043

GO:0009987 cellular process 1006/2217 3414/8415 0.043

At least g*t GO:0008152 metabolic process 311/677 3091/8415 0.0035

GO:0009058 biosynthetic process 158/677 1381/8415 0.0063

GO:0044281 small molecule metabolic process 87/677 659/8415 0.0088

GO:0044283 small molecule biosynthetic process 46/677 292/8415 0.02

Gene-Phenotype Network for Drought in Sunflower
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downregulated in jasmonate-mediated leaf senescence [50].

Moreover, it has been reported to be upregulated under slight

drought stress and, on the contrary, repressed under stronger

water deprivation [51]. The fact that in our study LOX2 appears

upregulated reflects that our stress conditions correspond to a

moderate stress in reference to that study where the authors

considered drought stress as ‘‘severe’’ when RWC was lower than

48%. In our case, even though the FTSW was very low on these

water-deprived INEDI and TEKNY individuals, they displayed

RWC values around 80%. In addition, a homolog to the gene

encoding the Phospholipase D Alpha 2 subunit or pldA

(HuCL01497C001) is also significantly unregulated in our assay

under the same conditions on the same genotypes. It has been

reported that jasmonate concentration decreases in pldA-sup-

pressed plants and that this effect is correlated with decreased

levels of LOX2 transcripts. It was thus proposed that LOX2 might

be a downstream target of pld in mediating jasmonic acid

accumulation [52].

A homolog to the Senescence Associated Gene SAG21

(HuCL01066C004) is also upregulated in response to water

deprivation in treated FDS plants of INEDI and TEKNY

genotypes. Despite the fact that the actual role of this gene in

plant senescence remains elusive, it was proposed as an early

indicator of senescence whose expression peaks before the

symptoms, such as leaf yellowing [53]. Moreover, it has been

previously reported to be involved in drought- and nitrate-induced

senescence in Arabidopsis [54,55].

Another putatively nitrate-induced gene that is downregulated

in water-deprived INEDI and TEKNY FDS plants is a homolog

to nitrate transporter NRT1.1 (HuCL02647C002). NRT1.1 has

been proposed to be not only required in nitrogen uptake, but also

a key player at the interface between nitrate and auxin signaling in

plant development [56,57]. Besides, the activity of NRT1.1 has

also been associated in leaves to stomatal movement: nrt1.1

mutants presented lower stomatal conductance and higher

adaptability to drought [58]. Downregulation of that gene in

INEDI and TEKNY could imply an active response of these

genotypes in order to close stomata under drought stress.

However, the downregulation of NRT1.1 is more likely related

to actual nitrogen uptake. This would be in agreement with the

fact that a homolog to NRT1.2 (HuCL04010C001), a nitrate

transporter not related to stomatal conductance, is upregulated in

the same genotypes under FDS.

A sunflower homolog to RD26 (HuCL01003C001), a NAC

transcription factor involved in a novel ABA-dependant signaling

pathway in response to abiotic cues in Arabidopsis [59], was also

significantly upregulated in treated INEDI and TEKNY FDS

plants. In that study, the authors summarized different genes that

were upregulated by RD26 in response to environmental stress.

Sunflower homologs to two of these genes were significantly

upregulated in our study in the same conditions as RD26 under

FDS. These transcripts, namely HuCL00001C108 and

HuCL01232C001, encode homolog proteins to Universal Stress

Protein (USP; At3g62550) and lysine ketoglutarate reductase and

saccharopine dehydrogenase (LKR/SDH; At4g33150), respec-

tively. Even though the former was not described as drought-

responsive by Fiujita and collaborators, a recent study on USPs

has shown that, indeed, At3g62550 responds to water deprivation

[60]. As for the LKR/SDH, it encodes a key enzyme in lysine

catabolism and it has been reported to be upregulated in drought

response in mandarin trees [61]. Lysine acts as carbon and

nitrogen sink in the vacuole and its catabolism is increased under

stress conditions by upregulating LKR/SDH. Lysine catabolism

thus enhances amino acid to sugars conversion in sugar-starved

plants. It also generates proline and pipeolic acid, two stress-

related molecules, as well as other mediators in stress responses

such as glutamate, nitric oxide and polyamines. Proline accumu-

lation in response to drought and to ABA has been demonstrated

in several species, including sunflower [62–64]. Proline accumu-

lation also depends on the D1-pyrroline-5-carboxylate synthase

(P5CS), which is upregulated under drought stress and whose

suppression decreases drought tolerance, in Arabidopsis [65]. In

our study, a homolog to P5CS1 (HuCL02382C003) is among the

genes sharing GO term for ‘‘response to water deprivation’’ that

are significantly upregulated in treated FDS individuals, namely of

INEDI and SF109 genotypes. Moreover, another gene encoding a

homolog to P5CS2 (HuCL02382C001), a protein sharing an

overlapping role with P5CS1, is also significantly upregulated in

INEDI, SF109, as well as TEKNY FDS, water-deprived plants.

Another gene showing g*t modulation under FDS and associated

to GO:0009414 term corresponds to HuCL00842C001, an

homolog to Squalene Epoxidase 1 (SQE1, also known as XF1) . This

gene encodes a key enzyme in the biosynthesis of sterols and its

mutation has been proven to produce extreme drought hypersen-

sitivity in Arabidopsis [66]. The authors in that study showed that

sterols regulate Reactive Oxygen Species (ROS) through localiza-

tion of RHD2 NADPH oxidase. Thus, defective handling of that

enzyme in the sqe1 mutant would be responsible for the

hypersensitive drought response.

More intriguing are the results obtained for a homolog to AVP1

(HuCL06154C001), a gene encoding a vacuolar H+ Piropho-

sphatase whose overexpression has been associated with drought

tolerance in Arabidopsis and tomato [67,68]. In fact, one sunflower

homolog to this gene in our study seems to be significantly down

regulated in INEDI FDS plants under water deprivation

(FC,23.5). It must be pointed out that AVP1 has also been

proposed to hamper cell division in auxin-mediated organogenesis.

Thus, we may speculate that the downregulation of AVP1 in INEDI

would be related to leaf surface reduction in response to water

deprivation and/or drought-related detoxification.

Differential analysis of plants submitted to Fixed
Intensity Stress. The number of gene modulated at least under

Table 2. Cont.

Effect GO ID GO term
Query item/
total

Reference
item/total p-value FDR

GO:0044249 cellular biosynthetic process 148/677 1324/8415 0.02

GO:0044237 cellular metabolic process 255/677 2573/8415 0.036

GO term enrichment tests performed on groups of genes showing genotype, treatment and/or genotype*treatment interaction (g*t) effects in ANOVAs carried out with
eight sunflower genotypes undergoing two drought stress scenarios in controlled environment: Fixed Duration Stress (FDS) and Fixed Intensity Stress (FIS). Reference
dataset corresponded to the GO terms available for the 32 423 sunflower clusters used for this work. Tests were performed on the AgriGO website [105].
doi:10.1371/journal.pone.0045249.t002
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one factor in FIS plants, that is 6 976, was very similar to the total

of 6 916 genes transcriptionally regulated in FDS plants. However,

even though 4 898 genes were modulated in both FDS and FIS

situations, the relevance of each factor in either stress implemen-

tation strategy was very different as detailed in Table 1.

Genes showing a g*t modulation of their expression under FIS

are worth closer attention because they could, by definition,

support genotypic differences to the same water constraint in our

drought tolerant and sensitive genotypes. Fifty-one genes showed a

genotype*treatment interaction effect under FIS and 11 of them

showed the same effect under FDS. It is worth pointing out that

among those 11 genes, at least three of them are putatively

involved in cell wall modifications. Notably, there is an homolog to

the b-1,3-glucanase BG1 (HuCL04869C001). BG1 was previously

shown to be downregulated under drought stress in Thellungiella,

a close relative of Arabidopsis. This species grows in harsh

environments and has been used as model organism in

transcriptomic studies on abiotic stress, including drought

[69,70]. BG1 significantly reacts under both stress implementation

scenarios in our study, presenting all genotype, treatment and g*t

effects. Tukey’s test revealed significant treatment-depending HSD

values in 3 genotypes in both FDS an FIS, namely INEDI, SF193

and TEKNY. Besides, HSD values are also significant for SF109

under FDS and SF107 under FIS. Even though the role of BG1

under drought stress remains unknown, our findings underline the

importance of cell wall modifications in genotype-dependent

responses to drought in sunflower. Moreover, among the 11 genes

rendering g*t modulation under both stress implementation

strategies, we found also homolog genes to At1g23200

(HuCL02872C001), which encodes a pectin esterase, and to

TET3 or TETRASPANIN3 (HuCL02666C001), a senescence-

related protein. Both TET3 and pectinesterases have been

reported to be involved in arabinogalactan-derived cell to cell

signaling at the cell wall level [71].

As opposed to what was observed under FDS, however, genes

whose expression responded to the g*t interaction under FIS were

not enriched in terms involving abiotic stress responses. This might

be due to the much reduced number of genes modulated under g*t

interaction in FIS plants as compared to FDS individuals. Among

those 51 genes, we could find genes well known to be involved in

drought responses and subsequent biological processes such as, for

example, redox mechanisms and cell wall rearrangements.

Furthermore, we found genes encoding proteins that have been

reported to be altered in ABA-mediated stress responses, other

than the already mentioned BG1. This is the case, for instance, of

the cell wall-related glycosyl hydrolase BGLU16 (HuBU032078),

which has been shown to be up-regulated by ABA but repressed

by drought [72]. Another gene that might be modulated by ABA is

a homolog to the Arabidopsis ALDH10A9 (HuCL00113C001),

which encodes an ABA-responsive aldehyde dehydrogenase that

has been shown to be targeted to peroxisomes, being involved in

detoxifying aminoaldehydes produced under stress [73]. That

study confirmed the hypothesis that this enzyme is involved in the

oxidation of aminoaldehydes resulting from the activity of the

copper amine oxidase (CAO; At2g42490) and the pheohorbide A

oxygenase (PAO or ACD1; At3g44880) in the peroxisomes.

Interestingly, a homolog to CAO (HuCL06038C001) is also a

member of the 51 genes whose expression is modulated under g*t

interaction in FIS individuals. This reveals the importance of

aminoaldehyde detoxification in the genotype-dependant respons-

es in sunflower to harsh water deprivation. Among those 51 genes

there are homologs to other genes putatively involved in redox

mechanisms. That is the case of PRXR1(HuCL00049C001),

ATFRO7 (HuCL12107C001), the Glucose-methanol-choline

(GMC) oxidoreductase AT1G73050 (HuCL04787C001), and also

cytochrome P450 enzyme CYP82C (HuCL02115C001), which

modulates jasmonate-induced root growth inhibition and defense

gene expression [74]. Indeed, jasmonic acid plays very important

roles in response to biotic cues. However, its involvement in

abiotic stresses and, more particularly drought, remains elusive.

This is likely due to the fact that its interaction with ABA presents

synergistic and antagonistic elements [72]. There is another

jasmonate-responding gene (i.e. AT4G08870), among those

modulated by g*t interaction in FIS plants (HuCL00001C196).

This gene encodes an arginase that has been proven to be

preferentially expressed in the leaves, and has been shown to be

involved in MYC2-mediated resistance to insects [75–77]. This

gene had already been proven to be jasmonate-responsive in

another study, where the authors proposed that the coordinated

activation of metabolic pathways for antioxidants and defense

compounds by jasmonate provides stress tolerance in Arabidopsis.

Another gene that has been shown to be wound- and jasmonic-

responsive is PTR2, which encodes a member of the Major

Facilitator protein superfamily [78]. A sunflower homolog to

PTR2 (HuCL14745C001) is also among the g*t-altered genes in

FIS plants. Finally, it should be pointed out the presence of an

homolog to the Arabidopsis aquaporin PIP2;5 (HuCD846314).

Transcriptional variations of this gene, along with that of other

aquaporins, have been shown to be to be linked to leaf water

content.

Drought treatment affected 505 genes under FIS. As a matter of

fact, 406 out of them showed g*t effect under FDS indicating that

g*t effect under FDS mixes treatment and true g*t interaction

through the effect of the genotypic growth differences on the water

consumption resulting in different constraint intensities. Moreover,

269 out of those 406 genes were only altered by treatment. This

implies that the expression of those genes is only regulated under

severe water scarcity. Hence, their transcription would not be

altered in FDS plants of genotypes not having attained signifi-

cantly reduced ITW levels (see Table 1). Correspondingly, the

number of genes regulated upon treatment in FIS plants (i.e.

2 661) was much higher than in FDS plants (i.e. 679 genes). Gene

Ontology studies revealed that genes presenting treatment effect in

FIS plants were enriched in terms involving stress responses, most

particularly to abiotic stimulus.

On the opposite and similarly to what happened under FDS,

genes showing a genotype effect under FIS were not enriched in

these terms.

Covariance between transcriptomic data and morpho-
physiological variables

Plants under FDS. In order to join together the transcrip-

tomic and the physiological data, Sparse Partial Least Squares

(SPLS) analysis were conducted using the mixOmics [R] package

[35,79]. SPLS was especially conceived to deal with high

dimensional data sets and, more particularly, with experimental

designs where the number of variables (genes and physiological

variables combined) exceeds the number of samples to be

considered. The SPLS produces not only stable variable compar-

isons but it also allows highly valuable variable selection, which

made it highly suitable for our study [80].

One SPLS analysis was carried out for each stress scenario The

first feature that comes up under FDS is that ITW and Osmotic

Potential (OP) clearly define the first axis of the SPLS and that

they are negatively correlated (see Fig. 3). In other words, this first

axis accounts for the expected negative correlation between the

faster water depletion and a lower OP, i.e. with a stronger osmotic

adjustment. Leaf Mass per Area (LMA), expressing the dry mass

Gene-Phenotype Network for Drought in Sunflower
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per area unit on the reporter leaf (in g/m2), appears also found

negatively correlated with OP, exhibiting the fact that plants with

reduced cell growth on the leaves would present stronger osmotic

adjustment. The profiles of treated plants, and most particularly

those of INEDI, TEKNY and SF109 genotypes, are associated

with high ITW and strong osmotic adjustment, whereas control

plants are associated with low ITW and reduced osmotic

adjustment. This result indicates that INEDI, TEKNY and

SF109 would lower their OP in response to severe water scarcity,

which would allow maintaining cell turgor. Because their ITW

values were lower at harvest, treated plants of the other genotypes

were less confronted to cell water loss and could thus keep up with

water homeostasis without turning to osmolyte accumulation.

ITW and the Total Leaf Area (TLA), the variable that sums up

the surface of all leaves in the plant, are, to some extent, positively

correlated. This can be explained by the fact that genotypes with

higher growth rate, produced higher TLA before stress applica-

tion. Hence, once treatment was implemented, those plants

underwent steeper water depletion due to higher transpiration.

However, because the correlation between both variables is not

strong, we may speculate that for equivalent TLA, every genotype

did not consume the same amount of water and therefore have

different water stomatal and/or non-stomatal conductance.

Furthermore, ITW is likewise correlated to LMA. The observed

high LMA values are correlated to smaller cells and reduced cell

expansion. Decreasing cell expansion in response to drought is a

well-described long-term strategy in order to reduce water

transpiration, and it is one of the genetic parameters taken in by

the sunflower crop model SUNFLO [81]. In the FDS part of our

assay, this is especially true for INEDI and TEKNY, two hybrids

with large leaf areas and consequently with high ITW at harvest

time.

Another response plants may implement in order to keep up

with water homeostasis is reducing stomatal conductance. Under

FDS, ITW is negatively correlated with transpiration rate (E). This

negative correlation implies that genotypes undergoing abrupt

Figure 3. Results of the sparse Partial Least Squares (SPLS) analysis on plants under FDS (A) and FIS (B). Plots show respectively the
repartition of the morphophysiological variables (left) and individuals (right) along the first two components of the SPLS. Morphophysiological
variables are carbon isotope discrimination (CID), collar diameter (CoD), Transpiration rate (E), Integrated Transpired Water (ITW), Leaf Mass per Area
(LMA), Osmotic Potential (OP), Plant Height (PHe), Relative Water Content (RWC) and Total plant Leaf Area (TLA). Triangles correspond to treated
plants whereas circles correspond to their untreated counterparts. Genotypes are color-coded as follows: Inedi (black), Tekny (gray), Melody (red),
SF109 (turquoise), SF326 (yellow), SF193 (magenta), SF028 (green) and SF107 (blue).
doi:10.1371/journal.pone.0045249.g003
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water depletion will reduce stomatal conductance in order to avoid

severe tissue water loss, hence the lower Rvalues. This is in

agreement with the fact that treated INEDI and TEKNY FDS

individuals show a tendency towards lower Carbon Isotope

Discrimination (CID) values than their irrigated counterparts,

giving us an indication of higher Water Use Efficiency (WUE)

[82]. This is also true, to a lesser extent, for other genotypes, such

as SF109 and MELODY (Fig. S2). Hence, in the light of our

results, plants from every genotype undergoing low enough FTSW

values would tend to close the stomata more progressively and

lower down their CID. This would imply an increase of WUE but

of less importance than for TEKNY and INEDY with, eventually,

lower productivity.

Moreover, it is worth pointing out the fact that, on the second

axe of the SPLS concerning plants under FDS, CID appears in

opposition to morpho-physiological features such as Plant Height

(PHe) and Collar Diameter (CoD). We may thus speculate that,

independently of FTSW, the most vigorous genotypes made a

better use of the available water. Therefore, plants undergoing

lower stomatal conductance and subsequent lower carbon intake

would be thinner and smaller.

Overall, it can be observed that plants under FDS are

discriminated along the first axis of our SPLS according to water

depletion and subsequent osmotic adjustment. Genotypes with a

leaf surface large enough (e.g. hybrids such as INEDI and

TEKNY) would be the first suffering drought and implementing

transpiration rate reduction and osmotic adjustment. On the

contrary, plants are discriminated on the second and third axes

according to their genotype, with little regard to lack of water.

As it happened to CID, Relative Water Content (RWC) also

appears between both components 1 and 2, displaying positive

correlation with PHe and CoD as well as with CID, E and OP.

Therefore, in our conditions on the studied genotypes, that plants

with higher RWC values were more vigorous and they were less

prompt to head towards osmotic adjustment. In fact, plants would

implement osmolyte accumulation in response to water depriva-

tion in order to be able to keep up with cell turgor even in the case

of cell water loss, reflected by lower RWC values. In this sense, it is

worth noting that RWC appears, to some extent, in negative

correlation to LMA. Because lower LMA values imply larger cells

and, hence, stronger cell expansion, we may argue that higher

RWC values favor turgidity and hence cell expansion in

accordance with previous results [17,83]

Plants under FIS. Plants under FIS where harvested at

different dates when their FTSW values were below 0.1 and close

to an average of 0.04 (as opposed to FDS, where all plants were

harvested on the same day, therefore producing different FTSW

values). In spite of these divergent stress implementation scenarios,

the measured morpho-physiological variables do place themselves

in the SPLS analysis not very differently as they do under FDS.

However, there is one noticeable exception. Under FIS, ITW

appears negatively correlated to TLA, as opposed to what

happened under FDS, where they were positively correlated.

Indeed, it should be kept in mind that, as we have stated above,

ITW under either stress scenario has different implications. In the

case of FIS stress implementation, higher TLA values provoke that

plants reach an FTSW value close to 0 at an earlier date than

plants with lower TLA, because higher TLA means higher evapo-

transpiration. Because TLA is placed differently under FIS than

under FDS it is also tempting to speculate that, in agreement to

that, plants under FIS endured strong and long enough a drought

stress so that their adaptative strategies are easier to track down.

Thus, it can be observed that, in fact, TLA is negatively correlated

to LMA.

If we focus on how FIS individuals are placed in this SPLS

analysis, we realize that the first component is neatly driven by the

‘‘treatment’’ effect. That is, irrigated and water-deprived individ-

uals of all genotypes locate themselves at similar coordinates along

the first axis. As it happened under FDS, components 2 and 3 of

the SPLS under FIS managed as well to differentiate genotypes,

being PHe, CoD and CID their main driving variables. LMA, E

and OP variations are captured by both components 1 and 2,

being thus driven by both treatment and genotype. These

physiological traits constitute therefore important indicators to

describe genotype-specific drought responses.

Gene-Phenotype Networks relating gene expression and
morpho-physiological variables

The above-mentioned SPLS regression analysis allowed us to

infer networks displaying relevant relationships between morpho-

physiological variables and gene expression under FDS and/or

FIS. SPLS combines a multivariate projection-based method

comprising a lasso penalization-mediated variable selection.

Associations are then inferred by means of pairwise association

scores between variables from both data frames containing gene

expression and morpho-physiological data.

Gene-Phenotype Network in Fixed Duration Stress
scenario. In the case of plants under FDS, a total of 690 genes

displayed absolute association scores higher than 0.65 with at least

one morpho-physiological variable, producing a total of 1 236

associations, 579 being positive and 657 negative correlations (Fig.

S3). No gene was associated at that threshold with CoD or TLA,

six were linked to PHe and there were 38 genes whose expression

was correlated to LMA values. Tighter correlation with gene

transcription was observed for E (388 genes), ITW (208 genes) and,

most particularly, OP (576 genes). In the case of OP, nearly half of

those 576 genes, namely 256, were associated exclusively to this

variable. Remarkably, all 208 genes related to ITW were also

linked to, at least, OP. Moreover, 189 out of those 208 genes were

correlated with E, albeit, as it happened with OP, in the opposite

sense to ITW. It is worth pointing out that no gene was associated

exclusively with ITW (i. e. FTSW in FDS scenario), implying that

gene expression was not correlated exclusively with the available

water for the plant. The fact that this variable appears in

combination with other variables might reflect that the water

constraint (captured by ITW) will trigger plant responses which

will then have an impact on the evolution of water consumption

and consequently on ITW itself. Thus, the two main morpho-

physiological variables correlated with gene expression are OP and

E, which will thus have an impact on ITW. Gene ontology

enrichment tests on those 208 genes related at least to ITW and

OP, and in most cases to E as well, revealed an enrichment in

‘‘Response to abscisic acid stimulus’’ (GO:009737) term, suggest-

ing the major role of ABA in progressive drought stress response.

Likewise, molecular functions concerning ‘‘symporter activity’’

(GO:0015293) as well as ‘‘transmembrane sugar transporter’’

(GO:0051119) and ‘‘water channel activity’’ (GO:0015250) were

significantly over-represented, underlining the importance of

osmotic adjustment in the implemented stress.

Gene-Phenotype Network in Fixed Intensity Stress
scenario. For plants subjected to FIS, a total of 1 032 genes

produced associations with a score higher than 0.65 with at least

one morpho-physiological variable, rendering a total of 1 967

associations, of which 1 026 were positive and 941 negative

correlations (Fig. S4). Nearly half of those 1 032 genes, i.e. 459,

appeared also on the FDS network. As it happened with FDS

plants, no gene was associated with CoD or TLA. Conversely to

what happened under FDS, though, no gene was correlated to

Gene-Phenotype Network for Drought in Sunflower
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LMA. Likewise, whereas only 6 genes were linked to PHe under

FDS, a total of 24 were so in FIS plants. More strikingly, OP is not

the variable associated with highest number of genes under FIS. In

fact, under FIS, the expression of 176, 337 and 514 genes were

linked to, respectively, OP, Rand RWC. Nonetheless, the variable

that produced more associations was ITW, which was correlated

to the expression of 916 genes. However, as opposed to

associations under FDS, where no gene was exclusively related

to ITW, 252 genes were so under FIS. The expression of 197

genes out of those 252, that is 78%, do not produce any

association with morpho-physiological variables in plants under

FDS. The expression levels of these genes are thus exclusively

correlated with the time individuals take to reach harsh stress

levels, which is captured by ITW under this stress implementation.

Gene ontology enrichment tests did not reveal any significant GO

term abundance.

Gene-Phenotype Integrated network. The correlation

networks built under FDS (Fig. S3) and FIS (Fig. S4) were merged

into one unique network shown in Figure 4. This integration

allowed us to display simultaneously not only genes exclusive to

either FDS or FIS networks but also genes rendering associations

under both stress implementations, though not necessarily with the

same morpho-physiological variables in each case (see Fig. 4).

Thus, among the 1 263 genes linked to at least one morpho

physiological variable under FDS and/or FIS, there are 231 and

573 genes that appear exclusively in the FDS or the FIS networks,

respectively. On the other hand, 459 genes are related to morpho-

physiological variables under both stress implementation strate-

gies. The fact that fewer genes appear exclusively under FDS

might be because fewer genotypes were substantially altered under

this stress implementation. However, links between gene expres-

sion and morpho-physiological variables under FDS might

translate earlier responses to water deprivation. A total of 191

genes producing links with morpho-physiological variables exclu-

sively under FDS are related to OP, that is 83% of the 231 genes.

Moreover, 138 of those 191 genes are uniquely associated to OP,

that is 60% of all the genes whose expression levels are correlated

with morpho-physiological features under FDS (Table S3). This

indicates that the adjustment of the osmotic potential in order to

cope with eventual water loss while maintaining cell turgidity is an

early response in sunflower under drought stress. Furthermore, the

pre-emptive nature of this response is underlined by the fact that

only eight genes are related to RWC. However, it is worth

pointing out that all those eight genes were associated uniquely to

RWC, and not to any other morpho-physiological feature. One of

those eight genes, i.e. HuCL00871C003, is a homolog to the

Arabidopsis CAX1 gene, which encodes a Ca2+/H+-antiporter

that has been shown to be crucial in uptaking apoplastic calcium

by the mesophyll cells. CAX1 deficiency results in reduced cell

wall extensibility, stomatal aperture, transpiration, CO2 assimila-

tion and leaf growth, thus reducing plant productivity [84]. In the

future, it might be worth studying in detail this link between RWC

and CAX1 with regard to crop yield in sunflower.

Among the genes showing significant associations exclusively

under FDS, 34 of them are related to ITW, though none of them

is uniquely related to this variable. In fact, all those genes are also

related to, at least, OP, while 27 of them (i.e. 79%) are associated

with E as well. Our data shows that sunflower implements both the

osmotic adjustment and the reduction of transpiration rate at the

early stages of drought stress. Among those 34 genes, we found

HuCL00001C110, a homolog to RACK1 (Receptor for Activated

C Kinase 1), whose encoded protein has been reported to be a

critical negative regulator of ABA responses under abiotic stress. It

has been proposed that this protein plays its cellular role by

regulating protein translation, and that it may be required for

normal production of 60S and 80S ribosomes [85,86]. Indeed,

‘‘Translation’’ is the GO term particularly enriched in the ITW-

related subset of genes: 12 out of 34 were associated with this GO

term. A total of 11 genes in this group encode ribosomal proteins

involved in the biosynthesis of 60S and 40S ribosomes. Further-

more, we find homologs to XERICO (HuCL05555C002) and

LTP3 (HuCL00012C003). XERICO is a RING zinc-finger

transcription factor involved in ABA homeostasis, presumably by

activating the NEC3 gene and/or sending negative regulators of

the ABA biosynthesis towards the ubiquitination pathway [87,88].

LTP3, on the other hand, is an ABA-responding gene as well,

involved in cell wall mobilization and cuticle thickening in

response to biotic and drought stress [89,90]. Because ITW

reflects water availability under FDS, these FDS-exclusive genes

linked to ITW might reveal constitutive expression patterns under

water deprivation. That is, genes whose expression profiles are

altered when drought is perceived henceforth remaining unmod-

ified as long as such stress is in place.

Apart from ITW, all morpho-physiological variables in the

merged network present associations with genes both under FDS

and FIS stress implementations. However, only OP presents a

group of 16 genes that are exclusively related to this variable both

under FDS and under FIS. It is worth pointing out that all those

genes but one encode proteins that are expected to be located

either in the plasma membrane, in the vacuole or in the

chloroplast. One of those genes, namely HuCL04973C001, is a

homolog to the Arabidopsis gene ITN1 (Increased Tolerance to NaCl

1), whose expression is positively correlated with the osmotic

potential, that is negatively so with the osmotic adjustment. This

gene encodes a member of the ankyrin repeat family that has been

reported to positively regulate the production of Reactive Oxygen

Species (ROS) in response to ABA under salt stress. However, it

has been suggested that it might not be involved in ROS

production under drought or osmotic stresses. Furthermore, it has

been proposed that ITN1 is neither involved in ABA-mediated

stomatal closure, where ROS act as secondary messengers [91].

Thus, the exact role of ITN1 under drought stress remains

undefined. Our data suggest that ITN1 might be involved in

osmotic adjustment in response to water deprivation. Interestingly

enough, another gene in that shortlist of 16 is a homolog to EX1

or EXECUTER1 (HuCL02634C001), which encodes a plastid-

located protein involved in singlet oxygen-induced upregulation of

nuclear gene expression in response to environmental stress.

However, EXECUTER1 seems to be integrated in a very complex

stress-responsive signaling network that might be the subject to the

control of various modulators, thus mitigating the harsh conse-

quences of network partial dysfunction. It is worth pointing out

that the expression of this gene in negatively correlated with the

osmotic potential and, therefore, positively correlated with the

osmotic adjustment [92,93]. These results reveal links between

ROS homeostasis and osmotic adjustment in response to drought

stress that deserve further research. Indeed, it has already been

suggested that under salt stress, compatible solutes usually involved

in osmotic adjustment (e.g. glycine betaine, proline, mannitol,

trehalose or myo-inositol) significantly reduce OHN-induced

cellular K+ efflux and subsequent damage to membrane

transporters. Most interestingly, this cell protective role was

achieved also by solutes without any scavenging properties.

Hence, it remains unclear whether the mitigation of oxidative

damage by compatible solutes is the result of direct protection of

membrane transporters or free-radical scavenging properties

[94,95].
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Differential gene expression and Gene-Phenotype
Network

Most of the genes linked to one or more morpho-physiological

variables present at least one differential effect under the ANOVA.

In the case of FDS plants, the expression of 514 out of those 690

genes related to at least one morpho-physiological variable, was

altered by treatment, genotype and/or the g*t interaction, and the

response of 182 genes was found affected by both genotype and

treatment. To great extent, these genes were related, at least, to E.

Indeed, whereas 388 out of the 690 genes on the network, i.e.

56.2%, were at least related to E, a total of out 148 of the 182

genes (81%) displaying all differential effects, were related to E. As

a general rule, the more the expression of a gene was associated

with different variables, the higher the probability was for this gene

to display all differential effects. Thus, if we look at the 16 genes

related to all four LMA, OP, ITW and E, the expression of 11 of

them is modulated under all three effects. This is also the case for

87 out of the 182 genes (48%), associated with all three OP, ITW

and E. On the other hand, 176 genes out of the 690 genes related

to at least one morpho-physiological variable do not present any

significant modulation in their expression. Most of these genes, i.e.

103, appear associated exclusively to OP, representing 58.5% of

the genes in the network whose expression is not differentially

regulated. Interestingly, however, the expression of 147 out of

those 176 genes is altered under FIS. The fact that they are not

differentially expressed under FDS may be due to the fact that the

stress perceived by certain genotypes at harvest was not enough to

modulate their gene expression.

In the case of plants under FIS, 810 out of the 1 032 genes

related to at least one morpho-physiological variable (78.5%), are

modulated only by the treatment. Another 179 genes (17.3%) are

modulated both by genotype and treatment. Only four genes were

regulated by the treatment and the g*t interaction, whereas only

one gene appeared altered by all three studied effects. Interest-

ingly, 23 genes displayed only the genotype effect and all of them

were exclusively related to plant height (PHe). Indeed, PHe

appeared related to genes modulated uniquely by the genotype. In

sunflower affected by a long and severe drought stress in the field,

a reduction of the plant height can be observed. Our results might

indicate that, in the implemented drought stress scenario, other

morphological traits were affected before plant height. This was

the case both under FDS and FIS. Notwithstanding this, it should

be noted that the genes that intervened with PHe under FDS are

different from the ones under FIS.

Unlike to what happened under FDS, 252 genes were

exclusively related to ITW under FIS. The vast majority of those

genes (197, i.e. 78%), were not associated with any morpho-

physiological variable whatsoever under FDS. This was also the

case for the 39 genes linked exclusively to E, 37 of which are not

connected to any morpho-physiological feature under FDS. This is

also the case for 89 out of the 117 genes relating to both ITW, that

is 76%.

Figure 4. Gene-Phenotype network produced by SPLS, based on responses of eight sunflower genotypes to two drought stress
scenarios implemented in controlled environment. Genes presenting absolute correlation scores higher than 0.65 with at least one morpho-
physiological variable are represented. Each circle represents one gene. Blue, red and purple edges indicate, respectively, whether the gene-
phenotype association exists under FDS, FIS or both stress scenarios. Each gene circle is split in three slices displaying ANOVA results. Yellow, red and
black slices represent, respectively, treatment effect under FDS (moderate stress responsive genes), treatment effect under FIS (severe stress
responsive genes), and g*t effect under FIS (gene likely to explain genotypic differences in stress responses). Numbers of genes for each combination
of ANOVA effects are shown for each gene-phenotype group. Phenotypic responses are in gray squares, OP: Osmotic Potential, LMA: Leaf Mass Area,
E: Transpiration Rate, RWC: Relative Water Content, ITW: Integrated Transpired Water, PHe: Plant Height.
doi:10.1371/journal.pone.0045249.g004
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Sunflower responses to drought in the field environment
The hybrid MELODY used in the greenhouse conditions was

chosen to assess drought response of sunflower in the field. A total

of 156 genes were differentially expressed between irrigated and

non-irrigated MELODY individuals in the field. GO enrichment

tests on those genes produced overrepresented terms concerning

cellular amino acid metabolic processes. This might indeed reveal

osmotic adjustment mechanisms were amino acids may be

involved, as observed in the greenhouse experiment.

Among them, 84 (i.e. 54%) were modulated by treatment and/

or g*t interaction in the greenhouse experiment, seven of them

under FDS, 28 under FIS and 49 under both stress implemen-

tation strategies. This subset of 84 genes constitutes a robust and

valuable group of candidate genes in order to assess sunflower

drought stress in a wider range of environments.

Furthermore, we found 49 out of the 156 drought-regulated

genes in the field environment (i.e. 31.4%) to be linked to

phenotypes in the Gene-Phenotype network, thus underlining the

physiological processes involved in drought stress response in our

field experiment as shown in Fig. 5. GO enrichment tests

highlighted a limited amount of Molecular Function terms on

those 49 genes, including ‘‘Ion transmembrane transporter

activity’’ (GO:0015075) and ‘‘Active transmembrane transporter

activity’’ (GO:0022857) (see Table S4). Moreover, according to

the ANOVA, the expression of all those 49 genes was treatment-

altered under FIS and 41 showed a treatment and/or g*t

interaction under FDS.

The presence among those genes of homologs to MAT3

(HuCL03862C001) and EFE (HuCL00039C002), two ethylene-

related genes, reveal the key role of this hormone in drought stress

response. MAT3 encodes an S-adenosyl transferase involved in

ethylene biosynthesis . The expression of MAT3, and therefore

ethylene biosynthesis, has been reported to be drastically

diminished in Arabidopsis plants expressing HAHB-4, a sunflower

HD-Zip transcription factor transcriptionally regulated by water

availability and abscisic acid [96]. Remarkably, EFE (Ethylene

Forming Enzyme) has been previously reported to be repressed

under drought stress in response to at least three hormones,

including ABA [72]. In that work, authors highlighted the cross

talk between the different environmental cues as well as among the

subsequent hormone signaling pathways.

Over-representation of field drought regulated genes linked to a

given phenotypic traits in the gene-phenotype network reflects the

importance of this traits in this natural environment. This is the

case for RWC-related genes showing a significant enrichment in

the field dataset (28/49 vs 523/1263, p = 0.009) and possibly for

genes linked to OP (28/49 vs 628/1263, p = 0.066). This approach

based first on generating a general model of stress response (the

gene-phenotype network), and secondly on testing the specific

enrichment in genes linked to a phenotypic trait in an independent

dataset is novel and allows us to clearly highlight the importance of

RWC and OP physiological responses in field conditions.

Conclusion

Because water constitutes more than 95% of some plant tissues,

water deprivation might affect any molecular and physiological

process. To improve our understanding of such a complex

response, it is essential to develop systemic approaches to

understand how the functional system is controlled by multiple

factors. Furthermore, this approach can play a role in developing

knowledge in less tractable experimental models and driving

hypothesis for functional genomics studies.

In this work, we developed a dual drought scenario strategy and

exploited genetic diversity in sunflower to decipher the molecular

basis of drought responses and reveal physiologically relevant

processes. Genotypic differences in the response to drought stress

were very important but still a large number of genes were

modulated by this treatment in controlled conditions. In order to

relate gene expression to phenotypic variations, we inferred a

gene-phenotype network. Major drought responses (E, RWC, OP,

SLA, PHe) and stress intensity (ITW) could be statistically

Figure 5. Gene-Phenotype sub-network produced by SPLS, based on responses of eight sunflower genotypes to two drought stress
scenarios implemented in controlled environment. Only genes regulated by drought stress in field conditions are shown. Each ellipse
represents one gene. Blue, red and purple edges indicate, respectively, whether the gene-phenotype association exists under FDS, FIS or both stress
scenarios. Sunflower Heliagene cluster IDs are shown when meaningful names of Arabidopsis homologs are not available. Gray squares represent
phenotypic responses; OP: Osmotic Potential, E: Transpiration Rate, RWC: Relative Water Content, ITW: Integrated Transpired Water, PHe: Plant
Height.
doi:10.1371/journal.pone.0045249.g005
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associated to gene expression modification. These results allowed

us not only to confirm data previously obtained on model species

(reviewed by [20] as well as smaller-scale data obtained on

sunflower [97,98], but also to open new doors to the study of

drought responses in this species. Besides, this analysis identified

key genes associated to one or several process whose expression

regulation differs in sensitive and tolerant genotypes providing

good candidates for further functional and genetic studies.

Few other studies in microorganism model systems, studying

together physiological parameters and gene expression, were

performed to link mainly metabolomic and transcriptomic datasets

[99,100]. They used various stresses to infer associations between

physiological and gene expression variations. However, none

exploited the genetic variability existing in these microorganisms.

In our study, the general drought Gene-Phenotype network

inferred from data obtained in controlled conditions was used in

an independent field experiment where physiological indicators

were not tractable. The set of drought regulated genes in field

overlapped significantly with controlled condition data. As a result,

we could identify robust sunflower genes responding to drought in

agronomical conditions and we could also assess the importance of

the osmotic adjustment and the regulation of relative water

content in sunflower in such environment.

Taken together, our work provides a new and large-scale

expression dataset in sunflower undergoing drought stress, that is

an important yield limiting factor for this crop in the frame of the

climate change. We inferred statistically significant associations

between several thousands of genes and phenotypic responses and

modeled their overall interactions in a gene-phenotype network.

More importantly, we were able to identify genes and physiolog-

ical processes that could explain genotypic differences of drought

responses in controlled and agronomic conditions.

Materials and Methods

Choice of genotypes
Eight sunflower genotypes (5 inbred lines and 3 F1 hybrids)

were chosen for this study, paying attention to previous

phenotyping data that provided evidence of genotype-dependent

responses to different environmental cues, including water

deprivation. SF193 and SF326 are two reference lines in our

group as well as the parental lines of the INEDI RIL population

developed by INRA. SF193 is a maintainer line whose pedigree

includes the Progress cultivar, which improves the tolerance to

Phomopsis and the resistance to Downy mildew, and the widely

used HA89. Both SF193 and SF326 behaved differently in

response to water deprivation in preliminary studies (Rengel et al,

unpublished results). For instance, it was observed that SF193

closes its stomata at much higher soil water content than SF326 at

the same developmental stage. INEDI, another genotype used in

this work, corresponds to the F1 hybrid SF193*SF326. SF109,

(also known as 2603) is an INRA-bred line that, despite its

susceptibility to some diseases like Phomopsis, has been widely

used as a female parental line in hybrid crossings in Spain and

other Southern European countries due to its good agronomic

adaptation to dry conditions. Two other genotypes, SF028 and

SF107, have previously been used as male parental lines in field

test-crosses in different locations, and both show highly contrasted

yields between irrigated and non-irrigated conditions, depending

on the location. Finally, TEKNY and MELODY are widely

cultivated sunflower hybrids.

Experimental design
Growing conditions. Plants were grown in the greenhouse

and the experiment was conducted in May and June 2009.

Greenhouse air temperature was kept at 17uC during the night

and between 20 and 25uC during daylight.

Ninety six individual pots were arranged in six blocks,, each pot

containing one single plant, to a final stand density of 6 plants/m2.

Pots (25 cm diameter, 30 cm height) were filled with 15 liters of

substrate (50% clay loam, 10% sand and 40% potting soil).

Each block contained two plants of each genotypes (2*8

genotypes). One of those two plants was used as a control (well-

watered individual) and the other as a treated plant (water-

deprived individual). Pots within each block were randomly

arranged within a block. All pots were daily irrigated before the

beginning of water treatments application. They were fertilized

three times, before water deprivation treatment, with the following

solution: 20% Nitrogen (5.6% HNO3, 4% NH4
+, 10.4%

NH2CONH2), 20% P2O2, 20% K20.Fertiliser was added at

1.5 g/l to the irrigation water.

Water treatments. Twenty five days after sowing, irrigation

on treated plants was stopped. Both well-watered (control) and

water-deprived plants were weighed every day at the end of

afternoon, to determine the daily transpiration (Td) of each plant.

Pots were covered with a 3 mm layer of polystyrene sheet to

prevent soil evaporation. Leaf area of every plant leaf was

measured every two days in the morning, and stomatal

conductance was calculated every day in the morning. Lost water

due to transpiration was daily added to control plants, just after the

pot weighting.

The soil water status was monitored using the fraction of

transpirable soil water (FTSW, [101]. To estimate FTSW, a full-

watering of four other pots was made and followed by one-night of

drainage. Then, the initial pot weight was determined as the mean

weight of the four pots. The total transpirable soil water (TTSW) is

the maximum amount of available water for the plant,in each pot

for this soil type. Thus, TTSW corresponds to the water held in

soil between its field capacity (the water remaining in a soil after it

has been thoroughly saturated and allowed to drain freely, usually

for one night) and the permanent wilting point (the moisture

content of the soil at which plants wilt). In our experiment, TTSW

value was estimated when the stomatal conductance (gs) of the

water-stressed plants in the four pots reached 10% of those of the

well-irrigated plants. When this ratio was reached, the pot weight

was determined and called the final pot weight. Then, TTSW was

calculated as the difference between initial pot weight and the final

pot weight. Mean TTSW was remarkably stable between

genotypes. FTSW was then calculated by the ratio of the mass

difference between daily and final pot weight to TTSW. The

FTSW values of the control plants were daily brought back to 1.

For Fixed Duration Stress (FDS) implementation, plants of

blocks 1 to 3 were harvested when 50% of the treated plants

reached a FTSW below 0.35. This date arrived seven days after

stopping irrigation, when estimated FTSW values of the treated

plants ranged from 0 to 0.57 according to the genotype. For Fixed

Intensity Stress (FIS) implementation, plants of blocks 4 to 6 were

harvested when the treated plant reached an estimated FTSW

value of 0.160.04. This corresponds to the Fixed Intensity Stress

(FIS) subjected to plants.

Transpiration rate
Leaf transpiration rate (E, in mg.cm22.s21) and stomatal

conductance (gs, in cm.s21) were measured from 10 a.m. with a

porometer (LI-1600, Li-Cor Inc, Lincoln, NE, USA). It was

measured on well-exposed and youngest expanded leaves and on
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abaxial face. Porometry was used to determine the dates of harvest

for both fixed duration and intensity stress, allowing us to calculate

TTSW value.

Morpho-physiolocal traits
Upon each harvest (FDS and FIS), the uppermost fully

expanded leaf of each plant was used to determine several

morpho-physiological traits. Half the lamina of sampled leaf was

used to determine Leaf Mass per Area (LMA) and Relative Water

Content (RWC) .The remaining half was used to measure Leaf

Osmotic Potential (OP) in order to assess osmotic adjustment.

RWC was calculated as RWC = (Fw-Dw)/(Tw-Dw), where Fw

corresponds to fresh leaf weight and Tw corresponds to turgid leaf

weight after 24 h rehydration at 4uC in a dark room with the

petiole submerged in distilled water. Dw corresponds to dry leaf

weight after subsequent oven-drying for 24 h at 80uC.

Osmotic potential (OP) at full turgor was measured on

expressed sap of frozen and thawed leaves using 10 ml aliquots

placed in an osmometer calibrated with manufacturer solutions

(Wescor 5520, Logan, Utah, USA). Leaf osmotic potential

measurements were done according to method described in detail

by [97].

The leaf mass per area (LMA) was determined with discs (2 cm

diameter) cut on rehydrated lamina of sampled leaves and dried

(48 h, 80uC). LMA was calculated as the leaf dry weight per leaf

area (m2.kg-1)

Carbon isotope discrimination (CID) refers to the ratio of the

carbon isotopes13C/12C)in plant material, relative to the same

ratio in the atmosphere. Several studies indicate that discrimina-

tion against 13C is proportional to plant water use efficiency [82].

In order to assess CID, the same samples of full expanded leaves

used for LMA measurements were dried at 80uC. The dry samples

were ground and sent to the Stable Isotope Facility at the

University of Davis, CA, USA. The ground materials were

analyzed for 13C isotopes using a PDZ Europa ANCA-GSL

elemental analyzer interfaced to a PDZ Europa 20–20 isotope

ratio mass spectrometer (Sercon Ltd., Cheshire, UK). Samples

were combusted at 1000uC in a reactor packed with chromium

oxide and silvered cobaltous/cobaltic oxide. Following combus-

tion, oxides were removed in a reduction reactor (reduced copper

at 650uC). The helium carrier then flowed through a water trap

(magnesium perchlorate). N2 and CO2 were separated on a

Carbosieve GC column (65uC, 65 mL/min) before entering the

IRMS. During analysis, samples were interspersed with several

replicates of at least two different laboratory standards. These

laboratory standards, were selected to be compositionally similar

to the samples being analyzed, and have been previously

calibrated against NIST Standard Reference Materials (IAEA-

N1, IAEA-N2, IAEA-N3, USGS-40, and USGS-41). A sample’s

preliminary isotope ratio were measured relative to reference gases

analyzed with each sample. These preliminary values were

finalized by correcting the values for the entire batch based on

the known values of the included laboratory standards.

Transcriptomic analysis
Tissue harvest and RNA extraction. In order to represent

the entire plant while sparing tissue for other phenotyping

procedures, every odd-numbered leaf along the whole plant was

harvested for RNA extraction. Overall, between 6 and 11 leaves

from each plant were pooled and then ground together. RNA

extraction was performed using the Nucleo Spin RNA II

extraction kit (Cat. No. 740 955.250) from Macherey-Nagel

(Düren, Germany).

The Affymetrix Sunflower Gene WT Chip. The Affyme-

trix Sunflower Gene WT Chip was developed from 284 251 ESTs

of seven different Helianthus species available at NCBI on

September 27th 2007. It is worth noting that even though seven

Helianthus species were considered, Helianthus annuus or sunflower

was the most abundantly represented species, with a total of

93 425 ESTs, i.e. 33% of the total ESTs.

The assembly of the ESTs produced 87 202 unique sequences,

of which 8 378 presented ambiguous orientation, thus giving a

total of 95 589 clusters that were considered for the design of the

chip. Those clusters or probesets were split into ,150 nucleotides-

long Probe Selection Region, yielding a total of 397 663 PSRs.

Using those PSRs, Affymetrix synthesised and spotted 2.56 million

distinct, sense targeted 25-mers on the Sunflower Gene WT chip.

For our analysis we considered those probesets which contained

at least one H. annuus EST, that is a total of 32 423 probesets

comprising 897 642 probes.

RNA labeling and Affymetrix chip hybridization. All

RNA samples were checked for their integrity on The Agilent

2100 bioanalyzer according to the specifications from Agilent

Technologies (Waldbroon, Germany).

RNA concentration was measured with RiboGreenH RNA

Quantification Reagent (Turner Biosystems, Sunnyvale, CA).

Following Affymetrix recommendations, 100 ng of total RNA

were used to synthesize fragmented and biotin-labelled single-

stranded-DNAs with the GeneChipH WT cDNA Synthesis and

Amplification kit and GeneChipH WT Terminal labelling kit

(Affymetrix, Santa Clara, CA).

Quantity of the cRNA was determined with RiboGreenH RNA

Quantification Reagent (Turner Biosystems, Sunnyvale, CA) after

cleanup by the Sample Cleanup Module (Affymetrix). 15 mg of

cRNA were used to obtain a single stranded cDNA, quantified

with NanoDropH Spectrophotometer ND1000 (Thermo Fisher

Scientific, Waltham, MA). 5.5 mg of single stranded cDNA was

fragmented and labelled followed by hybridization during

16 hours at 45uC to Affymetrix GeneChipH Sunflower genome

array.

After hybridization, the arrays were washed with 2 different

buffers (stringent: 66 SSPE, 0.01% Tween-20 and less-stringent:

100 mM MES, 0.1 M[Na+], 0.01% Tween-20) and stained with a

complex solution including Streptavidin R-Phycoerythrin conju-

gate (Invitrogen/molecular probes, Carlsbad, CA) and anti

Streptavidin biotinylated antibody (Vectors laboratories, Burlin-

game, CA). The washing and staining steps were performed in a

GeneChipH Fluidics Station 450 (Affymetrix). The Affymetrix

GeneChipH sunflower Genome Arrays were finally scanned with

the GeneChipH Scanner 3000 7G piloted by the GeneChipH
Launcher (Affymetrix).

All this steps were performed at the Affymetrix platform at

INRA-URGV in Evry, France.

Data normalization. Raw .CEL files issued from the

Affymetrix chip scanning were imported into R environment (R

Foundation and Environment for Statistical Computing, Vienna,

Austria)

Background noise was removed using the rma algorithm

(Irizarry et al., 2003), available in the Affy package from

Bioconductor [102]. The Intensity value of every probeset was

then ‘‘block-centered’’ by subtracting the mean Intensity value of

the probeset in a given experimental block to the Intensity of that

probeset in every chip. The presence of negative Intensity values

was avoided by adding up the global mean Intensity value for the

probeset in all 96 individuals. Subsequently, quantile normaliza-

tion was carried out using the normalize.quantiles function

available in the preprocessCore package from Bioconductor.
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All raw and normalized data are available through the CATdb

database (AFFY_Sunyfuel_drought_Sunflower and AFFY_-

TOUR_2010_21, [103] and from the Gene Expression Omnibus

(GEO) repository at the National Center for Biotechnology

Information (NCBI, [104]: accession number GSE25719.and

GSE 36 304

Data Analysis. Data analysis was performed in R environ-

ment and scripts are available upon request. ANOVAs were

carried out in order to determine differentially expressed genes

under block, treatment, genotype and genotype*treatment effects.

Mean common residual variance was applied to probesets sharing

homoscedastic values in our model, as tested by Bartlett’s test.

FWER-type error due to multiple tests was controlled to 5% using

Bonferroni’s procedure. No gene presented block effect and thus, this effect

has not been discussed in the manuscript.

SPLS covariance analysis was achieved using the mixOmics

package available in Bioconductor [79,102]. This projection-based

method is particularly adapted when the number of variables

exceeds the number of individuals. SPLS combines linear

combinations between two datasets and LASSO-type penalization

in order to discriminate relevant combinations, with increases

biological interpretability. We used SPLS in regression mode,

which modelizes causal relationships, thus predicting physiological

responses out of transcriptomic data.

GO term enrichment tests were performed using Singular Enrichment

Analysis (SEA) on the AgriGO website [105] by comparing the annotations of

Arabidopsis homologs to a subset of sunflower transcripts, with the annotations

of Arabidopsis homologs of all sunflower transcripts present on the chip. We

performed hypergeometric tests with FDR under dependency for multi-test

adjustment.

For enrichment tests of genes related to a given physiological

trait in the network, we performed a hypergeometric test using the

function hygepdf.m in the Matlab Statistical toolbox (v7.4).

qRT-PCR validation. Gene expression validation was conducted via

the BioMarkTM HD System using 96.96 digital array chips from

Fluidigm Corporation [106]

Genes showing sharp fold changes (FC) in the Affymetrix chip,

presenting either up- or down-regulation under water deprivation

for every genotype in the design, were chosen and tested for qRT-

PCR validation. A total of 10 genes were chosen and validated.

For this purpose, sunflower reference genes were chosen among

the genes presenting no modulation under water deprivation

according to the results obtained from the Affymetrix hybridiza-

tions. That is, genes showing FC = 1 in every genotype and

smallest standard deviation among individuals. A total of 30

reference genes were initially picked and eight of them, i.e. those

presenting the smallest variability among individuals according to

the qRT-PCR results and sharing similar Ct values with the tested

genes, were finally retained for the analysis of the tested genes. The

mean expression value of those eight genes was used in every

individual in order to normalize the expression values of the 10

tested genes. Ninety five individuals out of the 96 in the design

were tested in the same Biomark array. Boxplots showing the qRT

PCR results for the reference genes as well as the correlation

between the Affymetrix results and the qRT-PCR results for the

tested genes are shown in Figure S5.

Experimental Design in the field. Plants were grown at

INRA in Auzeville-Tolosane (Haute-Garonne, France). They were

sown on the 7th of May 2009 and the tissue used for the chip

hybridizations was harvested on 30th July 2009, that is 85 days

after sowing, and approximately 10 days after flowering.

The assay was arranged in plots of 4 rows separated by 50 cm,

each having circa 24 plants separated by 25 cm, with one

genotype per plot. It was divided in two identically seized parts,

one irrigated and the other one not. Four plants from four plots of

MELODY (two per treatment) were selected. Plots were included

in a larger trial and spread randomly across the field capturing

most of its heterogeneity. Starting from the head, leaf 23 was

harvested for subsequent grinding and RNA extraction.

A basic water balance model was used to decide when to harvest

plants. Tissues were harvested when the ratio between the actual

evapotranspiration and the maximal evapotranspiration, as

calculated by BILH model [107], was 0.63 and 0.22 in the

irrigated assay and the non-irrigated assay respectively. This

corresponded to an optimal difference between treatment i.e. to a

mild and severe stress in agronomic conditions.

Supporting Information

Figure S1 Distribution of the number of probes per
probeset in the Helianthus annuus probesets from the
sunflower Affymetrix microarray.

(TIF)

Figure S2 Results of the sparse Partial Least Squares
(SPLS) analysis on plants under FDS (A) and FIS (B). Plots

show respectively the repartition of the morphophysiological

variables (left) and individuals (right) along the first three

components of the SPLS. Morphophysiological variables are

carbon isotope discrimination (CID), collar diameter (CoD),

Transpiration rate (E), Integrated Transpired Water (ITW), Leaf

Mass per Area (LMA), Osmotic Potential (OP), Plant Height

(PHe), Relative Water Content (RWC) and Total plant Leaf Area

(TLA). Triangles correspond to treated plants whereas circles

correspond to their untreated counterparts. Genotypes are color-

coded as follows: Inedi (black), Tekny (gray), Melody (red), SF109

(turquoise), SF326 (yellow), SF193 (magenta), SF028 (green) and

SF107 (blue).

(TIF)

Figure S3 Gene-Phenotype network produced by SPLS
in the FDS scenario, based on responses of eight
sunflower genotypes to two drought stress scenarios
implemented in controlled environment. Genes presenting

absolute correlation scores higher than 0.65 with at least one

morpho-physiological variable are represented. Each circle

represents one gene. Red and blue edges indicate, respectively,

whether the gene-phenotype correlation is respectively positive or

negative. Each gene circle is colored according to the ANOVA

effect associated to the gene. Phenotypic responses are in gray

squares, OP: Osmotic Potential, LMA: Leaf Mass Area, E:

Transpiration Rate, RWC: Relative Water Content, ITW:

Integrated Transpired Water, PHe: Plant Height.

(TIF)

Figure S4 Gene-Phenotype network produced by SPLS
in the FIS scenario, based on responses of eight
sunflower genotypes to two drought stress scenarios
implemented in controlled environment. Genes presenting

absolute correlation scores higher than 0.65 with at least one

morpho-physiological variable are represented. Each circle

represents one gene. Red and blue edges indicate, respectively,

whether the gene-phenotype correlation is respectively positive or

negative. Each gene circle is colored according to the ANOVA

effect associated to the gene. Phenotypic responses are in gray

squares, OP: Osmotic Potential, LMA: Leaf Mass Area, E:

Transpiration Rate, RWC: Relative Water Content, ITW:

Integrated Transpired Water, PHe: Plant Height.

(TIF)
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Figure S5 Scatter plots and correlations between the
Affymetrix microarray intensities and the q-RTPCR
results. Genotypes are color-coded as follows: Inedi (black),

Tekny (gray), Melody (red), SF109 (turquoise), SF326 (yellow),

SF193 (magenta), SF028 (green) and SF107 (blue).

(TIF)

Table S1 Phenotypic data of each sunflower plant in
FDS and FIS in greenhouse experiment.
(XLS)

Table S2 Sunflower Affymetrix probeset annotations
and statistical test results for the ANOVA analysis in
FDS and FIS.
(CSV)

Table S3 Numbers of transcripts associated to the
different phenotypic varibles in the Gene-Phenotype
network obtained through the sPLS analysis.
(XLS)

Table S4 Sunflower Affymetrix probesets regulated by
drought stress in field condition and their annotations,

links to phenotypic variables in the Gene-Phenotype
network, their GO term assiciated and the GO term
enrichment test results.

(XLS)
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79. Lê Cao K-A, Boitard S, Besse P (2011) Sparse PLS discriminant analysis:

biologically relevant feature selection and graphical displays for multiclass

problems. BMC Bioinformatics 12: 253. Accessed 25 August 2011.
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