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Abstract

Natural killer (NK) cell activity is essential for initiating
antitumor responses and may be linked to immunotherapy
success. NK cells and other innate immune components
could be exploitable for cancer treatment, which drives the
need for tools and methods that identify therapeutic ave-
nues. Here, we extend our gene-set scoring method singscore

to investigate NK cell infiltration by applying RNA-seq
analysis to samples from bulk tumors. Computational
methods have been developed for the deconvolution of
immune cell types within solid tumors. We have taken the
NK cell gene signatures from several such tools, then curated
the gene list using a comparative analysis of tumors and
immune cell types. Using a gene-set scoring method to
investigate RNA-seq data from The Cancer Genome Atlas

(TCGA), we show that patients with metastatic cutaneous
melanoma have an improved survival rate if their tumor
shows evidence of NK cell infiltration. Furthermore, these
survival effects are enhanced in tumors that show higher
expression of genes that encode NK cell stimuli such as the
cytokine IL15. Using this signature, we then examine tran-
scriptomic data to identify tumor and stromal components
that may influence the penetrance of NK cells into solid
tumors. Our results provide evidence that NK cells play a
role in the regulation of human tumors and highlight
potential survival effects associated with increased NK cell
activity. Our computational analysis identifies putative gene
targets that may be of therapeutic value for boosting NK cell
antitumor immunity.

Introduction

Immunotherapies have improved clinical treatment for several
cancer types, including renal cell carcinoma (1), non–small cell

lung cancer (2), hematologic malignancies (3), and melano-
ma (4). Although these treatments show promise, their efficacy
is restricted to a subset of tumor types and patients with "immune
hot" tumors. Improvedunderstanding of how the innate immune
system contributes to antitumor responses can help to open new
therapeutic avenues, to increase the potential and efficacy of
clinical treatments, and to expand the range of targeted malig-
nancies. Natural killer (NK) cells, a subset of innate lymphoid
cells, are effectors of innate immunity. The cytotoxic capabilities
of NK cells allow them to kill tumor cells even at a relatively low
ratio (e.g., 1:1; ref. 5). NK cells are necessary for clearance of cells
that carry a viral burden or have undergone oncogenic transfor-
mation, and several in vivo studies have demonstrated a role for
NK cells in limiting the metastatic dissemination of melano-
ma (6–9). NK cells can be targeted by immunotherapeu-
tics (10, 11). Furthermore, NK cells can initiate an antitumor
T-cell response by recruiting conventional type-1 dendritic
cells (cDC1) through chemokine signaling (via XCL-1 and
CCL5/RANTES; ref. 12), and support stimulatory DCs (sDC)
through the expression of the Flt3 ligand (Flt3l in mice and
FLT3LG in humans; ref. 13).

Regulators of NK cell activity include the cytokine IL15 (14),
chemokines such as CCL5 (RANTES; ref. 15), growth factors such
as TGFb (16, 17), and cytokine-inducible SH2 containing protein
(CIS), which modulates intracellular JAK–STAT signaling (18).
Evidence suggests that modulation of NK cell populations is
feasible for cancer treatment (19). Treatments based upon sys-
temic administration of IL15 constructs have shown promise in
leukemic and solid tumors (20–22). Although IL15 alone can
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stimulate immune targeting of cancers, cytokine-mediatedNKcell
activation and expansion can be increased in combination
with IL12 and IL18 (23) or further amplified through deletion
of CIS (encoded by CISH), a negative regulator of cytokine
signaling and effector function. Cish�/� mice are resistant to a
range of metastatic cancers (18). Thus, it is clear that we are yet to
fully elucidate the full repertoire of molecular systems that reg-
ulate in vivo NK cell activity.

Advances in nucleic acid sequencing technology and associ-
ated methods for data analysis have allowed the application of
transcriptomic profiling to complex tumor samples (24, 25).
Resulting data have enabled the development of mathematical
methods, such as CIBERSORT (26), that infer the relative
abundance of immune cells that have infiltrated into solid
tumor samples. Although these tools have improved our under-
standing of immune infiltration (27–30) and advanced cancer
research, the complexity of model fitting procedures makes it
difficult for researchers to modify or investigate these gene lists.
In addition, public tumor transcriptomic data offer opportu-
nities to identify how changes in tumor phenotype are associ-
ated with changes in the relative abundance of immune cell
subpopulations.

We have developed a single-sample gene-set scoring method
that uses a rank-based metric to quantify the relative enrichment
of a gene set within a sample transcriptome (31). Here, we have
combined NK cell signatures from the LM22/CIBERSORT (26)
and LM7 (32) gene sets and curated this list to produce a gene set
that reflects the relative abundance of NK cells within a tumor
sample. As melanoma tumor cells are highly immunogenic, we
have focused upon the analysis of TCGA skin cutaneous mela-
noma (SKCM) data (33). We show that the relative expression of
NK cell genes within metastatic tumors is associated with a
survival advantage. Our scoring approach can be used to explore
putative modulators of NK cell activity by examining their asso-
ciation with NK score and survival effects associated with their
expression.

Materials and Methods

Data

Data used in this study are available from listed repositories
(Table 1). For TCGA SKCM data, RSEM abundance data without
normalization were downloaded from the genomic data com-
mons. For sorted immune cell populations (GSE60424, ref. 34;
GSE24759, ref. 35) andmelanoma cell line data (E-MTAB-1496),
processed transcript abundance data were downloaded and used
directly. For GSE24759, only samples derived from peripheral
bloodwere used: data from colony-forming samples were exclud-
ed to exclude culturing effects, and CD56�/CD16þ/CD3�mature
NK cell data were excluded due to apparent batch effects.
Although the relative log expression plot appeared normal for

NK cell samples (Supplementary Fig. S1A), a principal compo-
nent analysis (PCA) indicated that the CD56LoCD16Hi NK cell
samples showed separation from other NK cell samples on PC1
and PC3 (Supplementary Fig. S1B) with several samples cluster-
ing toward granulocytes and monocytes on PC4 (Supplementary
Fig. S1C). In cases with gene multimapping (multiple probes/
probe sets per gene), median values were used. To better examine
the relative expression of marker genes across immune cell sub-
sets, we examined CD45þ ("nonmalignant") single-cell RNA-seq
data from dissociated melanoma samples with annotated cell
types (GSE72056; ref. 36). Further, single-cell RNA-seq from
(checkpoint inhibition na€�ve) dissociated melanoma samples
(GSE120575; ref. 37) were used for subsequent comparison and
visualization.

Microarray data relative log expression and PCA

Using relative log expression (RLE) plots to explore unwanted
variation (38), log-transformed transcript abundance data
(downloaded directly from GEO) were median-centered for each
gene, and then within each sample the difference between the
observed and populationmedian of each genewas calculated. For
the PCA, genes with abundance above the 10th percentile (5.34)
within at least 4 samples (corresponding to the smallest sample
group) were retained. Data were normalized using sklearn Stan-
dardScaler, before calculating principal components using the
sklearn PCA function.

Immune gene sets and previous classifications

Genes identified in Fig. 1were annotated as immune-associated
using the GeneOntology category GO:0002376—"immune system

process"—togetherwith all descendant or child processes (39). The
original SKCMmanuscript (33)was used for the associated TCGA
immune gene list and TCGA classifications of "Immune high"
patients.

Single-cell RNA-seq analysis and visualization

Preprocessed single-cell RNA data were downloaded from
respective sources (Table 1) andwere analyzed through the Seurat
(v. 2.3.4) pipeline (40).

Single-cell RNA-seq data from Tirosh and colleagues (36) have
annotated cell types and thus CD45þ "nonmalignant" cells were
used for signature curation. Cells with abundance data for fewer
than 1,500 genes or more than 10,000 genes were removed. To
improve downstream clustering and visualization of immune
subtypes used, endothelial cells were removed before performing
a PCA across the 1,000 most-variable genes, taking the first 50
principal components for uniform manifold approximation and
projection (UMAP; ref. 41) visualization, with a "minimum
distance" of 0.2 and "number of neighbors" equal to 50.

Preprocessed CD45þ single-cell RNA-seq data from treat-
ment-na€�ve samples were taken from Sade-Feldman and

Table 1. Data used in this report

Resource Data source and identifier Reference

TCGA SKCM NIH Genomic Data Commons: https://gdc.cancer.gov/ (33)

RNA-seq data for sorted immune cells NCBI Gene Expression Omnibus: GSE60424 https://www.ncbi.nlm.nih.gov/geo/ (34)

Microarray data for sorted immune cells NCBI Gene Expression Omnibus: GSE24759 https://www.ncbi.nlm.nih.gov/geo/ (35)

LM-MEL melanoma cell line panel EBI Array Express: E-MTAB-1496 https://www.ebi.ac.uk/arrayexpress/ (61)

Single-cell RNA-seq data from melanoma NCBI Gene Expression Omnibus: GSE72056 https://www.ncbi.nlm.nih.gov/geo/ (36)

Single-cell RNA-seq data from melanoma NCBI Gene Expression Omnibus: GSE120575 https://www.ncbi.nlm.nih.gov/geo/ (37)

CCLE RNA-seq data https://portals.broadinstitute.org/ccle/data (requires free user registration) (47)
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colleagues (37). Cells with abundance data for fewer than
1,000 genes or more than 5,000 detected genes were
removed, as were cells with more than 5% of reads derived
from mitochondrial genes. PCA was performed across
the 3,550 most-variable genes, and the top 20 principal
components were used for visualization with UMAP, using

a "minimum distance" of 0.1 and "number of neighbors"
equal to 30.

NK cell signature curation

A schematic overviewof theworkflow forNK signature curation
is given in Supplementary Fig. S2. With the aim of applying a

Figure 1.

Hazard ratios associated with transcript abundance of individual genes. A, A Cox proportional hazard model was created for each gene with patient age as the

only covariate. The top 50 genes were selected by significance and ranked by hazard coefficient (red dot, 95% confidence intervals shownwith black lines). B,

Kaplan–Meier (KM) survival curves for patients with metastatic melanoma partitioned by age at diagnosis. C–F, KM survival curves for patients partitioned by age

and (C) IFNG, (D) KLRD1, (E) IL15, or (F) B2M transcript abundance. Survival curve differences were tested using a KM log-rank test, and significant differences

are indicated (� , P < 0.05; �� , P < 1� 10�3; ��� , P < 1� 10�6).

Cursons et al.
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unidirectional (expected upregulated) gene setwith singscore (31),
a preliminary NK cell gene set was created by combining all
"expectedupregulated" genes from theCIBERSORT (LM22) active
and resting NK cell gene sets (26), the LM7 NK cell gene set (32),
and human orthologs for established NK cell markers from a
number of mouse studies (refs. 18, 42, 43; collectively referred to
as the "Huntington gene list"; Supplementary Fig. S2).

To improve the specificity of this signature against other
immune subsets, we examined bulk RNA-seq data from sorted
cell populations and single-cell RNA-seq data from melanoma
metastases. SRA files for immune cell bulk RNA-seq data from
healthy individuals were downloaded in September 2016 and
converted to FASTQ format using the SRA toolkit. Reads were
mapped to human genome hg19 using Rsubread (v. 1.32.0;
ref. 44) and counts were quantified using featureCounts.
Count-per-million (CPM)andRPKMvalueswere calculatedusing
edgeR (v. 3.24.0). For differential expression analysis, genes were
retained if their abundance exceeded a threshold (CPM > 4)
within at least 4 samples (i.e., all samples for a sorted cell type).
The voom-limma (v. 3.38.2) pipeline (45) was used by applying
the TREAT criteria (ref. 46; log|fold change| > 1) to calculate the t
statistics, log|fold change|, and adjusted P values for all genes
when comparing NK cells against all other sorted cell populations
(i.e., excluding whole blood). The Homo.sapiens (v. 1.3.1) pack-
age was used for annotation. Results for NK signature genes are
given in Supplementary Table S1.

For CD45þ single-cell RNA-seq data from Tirosh and collea-
gues, if genes had evidence of extensive dropout (median value
below 0.5 for all cell types), they were retained if the 75th
percentile value for NK cells was higher than all other cell types
and greater than 2.67 (90th percentile of abundance across all
genes and cells, for genes with logTPM > 1 in at least 30 cells;
Supplementary Fig. S2). All other genes (which passed the
above dropout criteria) were retained if the median expression
within NK cells was greater than the 75th percentile of all
other cell types. Genes were retained if they passed these
criteria within both the sorted bulk RNA-seq and single-cell
RNA-seq data.

Next, we improved the specificity of our NK signature against
genes that are expressed across solid tumors. For all genes, we
examined the expression within adherent cell lines (i.e., hemato-
poietic and lymphoid cell lines were excluded) using RNA-seq
data from the Cancer Cell Line Encyclopedia (CCLE; ref. 47).
Genes were retained if their median expression (logTPM) was
below 5.23 (25th percentile of nonzero abundance across all
genes and cell lines). Results of these tests are given in Supple-
mentary Table S1.

Gene set scoring

Gene set scoring was performed using the singscore

approach (31). Briefly, genes are ranked by increasing transcript
abundance, and for a set of target genes, the mean rank is
calculated and normalized against theoretical minimum and
maximum values. If directional gene lists are provided (i.e., a set
of genes expected to be upregulated and a set of genes to be
downregulated), as with the TGFb EMT signature (48), then the
mean rank of expected upregulated genes is calculated from genes
ranked by increasing abundance. The mean rank of expected
downregulated genes is calculated from genes ranked by decreas-
ing abundance. These values are then normalized and summed.
Accordingly, a high gene set score indicates that thepattern of gene

expression in a sample is concordant with the pattern captured by
the gene-expression signature.

Survival analyses

As noted in the results and shown in Supplementary Fig. S3A
and S3B, there are large survival differences between patients with
primary and metastatic tumors. To avoid confounding effects
from this, unless otherwise stated, we have focused on patients
with metastatic tumors only who also had valid age and survival
data. One patient with both a metastatic and primary sample was
excluded.

Cox proportional hazard models and Kaplan–Meier survival
curves were generated using python lifelines (v. 0.14.6; DOI:
10.5281/zenodo.1303381) with standard parameters. For indi-
vidual gene Cox hazard models, a Bonferroni correction was
applied to correct for multiple-hypothesis testing. Unless other-
wise specified, separation of patient samples with a single param-
eter (e.g., age, gene expression) used the 33rd and 66th percentile
values to threshold, and separation of patient samples with two
parameters used the 40th and 60th percentile values to threshold.

Code availability

General analyses and visualization were performed using
python v3.6 with: pandas (49) for data handling; scipy (v
1.1.0), scikit-learn (v. 0.19.2), and numpy (v. 1.14.5) for numer-
ical calculations; and matplotlib (v. 2.2.3) for plotting/visualiza-
tion. For analyses with R, dplyr (v. 0.7.8) and tidyr (v. 0.8.2) were
used for formatting data, and ggplot2 (v 3.1.0), gridExtra (v. 2.3),
and RColorBrewer (v. 1.1-2) for visualization.

Computational scripts used in this work are available from
our GitHub repository: https://github.com/DavisLaboratory/
NK_scoring

Results

Cutaneousmelanoma is associatedwith a strong immunogenic

response

Cutaneous melanoma is an ideal target for immunotherapy as
the high mutational burden of this malignancy is associated with
the generation of neoantigens, which can induce an immune
response (50). Several reports demonstrate that immune infiltra-
tion signatures provide a prognostic indicator in melanoma (51),
including the TCGA SKCM study, which demonstrated that this
effect was independent of the underlying genomic subtype of the
melanoma (33).

Due to significant survival differences between patients with a
primary ormetastatic tumor (Supplementary Fig. S3A and B), this
report focuses on the 365 patients with only metastatic tumor
samples. There are significant survival effects associated with the
patient's age at diagnosis (Supplementary Fig. S3C),whereasmale
and female rates were not significantly different (Supplementary
Fig. S3D and Table 2; Cox proportional hazardsmodel, P¼ 0.20).
Similarly, no tumor sites showed significantly different hazard
coefficients (Supplementary Table S2).

To analyze survival effects associated with individual genes, we
built a series of Cox proportional hazard models for each gene
where patient age at diagnosis was included as the only covariate
(together with transcript abundance for that gene). As shown
in Fig. 1A, when focusing upon highly significant genes with a
negative hazard coefficient, many are annotated as modulators of
immune function (genes in bold) and anumber of remaining genes
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are well-known immune modulators that lack associated GO
annotations (e.g., CLEC2B, CD72, SRGN, and MIR155HG). The
associated patient survival curves are shown for patient age
(Fig. 1B), and a selection of genes (Fig. 1C–E). Higher expression
of the hallmark inflammatory cytokine encoded by IFNG corre-
sponds to improved survival outcomes (Fig. 1C), and several
interferon-induced genes are also associated with a hazard reduc-
tion (e.g., IRF1, IFITM1; Fig. 1A). High tumor transcript abun-
dances of the NK cell marker gene KLRD1 (Fig. 1D; also known as
CD94) or the cytokine IL15 (Fig. 1E), which regulates NK cell (14,
42, 52) and T-cell activity (53), are also associated with improved
long-term survival outcomes. Transcript abundance for the B2M
gene encoding b2 microglobulin (Fig. 1F) has one of the most
negative hazard coefficients, likely reflecting its role inMHCclass I
antigen presentation of neoantigens to CD8þ T cells and consis-
tent with reports of this process for immune control of
tumors (54). Further, a truncation mutant of B2M can confer
resistance to PD-1 blockade in melanoma (55), andmutations in
B2M have been shown to disrupt immune surveillance in lung
cancer (56). The large negative hazard coefficient associated with
HAPLN3, encoding a hyaluronan and proteoglycan link protein,
suggests that this gene may warrant further investigation in the
context of immune recognition and targeting.

Developing a more specific transcriptomic signature for NK

cells

Several transcriptomic data deconvolution methods have gen-
erated gene signatures that are predictive of tumor infiltration by
specific immune cell subpopulations. For this work, we examined
transcriptomic data from sorted immune cell populations andNK
cell signatures from the LM22 (26) and LM7 (32) gene sets. A
common critique of immune deconvolution methods is the high
colinearity/cross-correlation between different signatures (32).
Although this can be attributed to the similar transcriptional
profiles of some lymphocyte subsets (demonstrated by similar
positions of sorted NK and T-cell populations in PCA plots;
Supplementary Fig. S1B and S1C), to an extent it also represents
the cascading series of intercellular interactions that mediate
immune activation within complex tissue samples. Accordingly,
several immune-associated gene subsets are cross-correlated to a
varying extent (Supplementary Fig. S4). To address this, we
combined and curated the NK cell signatures from the LM7 and
LM22 gene lists, together with human orthologs for well-known
mouse NK marker genes (Supplementary Fig. S2; details given in
Materials and Methods). Genes were retained if they had higher
expression in NK cells relative to other immune populations as
well as relatively lowexpression across adherent cell lines from the
CCLE (Supplementary Table S1).

The relative expression of these 20marker genes is shownacross
immune subsets from melanoma single-cell RNA-seq data
(Fig. 2A), as well bulk RNA-seq (Fig. 2B) and microarray

(Fig. 2C) data from sorted immune cell populations. Many NK
marker genes have some expressionwithinCD4þ andCD8þT-cell
populations (Fig. 2B and C). In particular, the cytotoxic mechan-
isms used by NK cells share many similarities to those used by
CD8þ T cells, including secretion of granzymes (e.g., GZMA,

GZMB, GZMK, and GZMM) and perforin (PRF1; ref. 57). As
demonstrated by genes without extensive dropout in the
single-cell RNA-seq data (e.g., CTSW, GZMB, IL2RB, KLRD1, and
NKG7), however, theminimum abundance within NK cells tends
to be greater than the 75th percentile of abundance within T-cell
populations. For genes with minor dropout issues (e.g., NCR1,

IL18RAP, XCL1, and XCL2; median abundance for all cell types
around 0), the 75th percentile of abundance within NK cells
corresponds to relatively high expression (logTPM of approxi-
mately 5 or above). There does appear to be a subset of unresolved
cells (Fig. 2A, gray) with relatively high expression of genes
includingCTSW, GZMB, andNKG7. Examining the cell classifica-
tions by Tirosh and colleagues, many of these unresolved cells
show expression of markers from both B-cell and T-cell popula-
tions, and thus these may be unresolved cell doublets.

Given our use of annotated cell subsets from Tirosh and
colleagues for NK cell marker curation, we next examined the
expression of selected lymphocyte markers across an indepen-
dent, larger set of single-cell RNA-seq data from Sade-Feldman
and colleagues. As shown (Fig. 3, top), annotated NK cells within
the Tirosh data have little or no expression of T-cell markers such
asCD3D andCD4, and lower expressionofCD3E,whereas there is
strong expression of remaining NK cell marker genes. Note that
FCGR3A and NCAM1 were excluded from our curated signature
(Fig. 2) due to overlap with other immune subsets and solid
cancer cell lines, respectively; however they are included here as
established markers to delineate lymphocyte populations. Exam-
ining the Sade-Feldman data, we find a subset of cells with lower
expression of CD3E and no expression of CD4, yet relatively high
expression of other indicated NK marker genes. KLRF1 (NKp80)
appears to have particularly high expression within this subset
that we have annotated as NK cells.

Gene set scoring allows dimensional reduction of RNA-seq data

Gene set enrichment analyses are commonly used after differ-
ential expression to assess whether geneswith the greatest changes
are enriched for classifications of specific pathways or processes.
An alternative "relative approach" (25) is to analyze the gene-
expression patterns (transcript abundances) of individual sam-
ples and calculate the relative concordance of each one against
specific gene set that has been defined to capture a particular
molecular phenotype.

We have developed a gene-set scoring method, singscore (31),
which uses the normalizedmean rank of genes that are associated
with a molecular phenotype or cellular behavior (48, 58). With
this approach, a difference in score between two samples can be
related to the percentile change in mean rank of the gene set,
providing ametric that summarizes the concordance between the
gene-expression profile of an individual sample and the specified
gene sets. Using this scoringmethodwith "Immune cluster" genes
from theoriginal TCGASKCMpublication (33) and introducing a
single threshold, we can largely recapitulate their classification of
"Immune High" samples (Supplementary Fig. S5A and S5B).
Furthermore, we can extend this analysis to samples that were
later added to the TCGA SCKM cohort (Supplementary Fig. S5C)
and show a similar survival effect (Supplementary Fig. S5D).

Table 2. Covariate hazard coefficients for TCGA patients with metastatic

melanoma

Variable Coefficient mean (95% CI) P value

Age at diagnosis (years) 0.026 (0.016, 0.036) 6.21 � 10�7

Gender (is female) �0.207 (�0.527, 0.113) 0.20

NOTE: Variables from a Cox proportional hazards model (together with met-

astatic site) tested against the null hypothesis that the hazard coefficient is equal

to 0. Metastatic sites were compared against unspecified lymph nodes for the

baseline hazard and none were found to be significant; statistics and site

groupings are given in Supplementary Table S2.
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The NK cell score is associated with improved patient survival

We used our curated 20 gene NK cell signature to score met-
astatic tumors from the TCGA SKCM cohort. When samples are
sorted by increasing NK score, the concordant expression pattern
of these genes across metastatic melanoma samples becomes
apparent: as expected, all these genes carry a positive correlation
with the NK score (Fig. 4A). Using our NK signature to partition
patients, there are strong survival effects for patients with either a
high or moderate NK score (Fig. 4B). These survival effects are
largely recapitulated across a selection of marker genes (Fig. 4B)
associated with: T-cell infiltration (CD3D), cytokine signaling,
which promotes NK cell and T-cell infiltration (IL15), a shared
component of the IL2 and IL15 receptors (IL2RB), interferon-
gamma responsive checkpoint markers (CD274), NK secreted
chemokines/cytokines associated with dendritic cell recruitment
and stimulation (CCL5, XCL1) and cytotoxic effector molecules
(GZMB, FASLG).

Next, we investigated the relative survival effects of key cytokine
and cytotoxic components linked toNK cell function (IL15, XCL1,
XCL2, CCL5, FLT3LG, GZMA, GZMB, and FASLG) within patient
samples from the low NK score and high NK score groups
(Supplementary Fig. S6). For metastatic tumors with a low NK
score, IL15 and FLT3LG showed some survival benefit; however,
none of the genes examined (including these) showed a signif-
icant (P < 0.05) association with patient survival. Conversely,

when examining metastatic tumors with a high NK score, there
appears to be improved patient survival linked to relatively high
expression of the chemokines XCL2 (also shown in Fig. 4C;
P ¼ 0.035) and CCL5 (P ¼ 0.031). There are no survival differ-
ences in this group for the cytotoxic genes investigated (Supple-
mentary Fig. S6), exemplified by GZMB (Fig. 4C).

It is difficult to disentangle the survival effects of other cyto-
toxic/effector immune cells, as improved survival effects are also
seen for the T-cell marker CD3E (Fig. 4B). This is further reflected
by the strong association between ourNK score and scores derived
from the TCGA immune cluster genes (Supplementary Fig. S7A)
or the T-cell signature (Supplementary Fig. S7B), which share
similar survival effects (Supplementary Fig. S7CandD).However,
NK cells play a role in initiating the intercellular signaling cascade
necessary for immune cell recruitment.Wefindgood concordance
between the B€ottcher 5-gene NK cell signature (12) and our NK
signature score (Supplementary Fig. S7E), as well as between
our NK score and a score calculated using the B€ottcher 4-gene
DC cell signature (Supplementary Fig. S7F), again with similar
survival effects (Supplementary Fig. S7G and S7H). The relative
abundances of T-cell signature genes within TCGA SKCM samples
and sorted immune populations are shown for reference (Sup-
plementary Fig. S8). A number of genes associated with cytotoxic
CD8þ T cells show relatively high expression within NK cell
samples.

Figure 2.

A refined NK cell gene signature. Transcript abundance of NK cell marker genes across selected data with identified cell populations. A,Metastatic melanoma

single-cell RNA-seq data (GSE72056), including NK cells (NK), macrophages (Macro.), B cells (B), unresolved/unidentified cells (Unres.); cancer associated

fibroblasts (CAF), T cells (T), and endothelial cells (Endo.). B, RNA-seq data from sorted immune populations (GSE60424). C,Microarray data from sorted

immune cell populations (GSE24759). NK, natural killer; DCs, dendritic cells; HSCs, hematopoietic stem cells.
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NK cell targeting of TGFbLOW melanoma tumors is associated

with patient survival

An advantage of the singscore approach is that it allows gene
signatures associated with cell phenotype to be combined for
further investigation. Work on innate anti–PD-1 resistance in
melanoma found similarities with markers of MAPK inhibitor
resistance (59), and melanoma phenotype switching has been
linked to general drug/MAPK inhibitor resistance (60). To

investigate this further, we examined the relative association
between our NK score and several phenotype-switching–
associated gene set scores, including: (i) a proliferative, epithe-
lial phenotype; (ii) an invasive, mesenchymal phenotype; and
(iii) a mesenchymal phenotype where EMT has been induced
by TGFb (48). We found no association between NK score and
epithelial score (Fig. 5A); however, there was an association
with mesenchymal score (Fig. 5B), such that tumors with less

Figure 3.

Expression of NK cell markers

across cellular subpopulations.

Abundance of selected markers in

CD45þ cells from dissociated

melanoma samples. Maximum

expression for each gene is given in

parentheses. For details on UMAP

clustering, refer to Materials and

Methods.
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mesenchymal characteristics have lower NK scores, whereas
highly mesenchymal tumors had a range of NK scores, suggest-
ing that a subset of these tumors had higher NK cell infiltration.
There was no association with NK score relative to the TGFb-
specific EMT gene score (Fig. 5C), although there was a positive
association between TGFb EMT score and mesenchymal score
(Fig. 5D). As we had previously observed, whereas samples
with a high TGFb EMT score also had high mesenchymal gene-
expression scores, a subset of highly mesenchymal samples
showed no evidence of TGFb-driven EMT. Neither the TGFb
EMT score (Fig. 5E) or NK score (Fig. 5F) had any association
with age; however, when we partitioned patients by NK score
and TGFb EMT score, younger patients with evidence of good
NK cell infiltration and low TGFb activity had significantly
favorable survival outcomes (Fig. 5G); this effect was not
present for older patients (Fig. 5H).

Although most in vivo experiments indicate a primary role for
NK cells in limitingmetastatic colonization (7), these data suggest
that not only are NK cells associated with established metastatic
tumors, but the presence of NK cell infiltrate is associated with an
improved prognostic outcome.

NK cells offer promise as targeted immunotherapeutics to

control melanoma

A role for NK cells in driving a robust immune response has
been demonstrated through the effects of the NK–DC cell axis in
modulating immunotherapy response (13). To further investigate
potential modulators of NK cell infiltration, we next examined
transcriptomic data from the LM-MEL panel, which contains
representative cell lines for both the proliferative and invasive
phenotype. Gene sets were filtered to retain only those present
in both the TCGA and LM-MEL data, and gene set scoring
was repeated for both data sets to facilitate comparison
between tumor samples and the corresponding cell line models
(Supplementary Fig. S9A–S9C). In the absence of a highNK score,
patients with a high mesenchymal score show no survival
effects associated with the TGFb-EMT score (Supplementary
Fig. S9D).

A number of melanoma cell lines from the LM-MEL panel
appear to be associated with various subsets of high/low mesen-
chymal score and TGFb-EMT score (Supplementary Fig. S9A–S9C;
colored scatter markers). By contrasting genes correlated or antic-
orrelated with NK score across the TCGA data against these cell

Figure 4.

Survival outcomes for TCGA SKCM patients. A, Expression of NKmarker genes within TCGA SKCMmetastatic tumor samples sorted by NK score, together with

the correlation of each gene against NK score. B, Kaplan–Meier (KM) survival curves for patients separated by NK score and indicated genes (separated at 33rd

and 66th percentiles). Survival curve differences were tested using a KM log-rank test and significant differences are indicated (� , P < 0.05; �� , P < 1� 10�3;
��� , P < 1� 10�6). C, KM survival curves for patients with high NK score tumors further separated by key cytokine (XCL2) and cytotoxic effector (GZMB) genes.
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line data, we can identify markers that may be derived from
the melanoma tumor and exert an immunomodulatory effect
(Supplementary Fig. SE). To demonstrate the association with
phenotype switching, the markers CDH1 and MITF are includ-
ed (61, 62). Further, TGFb activity in these cell lines is associated

with THBS1 (63). Consistent with our observation that NK score
tends to be higher inmoremesenchymal tumor samples, many of
the positively correlated genes tend to have higher expression in
the MITF-low cell lines. Similarly, many of the anticorrelated
genes tend to have lower expression in the MITF-low cell lines.

Figure 5.

Melanoma tumors with a high NK score and evidence of a mesenchymal-like phenotype but low TGFb activity show favorable patient outcomes. Associations

across the TCGA SKCMmetastatic tumor samples (rP: Pearson correlation; rS: Spearman correlation), between (A–C) NK score and scores associated with

EMT/phenotype switching, (D) mesenchymal score and a score of specific TGFb induced EMT; and (E and F) NK score or TGFb EMT score and age. G and

H, Kaplan–Meier (KM) survival curves for patients partitioned by TGFb EMT score and NK score, and split by age. Survival curve differences were tested using

a KM log-rank test and significant differences are indicated (� , P < 0.05; ��, P < 1� 10�3).
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Several notable genes are present within these lists (Supple-
mentary Fig. S9E). Again, B2M is identified, together with several
HLA genes, suggesting that more mesenchymal-like melanomas
may be more immunogenic in part because of increased antigen
presentation associatedwith this phenotype. The presence of IL18
in this list may be partially explained by the known links between
IL18 andNK cell activity (64). From the genes inversely correlated
with NK score, we note that CMTM4 is a positive regulator of
PD-L1 (together with its paralog CMTM6 which is not present;
ref. 65) and appears to have lower expression within more
mesenchymal cell lines.

Discussion

Immune "checkpoint" inhibitor antibodies, which drive
tumor-resident cytotoxic lymphocyte hyperactivation, have rev-
olutionized cancer therapy. Although much clinical research is
directed toward programs that underlie immunotherapy resis-
tance and immune-related adverse events, we lack an in-depth
understanding of the mechanisms dictating response, and we do
not have markers to identify patients who are the most likely to
respond in the context of metastatic disease. Checkpoint inhibi-
tors primarily block inhibitory pathways in tumor-resident T cells;
however, interest in other effector populations, such asNK cells, is
growing (10), with studies showing that NK cells have a role in
immunotherapy success (13).

Clinically, peripheral blood NK cell activity is inversely corre-
lated with cancer incidence (66). NK cell infiltration in human
tumors is associated with better prognosis in squamous cell lung
carcinoma, as well as gastric and colorectal carcinomas (7). In
melanoma cells, researchers have found specific HLA-I allelic
losses in up to 50%of patients analyzed, and evenwhen expressed
onmelanoma cells, expression of specific HLA class I molecules is
often insufficient to inhibit NK cell–mediated cytotoxicity (67).
These data hint that metastatic melanoma may be susceptible to
NK cell–mediated killing and therapies that enhance NK cell
activity should be investigated further. Along these lines, cutane-
ous, subcutaneous, and lymph node melanoma biopsies from a
cohort of stage III and IV unresectable metastatic melanoma
patients being treated with anti–PD-1 (pembrolizumab) were
analyzed for immune infiltrate (13). Metastatic melanoma
biopsies from patients who responded to pembrolizumab had
higher NK cell infiltration compared with nonresponders, and
this NK infiltration was correlated with DC infiltration (13).
However, Barry and colleagues did not observe an association
between regulatory and effector T-cell populations in respon-
ders (13), even though CD8þ T-cell proliferation has been
reported as a marker of pembrolizumab on-target effect and
tumor regression (68).

Although the kinetics of immune infiltration into tumors are
difficult to study directly, Barry and colleagues suggested that
NK cells support DC persistence and survival by producing the
DC growth factor FLT3 ligand, and demonstrated these effects
using an Flt3l transgenic mouse model (13). This evidence
together with another report (12) suggests that NK cell infil-
tration may precede the majority of DC infiltration because
intratumor NK cells are a major source of XCL1, a chemoat-
tractant for XCR1þ DCs. These data on melanoma immune
infiltrate motivated our study, in which we have investigated
the transcriptomic and matched clinical data available through
the TCGA SKCM cohort (33).

We found that metastatic melanoma tumors that have a high
NK score are associated with better patient survival, consistent
with the results fromB€ottcher and colleagues and a range of in vivo
animal survival studies (6, 17). This effect was recapitulated by the
NK cell–secreted chemokines XCL1 and CCL5, as well as NK cell
effectors GZMB and FASLG. Our comparison of cytokine and
cytotoxic gene expression within the high NK score patient subset
suggests that greater expression of cytokines such as CCL5 and
XCL2may have a greater effect on survival than higher expression
of cytotoxic effectors such as GZMB and FASLG. This may repre-
sent a saturation of the effect of cytotoxic molecules within
activated cytotoxic lymphocytes (already expressing these mole-
cules), but thismay also reflect the ability ofNK cells to recruit and
support DCs, driving amplification of the antitumor response
through intercellular signaling programs. Although the gene set
derived by B€ottcher and colleagues performs well (12), they
calculated NK scores using mean log2 abundance data, which
can be susceptible to outliers and places a greater weighting on
genes with high transcript abundance. We demonstrated that
although singscore was developed for larger gene sets, it performs
well with the 5-gene B€ottcher NK signature (NCR3, KLRB1, PRF1,

CD160, and NCR1).
It is hard to compare the accuracy of these signatures without

validation data for NK cell infiltration. Our results demonstrate
the application of our computational method for estimating the
abundance and heterogeneity of different immune subsets across
different tumors and patients. Our methods allow variations in
these relative immune scores to be compared against other
phenotype-associated gene sets. Indeed, we extracted survival
effects when our NK score was examined in the context of
melanoma phenotype switching and TGFb signaling. Phenotype
switching is a regulatory program involved in the progression of
melanoma (62, 69) that has been linked to vemurafenib resis-
tance (70) and general drug resistance (60). It allows tumor cells
to transition between proliferative ("epithelial-like") and invasive
("mesenchymal-like") behaviors. In melanoma, TGFb drives
EMT/phenotype-switching programs (48), which are mediated
by signaling molecules such as thrombospondin 1 (63).

Although long-term survival effects are associated with patient
age, we found no association between NK score and age (Fig. 5E).
However, younger patients with low TGFb-EMT and high NK
scores had a significant survival advantage (Fig. 5G; P < 1 � 10–3

compared with both NKlo with TGFb-EMTlo, or NKlo with TGFb-
EMThi). These results suggest that younger patients may receive a
greater benefit from NK targeted immunotherapies, perhaps
reflecting a higher capacity for a robust immune response in
young patients.

Tumor inflammation influences patient response to immune-
checkpoint blockade (68). Why infiltrate is absent or heteroge-
neous for certain tumor types is an outstanding question that
drives immunotherapy drug R&D efforts in order to increase
indications for class-leading drugs such as pembrolizumab and
nivolumab. A large pan-cancer analysis of such immune-check-
point inhibitors found that tumor mutational burden (TMB) was
correlated with patient outcomes, with high TMB patients (top
10% TMB by histology) having better survival than low TMB
patients (bottom 80%; ref. 71). Although immune infiltration
data were not presented in this study, it would be of interest to
examine links between TMB and immune infiltrate, especially
because there appears to be a cutoff (>15%) for TMB to influence
the hazard ratio (71). In non–small cell lung cancer, smokers have
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higher TMB (72) and more PD-1L compared with nonsmo-
kers (73), which can account for superior PD-1 blockade response
rates. Our analysis of the TCGA data also found PD-1L expression
(CD274) to correlate with predicted immune infiltrate, NK cell
score and melanoma patient survival (Fig. 4B), suggesting TMB
may be linked to immune infiltration and highlighting the need
for further work to examine this interplay.

The NK cell gene signature and NK cell gene score that we
describe here can be applied to existing and future cancer
data sets becoming available thanks to the efforts of cancer
research consortia. The information from such gene signature
analyses will allow researchers to stratify responders and
nonresponders to conventional treatments, identify patients
who are likely to benefit from NK cell–based immunothera-
pies, and facilitate the development of prognostic markers for
personalized immunotherapeutics.
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