A GENERAL ALGEBRAIC APPROACH TO STEENROD OPERATIONS

by

J. Peter May

1. Introduction. Since the introduction of the Steenrod operations in the coho-
mology of topological spaces, it has become clear that similar operations exist in
a variety of other situations. For example, there are Steenrod operations in the
cohomology of simplicial restricted Lie algebras, in the cohomology of cocom-
mutative Hopf algebras, and in the homology of infinite loop spaces (where they
were introduced mod 2 by Araki and Kudo [3] and mod p, p>2, by Dyer and Lashof
[6]).

The purpose of this expository paper is to develop a general algebraic setting
in which all such operations can be studied simultaneously, This approach allows
a single proof, applicable to all of the above examples, of the basic properties of
the operations, including the Adem relations. In contrast to categorical treatments
of Steenrod operations, the elegant proofs developed by Steenrod [25-30] actually
simplify somewhat in our algebraic setting. Further, even the most general exist-
ing categorical study of Steenrod operations, that of Epstein [7], cannot be applied
to iterated loop spaces.

We emphasize that this is an expository paper. Although a number of new re-
sults and new proofs of old results are scattered throughout, the only real claim to
originality lies in the basic context. We have chosen to give complete proofs of all
results since a large number of minor simplifications in the arguments allows a
substantial simplification of the theory as a whole. We have also included a number

of topological results which should be well-known but appear not to be in the litera-
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ture. In particular, in section 10, we give a quick complete calculation of the
mod p cohomology Bockstein spectral sequence of K(m, n)'s and show that Serre's
simple proof [23] of the axiomatization of the mod 2 Steenrod operations applies
with only slight modifications to the case p> 2.

The general theory is presented in the first five sections. Most of the proofs
in sections 1,2, and 4 are based on those of Steenrod [25-30], and those of section
3 are simplifications of arguments of Dyer and Lashof [6 ]. Via acyclic models
and a lemma due to Dold [5], the theory is applied to several simplicial categories
and to topological spaces in sections 7 and 8. The standard properties of the
Steenrod operations in spaces, except P° = 1, drop out of the algebraic theory,
and P° =1 ig shown to follow from these properties. In contrast, we prove that
P° = 0 on the cohomology of simplicial restricted Lie algebras. The theory is
applied to the cohomology of cocommutative Hopf algebras in section 11; the opera-
tions here are important in the study of the cohomology of the Steenrod algebra
[13,18]. The present analysis arose out of work on iterated loop spaces, but this
application will appear elsewhere. The material of sections é and 9, which is
peripheral to the study of Steenrod operations, is presented here with a view

towards this application.
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1. Algebraic preliminaries; equivariant homology

Let A be a commutative {ungraded) ring. By a A-complex, we understand a
Z-graded differential A-module, graded by subscripts, with differential of degree
minus one. We say that a A-complex K is positive if Kq =0 for q<0 and
negative if Kq =0 for q> 0. We use Z-graded complexes in order that our
theory can be applied equally well to homology and to cohomology. The exposition
will be geared to homology, where the notation is slightly simpler, and the nota-
tions appropriate for cohomology will be given in section 5. We give some ele-
mentary homological lemmas in this section; these extract the slight amount of
information about the homology of groups that is needed for the development of the
Steenrod operations.

If ® is a group, we let An denote its group ring over A. We shall generally
speak of Awm-morphisms rather than w-equivariant A-morphisms, and we shall
speak of w-morphisms when A is understood. Let Zr denote the symmetric group
on r letters, and let nQ Zr. For qe Z, let Alq) denote the Am-module which
is A as a A-module and has the Aw-action determined by o\ = (-1)qs(“)x, where
(—l)s(o-) is the signof oe¢ 7 . If M is a Ar-module, let M(q) denote the Aw-
module M@ A(q) with the diagonal action o(m@\) = om@ ox (where ®=®A).
If K is a A-complex, let K = K®...®K, r factors K. Via permutation of
factors, with the standard sign convention, Kr becomes a Aw-complex for
nCZ_, and K'(q) is defined.

Let I denote the A-free A-complex which has two basis elements e, and e
of degree zero, one basis element e of degree one, and differential d(e) = e - e,
If T is a Hopf algebra over A and I is given the trivial TI'-module structure,
va= €(y)a for yeI' and a e I, then the notion of a I'-homotopy h:f = g, where

f,g: K—>L are morphisms of I'-complexes, is equivalent to the notion of a

T -morphism H:I@ K-» L such that H(e1®k)=f(k) and H(eo®k)'—' g(k), where
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I@ K is given the diagonal I'-action. In fact, H determines h by h{k)= H(e® k)
and conversely,
With these notations, we have the following lemma. In all parts, Aw acts

diagonally on tensor products.

Lemma 1.1. Let wC Er and let V be a positive Aw-free complex.
(i) There exists a Ar-morphism h:I®V — V® 1¥ such that
h(eo®v)=v®e§ and h(e1®v)=v®e1r for all velV.
(ii) If f,g: K —> L are A-homotopic morphisms of A-complexes, then
1®f, 1® gr: V@K' — V®L" are Ar-homotopic morphisms of An-complexes.
(iii) If A 1is a field and K is a A-complex, then K is A-homotopy equivalent
to H(K) and VOK' is Arm-homotopy equivalent to V@& H(K)r.
(iv) Let v e V satisfy dv®1) =0 in V®1TA; let K be a A-complex and let
a,b e Kq be homologous cycles. Then v@® a’ and v®br are homologous cycles

of V®wKr(q).

Proof. (i} Let £:I—> A be the augmentation &(eo) = i= e(el), and let
J=Ker(€7), €:1' —>AT=A. Define kiV—>V®J by kv)=v®l(e] - eor).
Since H(J)=0, H(V@®J) = 0. Define a An-homotopy s:V—>V®J from kto the

zero map by induction on degree as follows, Let s_, = 0; given

1
si_i:vi_1 —> (VQ® J)i,we find easily that di(ki- si_idi) =0, Let {xj} be a
Arn-basis for Vi; for x € {xj}, choose si(x) such that di_'_isi(x):ki(x)-s.
and extend s to all of Vi by w-equivariance. The desired Amn-morphism h is
obtained by letting h(e®@v) = s(v) for ve V.

(ii) Let t:I@ K—> L determine a A-homotopy from fto g, Then the follow-
ing composite is a Am-morphism which determines a Am-homotopy from 1® £ to
1®g":

RVvE K 291, yorrg kT 18u v@(z@x)r—i% veLY,

r
where u:l @K' —> (I® K)¥ is the evident shuffling isomorphism.
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(iii) Define f:H(K) —> K by sending each element of a basis for H(K) to a
chosen representative cycle, XK = Im f® Coker f as a A-complex and Coker { is
acyclic and therefore contractible since A is a field. The first half follows and
implies the second half by (ii).

(iv) Define a morphism of A-complexes f:1—> K, of degree g, by f(ei) = a,
f(eo) = b, and f(e) = (-1)qc, where d(c) = a-b in K (the sign ensures that
af(e) = (-1)%d(e)). Let F: IQV —> V@K' (q) be the composite
IRV -—h—-é Ve® Ir —L@-—fr—> Ve Kr(q), A check of signs shows that ' isa
Am-morphism, hence that F is a morphism of Am-complexes of degree qr. By
{i), we find that

Fle,®v) = (1) (v®ef) = (-1)3" %8 "v@t(e)", i=0or 1.
Since T operates triviallyon I and d(v@1)=0 in V®nA’ we have that

de@v) = (e1 - eo)®v in I®TTV. Thus, in V® Kr(q),

dF(e®v) = (-1)¥F(e, ®v - ¢ @) = ()aldeevi) gt L ®bY),
and this proves the result.
We now consider the cyclic group m of prime ovder p. We recall the defini-

tion of the standard Aw-free resolution W = W{p,A) of A.

Definition 1.2. Let 7 be the cyclic group of prime order p with generator a.
Let Wi be Am-free on one generator e, 120, Let N=1+a+ ... + ap_1 and
i
T = a-1 in Aw. Define a differential d, augmentation €, and coproduct § on W

by the formulas

- - . b oy .
(1) d(e2i+1) = Te,. and d(eZi) = NeZi-i : Ele eo) =1;
$le,. )= E, e, . Qe + E e ., 6 Qae and
+
2i+1 ifkei 2j 2k+1 k=i 2jt1 2k
s
e, )= >, e . Qe + >, > a'e.. ®ae .
2i itk i 2j 2k jtk=i-1 0<r<s<p 2j+1 2k+1

Then W is a differential An-coalgebra and a An-free resolution of A, When

necessary for clarity, we shall write W{p,A) for W. Of course,
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W(p,A) = W(p, Z) ® A. The structure of W(p, Zp) shows that
H, (m; Zp) = H(W(p, Zp) ®1TZP) is given, with its Bockstein operation P and copro-

duct Y, by the formula

(2) H*(w; Zp) has Zp-bas1s {ei| i >0} such that B(eZi): it and
dle,) = E e, Qe if p=2oriisodd, Yle,.)= e . Qe if p>2,
2
i k=i j k 2i Prondl J 2k

We embed w in Ep by a(t,...,p)=(p,1,...,p-1), where Zp acts on {i,...,p}.
We then have the following lemma.

(n

Lemma 1.3. Let W™= D> W. be the n-skeleton of W = W(p, zp). Let G

i<n
be any set of left coset representatives for 7 in Zp. Let K bea Zp—rnodule with
totally ordered basis {lej eJ} . Let AC KP have basis {xjp | j e T}and let
B C K® have basis {x_,, €G, j,<...<j, 3, <ji }. Then
{ Y(Jp)l Ve G, jyS.. Sy i<,

n

ww”e kP) = (e ¢, ®4) ®(c ®B) ®(Kerd ®B), d:W_—>W .
m i=0

Proof, It is easy to see that KP is isomorphic as a Zprr-module to
A® (Zp'rr ® B), where w acts trivially on A and acts on an ® B by its left
. . (n) - (n) z
action on Zp'rr. Since H(W''® A) = (W ®ﬂ_ p)®A and
™

H(W(n) ®1sz.,.r® B) = H(W(n))® B, the result follows.

Recall that if -7 is any subgroup of = and if y € N(7), the normalizer of
in I, then conjugation by y defines a homomorphism vy, :H(m; M) — H (m M) for
any AX-module M. Y, is the map induced on homology from
Yy Dv: W®1TM-——> W®T\'M where W is any Awm-free resolution of A and
\(# :W—> W is any morphism of A-complexes such that y# (ow) = Y(T\{_i\{#(w) for
cgenm and we W, (Itis easy to verify that y# exists and that Yy is independent
of the choice of W and of Y# ) Clearly \'(* =1 if ye m since we may thep
define y#(w) = yw so that

(Y#®“Y)(W®m)=YW®ym=w®m, we W and m e M,
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If mcp € and ye N{m) mN(p), then the following diagram commutes:

Jx
H, (m; M) ——————> H_(p; M)

In fact, if W is any Ap-free resolution of A, then W is also a Aw-free resolution
of A, and the above diagram results from the observation that j, is induced from

W®WM —> W@p M. In particular, j, =j.v, if vep.

Lemma 1.4, Let w be cyclic of prime order p> 2 andlet qe Z. Consider

Jgt Hylm Zp(q)) S H*(Zp; Zp(q_)). Then

(i) If g is even, j*(ei) = 0 unless i= 2t{p~1) or i= 2t{p~1)-1.
(ii) If q is odd, j*(ei) = 0 unless i=(2t+1)(p-1) or i=(2t+1)(p-1)-1,
Proof. Let k generate the multiplicative subgroup of Zp’ kp—1 =1. Let
Zp operate on Zp and define v ¢ Zp by v{i) = ki. Then \(ar\g-i = afk and vy is an

odd permutation in N(w), Define \E W —» W by

k-1
_ i . _ i j . - -1
\(#(621) =k eZi, Y#(ezl_l_l) =k EO: Q/Jezl +1° Y#( Gei) = Yoy Y#(ei)) oem

Then y#dz dy# and y#®y induces the conjugation vy, on H*(w; Zp(q)). Since
Y€ Z _, JuVYy = Jy hence j*(ei - Y*ei) =0 for all i. y operates by (-1)q on

P
Zp(q) and therefore

RSS! i (. qki+1
Vilegy) = (1)They and yylep, ) = (1) €214
. _ q.i_ . _
Thus J*(BZi) =0 unless 1 ~-{-1)'% = 0 modp and J*(eZiH) 0 unless
1 - (-1)qk"‘H = 0 mod p. Clearly k'= 1 mod p if and only if i = t(p-1) for some

t and kK'= -1 mod p if and only if 2i = (2t+l)(p-1) for some t. The result

follows easily.
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2. The definition and elementary properties of the operations

We now define a large algebraic category ‘g {p,n) on which the Steenrod
operations will be defined. Steenrod operations will be obtained for particular
categories of interest by obtaining functors to ;‘(p,n), The interest of the integer
n in the following definition lies solely in the applications to iterated loop spaces.
For all other known applications, only the case n = oo is relevant.

Definitions 2.1, Let A be a commutative ring, let r be an integer, and let

w be a subgroup of Zr. Let W be a An-free resolution of A, let V be aAZr-
free resolution of A, and let j: W —>V be a morphism of Am-complexes over A,
Assume that WO = Ar with generator e - et 0€£n<oo andlet W(n) and V(n)
denote the n-skeletons of W and V. Define a category ¢(Tr, n,A) as follows.
The objects of lﬁ.‘(v,n,A) are pairs (K,8), where K is a homotopy associative
differential A-algebra and 6: W(n)® K'—> K isa morphism of Aw-complexes
such that
(i) The restriction of 6 to eo® K' is A-homotopic to the iterated product
K' — K, associated in ®me fixed order, and

(ii) 6 is Am-homotopic to a composite W(n)® K* —L% V(n)® K" —L—> K,

where ¢ is a morphism of AZr—complexes,

A morphism f:(XK,8)—> (K',6') in é‘(n, n,A) is a morphism of A-complexes

f+ K —> K' such that the diagram

W(n)®Kr 6
1Q+° £
W(n)®(K,)r gt by

is Aw-homotopy commutative, A morphism f is said to be perfect if

\ T . . &

8(1® {7) = 0, with no homotopy required, and (m,n,A) denotes the sub-
category of g(w,n,A) having the same objects (K,8) and all perfect morphisms

between them. A is itself an object of & (7, n,A), with
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0=€8@1:WIN@AT —5 AT = A, and an object (K,8) ¢ E(m,n,A) is said to be
unital if ¥ has a two-sided homotopy identity e such that n:A —> K, n(l) = e,
is a morphism in £ (m,n,A). The tensor product of objects (K,8) and (L,0') in

~
E(m n,A) is the pair (K®L,6), where T is the composite

W(n)® (K® L)r AU W(n)® W(n)® Kr® LE 10T 1 W(n)®Kr®W(n)® LT

¥, e L

Here U is the evident shuffling isomorphism, T(xQ®y) = (-1)deg x degy vy@x,
and i W —>WRW is any fixed Avw-morphism over A; conditions (i) and (ii)
are clearly satisfied by the pair (K@ L,%). An object (XK,08)¢ £ (m,n,A) is said
to be a Cartan object if the product KQ X —> K is a morphism in C(n‘, n, A},
When w is cyclic of prime order p, we agree to choose W to be the explicit
resolution W(p,A) of Definition 1.2, and we abbreviate (m,n, Zp) to &lp,n)
and P(m, n, Zp) to  P(p,n). An object (K,8) e {(p,n) is said to be reduced
mod p if (K,8) is obtained by reduction mod p from an object (i'(','e“) el (m,mn, Z)
such that E is a flat Z-module.

We can now define the Steenrod operations in the homology H(K} of an object
{K,8) ¢ &{p,n). Observe that if x ¢ H{K) and 0<i<n, then ei® xF is a well-
defined element of H(W(n) ®ﬂKp) 2 H(W(n)®ﬂH(K)p) by Lemmas 1.1 and 1.3; here
(iv) of Lemma 1.1 applies, since 7 C Zp contains only even permutations, and
shows that ei® %P is represented by ei® aP e W(n)® Ter for any representative

cycle a of x,

Definitions 2.2. Let (K,0) ¢ C(p, n) and let x e Hq(K) For 0<i<n,
r (n) P
i D = H K"} — H{K). I = 2
define i(x) € Hqu(K) by Di(x) e*(eiﬁx), 6, F(W &W } (K). If p ,

define PS: Hq{K) - H K) for s < g+n by the formula

q+s(

(i) Ps(x) =0 if s<gq ; Ps(x) = Ds_q(x) if s>q.

If p> 2, define Ps:Hq(K) — (K) for 2s(p-1) < q{p-1)+n and define

Hq+Zs(p—1)
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BP_: Hq(K) — H (K) for 2s(p-1)< q(p-1)+n+l by the formulas

q+2s{p-1) -1

(i)  P(x)=0 if 2s<q; P(x)= (-1)° MDD (5g_gy(pon)® i 282 qand

BP(s) =0 if 26<q; BP,(x) = (-1)°v(a)D, ) if 25> g,

28-q)(p-1)-1%

j €
where v(2j+€) = (-l)J(mi) , j any integer, €= 0 or 1, m = %(p-l),

m+l a(q-1)m/2 (m!)q

or, equivalently since (ml)2 = (-1} mod p, v{(q)=(-1)

Observe that, if n = oo, the Ps and, if p >2, the BPS are defined for all
integers s and that [SPS is a single symbol which is not a priori related to any
Bockstein operation. The Ps and BPS are appropriately defined for applications
to homology; as shown in section 5, the appropriate formulation for cohomology is
obtained by a simple change of notation.

The following proposition contains most of the e€lementary properties of the
Di’ Ps’ and ;SPS. In particular, if p> 2, it shows that the Ps and ﬁPS account
for all non-trivial operations Di and that ﬁPs is the composition of PS and the

Bockstein P provided that (K,8) is reduced mod p.

(K).

Proposition 2.3, Let (K,8) ¢ ;(p,n) and consider Di: Hq(K) — Hpq+i

(i) If f:K—> K' is a morphism in {(p,n), then Dif* = f*Di .
(i) If i< n, then Di is a homomorphism.
(iii) DO is the p-th power operation in the algebra H(K) and if (K, ®) is unital,
then Di(e) =0 for i# 0, where e« HO(K) is the identity,
(iv) If p>2 and i<n, then Di = 0 unless either
(a)} q is even and i = 2t{p-1) or i = 2t{p-1)-1 for some t, or
(b) q is odd and i= (2t+1)}{p-1) or i=(2t+1)}{p-1)-1 for some t.
{v) If {K,8) is reduced mod p and B is the Bockstein, then
{a) ﬁDZi = DZi-—l if either p> 2 or q is even, and 2i<n

{b) gD D,. if p=2 and q is 0dd, and 2i+l < n,

2141~ 2
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Proof. Part (i) is immediate from the definitions and from Lemma 1.1 (iv),
and part (iii) is immediate from the definitions.
(ii) Let a,be Kq be cycles and define Afa,b) = (a+b)P - aP - pP e KP, Ala,b) is
a sum of monomials involving both a's and b's, and 7T permutes such monomials
freely. Let c ¢ KP be 2 sum of monomials whose permutations under w give
each monomial of A(a,b) exactly once. Then A(a,b)=Nc. If i is odd, then
d(ei+1 Qc)= ei®Nc and if i is even, then d(Tp-ZeiH@c) = ei® Ne¢ in
W(n)®ﬂKp, i< n, since ™lon in pr. Thus ei® A{a,b) is a boundary and
therefore Di is a homomorphism,w i<mn,

(iv) In the notations of Definition;l/. 1, we have that © is homotopic to a composite

W(n) @ﬂKP &%V(n) @ﬂKp - V(n)®2 KP —-g-—> K. Since nothing is changed
P
by tensoring with two copies of Zp(q), this composite can equally well be written as

wg)® xP(q) —12Lsv(Pg @, ke L x.
P

Let a e Kq be a cycle, Then, bythe definition of Kp(q), aP is a basis for a
trivial Zp-subcomplex of Kp(q). Therefore, if j(ei) = d(f) in

Ve 2z (@ vVe, 2, then dr®aP) = i(e)@3" n vIM(e)@y K7Ua).
For i<€1, j induces j*:HiFw; Zp(q)) — Hi(Zp; Zp(q)), and the desired cfnclusion
now follows immediately from Lemma 1. 4.

(v) Let (K,6) be the mod p reduction of (%,5). Let ace f{lq satisfy d(a) = pb.

(a3
An easy calculation demonstrates that, in Kp,

a(aP) =praP-l if p>2 or g is even;

d(az) =2Tab if p=2 and q is odd,

In the former case, if 2i < n, then, in W{(p, Z)(n) ®_’rf<'p,

Py _ P p-1
d(e21®a) e, _1®Na +peZi®Nba

i

- -1 2
= p[eZi_1®ap +a(TP Ze ® baP Jmodp~,

2i+l1

since TP _IE N mod p. In the latter case, if 2i+l1 <n, then

2, _ 2 _ 2
d(e2i+1®a )= 62i® Ta" - ZeZiH@Tab = 2[e2i®a d(62i+2®ab)] mod 4.
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Thus, in H(W(p,Zp)(n)®wKEj, if a is the mod p reduction of a, then

Py _ Py . _2y _ —2, .
ﬁ{e2i® A} = {e21_1® 2"} in case {a) and ﬁ{eZiH ®zF {e21® % “} in case (b),
Since © is the mod p reduction of the map 8: W(p, Z)(m)®wKp —> K, PO, =0,p,
and the result follows.
Of course, (i) and (ii) imply that the P and pP_ are natural homomorphisms

(except, if n< o, for the last operation). A check of constants gives the following

corollary of part (iii),

Corollary 2.4. Let (K,08)e £ (p,n). Then Pq(x)=xp if p=2 andx e H (K)

orif p>2 and x e qu(K). If {K,8) is unital, then F;(e) =0 for s # 0.

The implications of (iv) and (v) for the Ps and fSPs are clear if p> 2. If

p = 2, we have the following corollary of (v).

Corollary 2.5. I (K,0)¢ £(2,c0) is reduced mod 2, then BP

=sP ,
s+l *%s

The following result is the external Cartan formula,

Proposition 2.6.  Let (K,8) and (L,8') be objects of (£(p,n), Let

X € Hq(K) and vy ¢ Hr(L). Consider x®y e HIK)QH(L) = H{(K® L),

(i) If p=2, then Di(x® y) = j.%:i D.(x)® Dk(y) for i<n.

(i1} If p> 2, then DZi(X®Y) = (_l)mqr z Dzj(x)®D2k(y) for 2i<n, and
j*k=1

D, 4 x®y) = (-1)““71;}(2:513%“(::)@DZk(y) +(-1D, ()®D, 1 (y)  for

2i+1 < n.

Proof, By Lemmas 1.1 and 1.3, we may work in W(n)®W[H(K)® H(L)]p,
Since 7 operates trivially on (x® y)p, we may compute 9>,<(ei®(x® y)p) by means
of the induced coproduct on W(n)®ﬂZp, as given in {2) of Definition 1,2. The re-

sult follows by direct calculation from

0,(e;®@x®y)") = (6,®0,)1@TA 1)W® U)e, ® (x® y)P).
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A trivial verification of constants, together with part (iv) of Proposition 2.3,

yields the following corollary.

Corollary 2.7. Let (K,0) and (L,0') be objects of ¢ (p,n). Let xce Hq(K)

= i >
and vy ¢ Hr(L). Then Ps(x®y) igs Pi(x)®Pj(y) and, if p> 2,

BP,,(x®y) = 3 (8P, ()@ P(y) + (-1)IP, ()@ 8P, (y)).

itj=s
Of course, if (K,8) is a Cartan object in ((p,n), then the corollary and the
naturality of the operations imply that the Ps and, if p > 2, the 6PS on H(K)
satisfy the internal Cartan formulas

Plxy) = 25 PBPRly)  and
itj=s

8P, (xy) =i+J§;s(ﬁpi+l(X)pj(y) + (<) € BpP. (y)
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3. Chain level operations, suspension, and spectral sequences

In this section, we define chain level Steenrod operations and use them to prove
that the homology operations commute with suspension. The chain level operations
can also be used to study the behavior of Steenrod operations in spectral sequences
and, in particular, we shall prove a general version of the Kudo transgression
theorem.

Theorem 3.1, Let (K,8) ¢ {(p,w). Then there exist functions

P:K — K if p=2 and P:K —K
s" T q 8

q q+2s(p-1)
if p> 2 which satisfy the following properties.

and BP :K — K
5 q

q+s q+2s(p~1) - 1

(i) &P, =Pd and dpP = -pPd

(ii) If a is a cycle which represents x ¢ H(K), then Ps(a) and ﬁPs(a) are
cycles which represent Ps(x) and ﬁPs(x).

(iii) I f:(K,0) —> (K',8') is a morphism in P (p, ®), so that 6 = 6'(1 @),

then fP =P f{ and {gP_ = BP {f.
s s s s

Proof. Let ace Kq and write b = d(a) ¢ K In the case p = 2, define

g-1"

P = =
(1) s(a) 8(c), where c eS-qH

Rb®a + es-q®a®a € W®TrK2.

The verification of (i}, (ii), and (iii) is trivial. Thus assume that p > 2. Let {a,b)
denote the subcomplex of K with basis a and b, so that (a, b)pc KP. Define
s:{a,b) —> (a,b), of degree one, by s(a) =0 and s(b) =a. Then ds +sd=1 on
(a,b). Let S=1°"1®s on (a,b)?. Then dS +Sd=1 on (a,b)® and S is given

explicitly by S(ea) =0 and S(eb) = (_l)deg Cea for e (a,b)p-l. Define t, € (a,b)P

for 0<i<p by the inductive formula

o) p-1 -1
2 = . = . = - . =
(2) e =05ty =bT ag ty =Sla Tty -ty )5ty =SNG
Since dS +S8d = 1, an easy calculation demonstrates that
-1
= . = - = < <
(3) d(tl) ty d(tZk) (o 1)t2k_l and d(tZk_H) NtZk , 1<k<m.

A straightforward induction, which uses the explicit formula for S, yields
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2

4t = > (-1)¥%k-1): b "a%b %% .. b ¥a?, 1< k< m, summed over all
i

k-tuples I=(i,...,i) suchthat >, i = p-2k; and

i i i
1
{5) t2k+1 = E(-l)kq k! b az ... b kazb k+1a , 0€£ k< m, summed over all
I

(k+1)-tuples I=(ij,...,4 . ) such that > i = p-1-2k.

In particular, t -l)mqml aP (since each ij = 0). Now let

o= tamar = (
j=(2s-q+1)(p-1) and define chains ¢ and c¢' in W®nKp by the following

formulas (where, by convention, e = 0 if i<0):

< k < k -1 ,\p-2
(6) = 1}52"0 (175 2@ tgpnn - k% (17 ey @0 - 17 Ty

m X m K
t = - -
(M et= 301 ey Bty + 2 (1) e Bty
k=0 k=1
Then an easy computation, which uses Definitim 1.2 and (3), gives
(8) d(c) = ej®bp and d(c') = -ej_1®bp {(j=1{2s - q+1)(p-1))

In calculating d(c), the salient observations are that th = 0, that

aei®t = ei® a—lt for te KP by the very definition of a tensor product, and that

(a-l- l)p-1 =N in an‘. Finally, define

(9)  P(a)=(-1)°v(a-1)6(c) and PP (a) = (-1)°v(a-1)6(c") .

mq P

If a isacycle, b=0, then t =0 for i<p and tp= (-1)"*m!a”, hence

- (_pymlatl) o ooymiatl) P
(10)  c=(-1)™ e = (0 e 1)1

® ap and ¢
(2s-q)(p-1)
. . _ m{qg+1) oy .
It is easy to verify that v(q) = (-1) m! v{g-1} and now (ii} is obvious from
(9) and (10) and (i) follows from (8), (9), and (10), applied to the cycle be Kq-l .
Part (iii) is immediate from (9).

The remaining results of this section are corollaries of the theorem and its

proof, We first define and study a very general notion of suspension.
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Definition, Let f:K'~—> K and g:K—> K" be morphisms of A-complexes
such that gf = 0, Define a: Ker f, —> Coker g, by the formula c{b'} = {g(a)},
where b' represents {b'} ¢ Ker f, and d(a) = £(b') in K. It is trivial to verify
that ¢ is well-defined, and we call o the suspension.

We can now prove that the Ps commute with suspension. We remark that
if n = o, the hypotheses of the next theorem simplify to the requirement that f
and g be morphisms in (p,®) such that gf = 0. For n < o, the stated

hypotheses arise in practice in the study of iterated loop spaces.

Theorem 3.3. Let (K',08') e &(p,n+l) and let (K",0") ¢ &(p,n). Let
K bea Zp-complex and let fiK'—> K and g:K—> K" be morphisms of com-

: g (nt1) o 1P
plexes such that gf = 0, Define a subcomplex X of W ®@ K" by

AR

wirt @ gxnP + Wt @ gxP lox + w e x?

. —(n+1)
(that is, en+1 € W

n+1)

for

where W(nﬂ) = W(n)G) Z en

i w
W
+1 but ae ) ¢
i£i< p). Suppose given a m-morphism 6:% —> K (where, by convention, 7 does

-1
not act on © 1 ®f(K‘)p ® K) such that the following diagram is commutative:

weH) g (P 181 188 w(n) g (xnP

K
el Ie e"
£ K

g K

K

(Here gf =0 ensures that (1® gp)(f{) C W(n)® (KMP.) Observe that Ker £, is
closed under the Ps and ﬁPs and that there are well-defined induced Ps on
Coker g,. Let xe¢ Ker f,. Then O‘PS(X) =Pscr(x) and GSPS(X) = -ﬁPSG(x) when-
ever Ps(x) and 6Ps(x) are defined.

Proof. Let deg(x)=q-1 andlet b'e¢ K' represent x. Let b= f(b') and
let d(a)=b in K, so that g(a) represents o{x), The hypothesis guarantees that
if s is such that Ps(x) or ﬁPS(x) is defined, then the chain level operation Ps{a}

or BPs(a) constructed in the previous proof is also defined, Of course, this is
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clear if n = o; if n <w, we need only verify that all elements involved in the

o~
definition of Ps(a) or ﬁPs(a) are present in K, For example, if p = 2, the last
operation Ps(x) occurs for s = g+n and then Ps(a) = 8(c), where

c =

~
e 41 @bQa+ en® a®a, and c is indeed in K., Now our diagram ensures

that fPs(b') = Psf(b'), hence fPs(b') = dPs(a), and that gPs(a) = Psg(a).
o-PS(x) = Pso'(x) follows from the definition of ¢, and the proof that UBPS(X) =
-ﬁPsa(x) is equally simple.

Note that if p > 2 and all objects are reduced mod p, then off = -0,
which is consistent with the theorem, The theorem implies that o(x%) = 0 and
that chPS(X) =0 if p>2 and deg(x) = 2s-1; if (K",0") is reduced mod p, the
latter statement becomes ﬁo—(x)p = 0, The operation @PS(X), deg(x) = 2s - 1, plays
a special role in many applications; the following very useful technical result about
about this operation is known as the Kudo transgression theorem. It applies to the
Dyer-Lashof operations in the homology Serre spectral sequence of the path-space
fibration @°X —> PﬂnulX —_— Qn'_lX, to the Steenrod operations in the cohomology

Serre spectral sequence of a fibration F~—> E—> B (with K'—> K —> K" being

e s o
ES ES ES

C (B) —> C (E) —> C (F), graded by subscripts) and to the spectral sequence of

Adams [1, p. 210} for cocommutative Hopf algebras.

Theorem 3.4. Assume, in addition to the hypotheses of Theorem 3.3, that
K has an increasing fitration {FiK}’ that HO(K') = Zp = HO(K"), and that there is
a morphism of complexes wi K® f(K!) —» K such that either
(i) K', K, and K" are positively graded, FiK =0 if i<0, FiKi =X if i>0,
f(KY) C FOK , v(FiK® f(K)) ¢ FiK’ and f and g induce isomorphisms
Ezf: I—IJ_(K') — Ejj K and Ezg: K—> Hi(K") and m induces a morphism

2 2
EZTr:Eij K® EOkK — E K such that the composite morphism

i, j+k
2 2 -1 2 2 A . .
E“+[(E7g) ®E f]:Hi(K“}® HJ.(K‘) — Eij K is an isomorphism; or
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(ii) K',K, and K" are negatively graded, FiK =K if i20, Fi- Ki =0 if i<0,

1

£ (K;) CFiK, -rr(FiKQ f(KJ')) - Fi jK, and f and g induce isomorphisms

+
2 2 2, 2 . .
E“fs Hi(K') —> E/ K and Eg :on K— Hj(K") and 7w induces a morphism
2’
2 2 2 2 : .
E'mE. KQE K-—=E° .K such that the composite morphism
ij ko i+k, j

EZF[(EZg)-l ® Ezf]: Hj(K") ® Hi(K') — Ezin is an isomorphism.

t t
I i =d: —_ in (i
et T be the transgression, T d:E K EO,t-lK in (i) and
T=d 'El-tK — El—t K (t<0) in (ii). Then T is the inverse additive
1 Eot t-1, 0 in (ii). i a

relationto o, and if y ¢ Hq(K") transgresses to x € Hq_l(K’), then Ps(y) and

if p> 2, ﬁPs(y) transgresses to Ps(x) and -BPS(x), whenever the operations
-1

are defined. Moreover, if p> 2 and q = 2s, then yp @ x transgresses to

—BPS(x) (that is, )(yp-l ®x) = -ﬁPs(x) in case (i) and

d

a(p-1
-1

dl-q(p-l)(yp ®x)= -6Ps(x) in case (ii) provided that

(iii) if a. e F. K, then 6(e, ®a, ®...Qa )¢ F.K, i= > i +k, and
iy k™1 p i i

(iv) The restriction of 0 to eo® Kp—l®f(K') induces a morphism
2 2 - 2 -
E e:(}z*oK)p 1®E0*K — E°K in (i) and Ee; (Egd_K)p 1®E30K - %k
2

in (ii) such that E“@ = Ezﬂ[(Ezg)-lﬂ(Ezg)p-l® 1], where

-1
g: H(K")p —> H(K") is the iterated product.

Proof, Let ye Hq(K“). By the definition of the differentials in the
spectral sequence of a filtered complex, 7(y) is defined if and only if y is
represented by g(a) for some a ¢ Kq such that d(a) = f(b') for some cycle
b' e K::l_l, and then x = 7(y) = {b'}. Thus the first statement follows from the
properties of the chains Ps(a) and ﬁPs(a). For the second statement, consider
BPS(a), g = 2s, Since dBPs(a) = -BPsf(b'), a and b' as above, it suffices to
prove that BPS(a) represents yp-l ®x in EZK. BPs(a) = -m!6(c') by (9) of the

s-1

proof of Theorem 3.1 and the observation that v(g-1)= v(2s-1)=(-1)" “m!

In the definition (7) of ¢', the term with k = m in the first sum involves e 1 (since
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g = 2s implies j = p-1) and is therefore zero. The term with k= m in the
m 22! 2 2(m-i)
second sum is (-1) e Rt where, by (4), t = {m-1)! z a ba ,
o p-1 p-1 S0
b= d(a). It is easy to see that

m-1

. . m .
g aZIbaz(m-I) = P(a)ap-lb , where P(a)= 2 a21_1 s
i=0 i=1

and direct calculation shows that P{ao) = m+ Qa), in pr, where
m
2j . 25+ -
Qle) = Zj(a Iy B 1). Let c" = (-l)m(m-1)£e1®Q(oz)ap 1®be WQKP. Then

j=1

et - de) = (-1)™

m! e, ® aphlb plus a linear combination of terms ei® g such

that g has i+l factors b and p-i-1 factors a. Condition (iii) ensures that

each B(ei® g) has lower filtration than does 9(e0® ap—lb) and condition (iv)
p-1 p-1 2 .

ensures that e(e0®a b) represents y ®@x e E'K, Since {SPS(a) and

~-m!8(c! - d{c")) = 9(e0® a.p-lb) represent the same element of EZK, the proof

is complete,

The following proposition gives a general prescription for the study of
Steenrod operations in spectral sequences; it will be useful in the study of the
cohomology of the Steenrod algebra in [18]. In the applications, the determination
of the function f is often quite difficult and depends on how the given 8 was con-
structed,

Proposition 3.5, Let (K,8) be an increasingly filtered object of { (p, o)

Suppose given a function £(i,j, k) such that
(i) If a, ¢ FitKit+jt , where z io=1 and 2 = then

] e ey H
(e ®2;® ... ®ay) e Fyy i 1)¥injrn

(ii) (i, j, k) > f(i-r, jtr~1,k+1), r>1; and
(iii)  £(i,j, k) > r + f{i-px, j+p(r-1), ktp-1), r =1,

Let ye EI;JK Then there exist elements P(y) ¢ E; K and, if p> 2,

f
1
BP (y) ¢ Et'  such that a'P (y) = P.d"(y) and at BP (y) = -BP d"(y), where
8 k! s =3 s s
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(iv) If p=2, then k= £(2i,2j,s-i-j), £ =it+j+ts-k, and

t = k-£(2i-2r,2j+2(r-1),s+1-i-j),

(v) If p> 2, then k = f(pi, pj, (25-i-j)(p-1}), £ =it+j+2s(p-1)-k, and

t = k-f(pi-pr,pjtp(r-1), (2s+1 -i-j)}p-1)).

(vi) If p> 2, then k'= f(pi,pj,{2s-i-j)p-1)-1), £' =i+ j+2s(p-1)-1-k, and

t' = k' - f(pi-pr,pj+p(r-1), (2s+1-i-j)}p-1)-1).

P . L E = F K . .

roof et ac iKi+j represent y and let b= d(a) e 1-rSirgel
Consider the chain Ps(a) constructed in Theorem 3.1. By (ii), all summands of
Ps(a) other than that involving en® aP (for the appropriate n) have lower

filtration than k and, by (i), 9(en® aP) has filtration k. Since dF;(b), where

P(b)e F

; . tK by (i) and k-t 2 r by (iii), the statement about Ps(y) follows.

The proof for BPS(y) is similar.

4., The Adern relations

We here show that the Adem relations are valid for the Steenrod operations
in H(K) if (K,8)e C(p,) satisfies certain hypotheses, The general alge-
braic context is distinctly advantageous in the proof. We are able to exploit a
trick (Lemma 4.3) used by Adem to prove the classical Adem relations, and this
trick would not be available in a categorical approach to Steenrod operations since
it depends on the usage of objects of C(p, o) which are not present in many

categories of interest, such as infinite loop spaces and cocommutative Hopf alge-

bras.

We require some notations and definitions before we can proceed to the
proof.

Let = , act as permutations on {G,j) | 1<i<p, 1<€j<p}. Embed
T in Z 2 by 1F;tting a(i, j) = (i+1,j). Define @, ¢ = 2 1£i< p, by

|3 P
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ai(i,j) ={i,j+l) and ai(k,j) =(k,j) fork#1i, and let B = @ S0 that

(i, j) = (i, j+1). Then

(1) aa; =0 a0 = e and af = Pa .

Let a; generate ™ and B generate v, so that T and v are cyclic of order p.
Let o =7v andlet 7 be generated by the a, and o, Then cc7,T is a

p-Sylow subgroup of Z 2 and 7 is a split extension of Ty .Trp by m.
1%
Let W1 =W and W.2 = W regarded, respectively, as w-free and v-free

resolutions of Zp. l.et v operate trivially on W_, let w operate trivially on W

1! 2’

and let o operate diagonally on W, ® W,. Then W, ®W2 is a o-free resolution

of Z .,
P

If M is any v-module, let T operate on mP by letting o operate by cyclic
permutation and by letting @, operate on the i-th factor M as does B, Let @

operate trivially on W Then T operates on W1 and we let T operate diagonally

1
on Wl ® Mp. In particular, W1 ®W2p is then a T-free resolution of Zp.
2
Let K be any Zp-complex. We let operate on KP by permutations

pZ

with the (i,j)-th factor K being the j-th factor K in the i-th factor &P of
2 PP P
KP = (KPP, We let v operate in the standard fashion on W2®K (B acting
as cyclic permutation on Kp). By the previous paragraph, this fixes an operation
of T on WI®(W2® Kp)p.
Let Y be any Z 2

p
any T-morphism over Zp' w exists gince Y is acyclic, and any two choices

~-free resolution of Zp and let W:W1®sz —» Y be

of w are T-homotopic,

With these notations, we have the following definition.

Definition 4.1. Let (K,8) ¢ ¢ (p,n). We say that (K,8) is an Adem
2
object if there exists a Z ,-morphism g:Y(n)® KP —> K such that the follow-
P

ing diagram is T-homotopy commutative:
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2
(Wl ® sz)(n)® KP w® 1 Y(n)® KP
3
1 ®U K

el

Wl(n)® (Wz(n)® KP)P 1Q® oP 5 W]_(n)® Kp

Here U is the evident shuffle map, and is clearly a T-morphism (Z 5 acts
p

trivially on K and a, acts trivially on Wl(n)® Kp).
For clarity, we only treat the case n= o below, The relations obtained
will be valid for operations on Hq(K), (K,8) an Adem object of { (p,n), pro-
vided that n is sufficiently large relative to q.
We first show that the tensor product of Adem objects is an Adem object
and then use this fact to show that any relations valid on Hq (K) for all Adem

i
objects (K,0) and suitable q; will necessarily be valid on Hq(K) for arbitrary

q.

Lemma 4.2. If (K,0) and (L,0') are Adem objects of {(p, o), then
(K@ L,'é‘) is an Adem object of ¢ (p, o).

Proof, % is as defined in Definitions 2,1, By hypothesis, we are given
£ and £' such that (K,£) and (K,7n') are objects of C’(Epz,oo, Zp), hence we
may define E as in Definitions 2.1 so that (KQ® L,~) e C(= 21, Zp)' We must
show that the diagram of Definition 4.1, for K®L, is 'r-horrF:otopy commutative,
and this follows easily from a simple chase of a large diagram and the definition
of B and E‘ The crucial point is the observation that since W1 ®W2p is T-free

and Y®Y is acyclic, the following diagram is T-homotopy commutative where

V is the evident shuffle and ¢ :Y —>Y®Y is any given = 5
P

-coproduct:
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P y®¢P p__V P p
wew? 224 5w ew @W,ewW )P ——> W.eWLeW ®W,
w lw@w

Y Y > YQY

Let Fp denote the free associative algebra generated by {Psls ¢ 2}
and, if p> 2, {ﬁPs] s e 2}, Let JpC_ Fp denote the two-sided ideal consisting
of all elements a ¢ Fp such that ax = 0 for all x ¢ H(K) and all Adem objects
(K,9) e ¢ (p,o)., Let Bp = Fp/Jp. Bp is a universal Steenrod algebra, Both
the classical Steenrod algebra and the Dyer-Lashof algebra [17] are quotients
of Bp.

Lemma 4.3. Let ac Fp. Let {qif i> 0} be a strictly decreasing
sequence of integers. Suppose that ax =0 for all x ¢ H’:1 (K), i20, and all Adem
objects (K,8) ¢ £ (p,w). Then ac Jp. '

Proof. Let K be an Adem object in “:(p,oo) and let x ¢ Hq(K) We
must prove that ax = 0, Choose r <0 such that gq+r= qi for some i, There
exists an Adem object (L., Gr) ¢ £ (p,w) andaclass ye Hr(Lr) such that
Po(y) =y, Ps(y) =0 for s # 0, and ﬁPs(y) = 0 for all s, Such an object can
easily be constructed explicitly, but it is quicker to appeal to the results of section
8, which show that the singular cochains of a (-r)-sphere, graded by non-positive
subscripts, provide such an object. Now (K& Lr"é) is an Adem object of ¢=(p,)
by the previous lemma, By the external Cartan formula, Corollary 2.7,
alx®y) = ax®y. Since x®y e Hq.(K® Lr), a(x® y) = 0 and therefore ax = 0,

1
as was to be shown,

The Adem relations will be proven by chosing the diagram of Definition 4.1,

and we shall need some information about the homology of o, T, and Z 2 Let
p
PZ >
2
v({,j) =(j,i). Observe that v =1 and ya= By. For qe Z, conjugation by vy

Qf:Wl@W -—>W1®W2p be a c-morphism over Zp' Define y ¢

2
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gives a commutative diagram

¢;;< W:,':
H,(0; Zp(q)) > Hn2 () — H*(sz s 2,(a))
{
Hy(03 2 (@) ——> H(73 Z () —i—~>H*(2pZ; z ()

Thus W*(g;,: - 33.,{\!__,,) = 0. The following lemmas compute y, and Qf* Note that

#

H_ (73 Zp(q)) = H (7; Zp) since T contains only even permutations,

e
Lemma 4.4. v, is given on H*(O'; Zp(q)) by \(*(ei® ej) = (-1)1J mqej®ei.

Proof, Define Yyt Wi Q WZ —> W1 @ W_ by the formula

2
Kk IS ij K

y#(a ei®f3 ej) = (-1) ozej®{3 e .

Then d\(# =\(#d and y#(px)= (ypy-i)y§(x} for p € ¢ and X ¢ W1®WZ' Thus

\1#® v: (W1®W2)®U Zp(q) — (W1®W2)®O’ Zp(q) induces vy,. Since the sign of

vy is (-1)m, yel= (_l)mq in Zp(q), and the result follows.

Before computing 52‘9<, we fix notations concerning binomial coefficients.
Notations 4, 5. Let iandj be integers. Define (i,j) = (i+j)!/iljl if i>0 and
j=0 (0} =1) and define (i,j)=0 if i<0 or j<O0. Recall thatif i>0 and
j =20 have p-adic expansions i= > a pk and j= 2 b pk then

k k77
(,3) = W(ak' bk) mod p, Clearly (

k
hence (i,j) # 0 mod p if and only if z(ak+ bk)pk is the p-adic expansion

bk) #0 mod p if and only if a +bk < p,

By k

of i+ij.

Lemma 4.6. H_(7; Zp) = H, (w;H(v; Zp)p) and f§_: H*(O'; Zp) —> H,(7; Zp)

is given by the following formulas (with sums taken over the integers).

(1) If p= 2, E'*(er®es) = zk:(k,s-Zk)e ®e2 . and

r+2k-s -

is k
() X p> 2 fle @) = BN [2/20-89 o0 oyp1 B 2i(p-t)

N E s-1 P
"6(1‘)6(5'1) %{,(‘1) V(S'l)(k’[ /2]'pk)e r+p+{2pk-s)(p-—1)®es-2k(p~l)-l’
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where v(2j+E) = (-1)J(ml)€ and §(2j+€&) =€ , j any integer, E=0or 1,
Proof. Let W, = W_® Z =H_(v;Z ). By the definition of the action of
Zroot 27 "2 e T iy

—P
T on W ®Wp, we have that (W ®Wp)® Z =W, QW
1 2 1 2" 7T p 17w

5 asa Zp-complex,

and the first part follows. Of course, H*(T; Zp) is now computed by Lemma 1.3,
¢* could be computed directly, but it is simpler to use topology. Let

K(Zp, 1})= E/v , where v operates properly on the acyclic space E, so that, by
[14,1v 11], C_(E)= va® C (E/v), with Zp coefficients. Let D:E —> EP be
the iterated diagonal. Then 1® D: Wl R C*(E) — W1 ®C*(Ep) is a c-morphism,
and we shall obtain a o-morphism @: W1 ® C*(Ep) — W1 ®C*(E)p in Lemma 7.1.

Let d= #(1®D) andlet £: W -—>C*(E) be a v-morphism over Zp' Since

2
W1® W2 is o-free and W1® C*(E)p is acyclic {(and T-free, with the evident

T~action), the following diagram is ¢-homotopy commutative,

g P

W18_>wZ W1®W2
1@ 1 QP
W, ®C,(E) &> w ®C(E)F

Therefore §, = d,:H (o3 Zp) —> H_{7; Zp), and this can clearly be computed from
the quotient map diW, ® C(E/v)—> W, ® _"_C*(E/v)p, We shall prove the

following formulas in Proposition 9. 1.

(a) If p= 2, d*(er® es)= zer+2k—s®P>;<k(eS)2; and
k
- k koo P
(b) I p>2, dfe ®e)= %:(-1) v(s)er+(2pk-s)(p_1)® P, ()
k k P
- 8(x) %(—l) vis-D)e y ionnoa)(p-1) B Ple)” -

%
Here the P*k are the duals to the Steenrod operations in H (K(Zp, 1); Zp) =

#
H (v Zp). The latter operations satisfy P®° = 1 and the internal Cartan formula,

hence, by (1.2), if w, is dual to e then

t
k k
(¢) If p=2, P (Wt) = (k, t—k)wkﬂ;’ hence P*(es) = (k, s-Zk)eS_k s and
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k
> P = -

(@) I p>2, (Wt) {k,[t/2] k)wt-f-Zk(p—l) , hence

B.(e,) = (k,[s/2] - p)e :

%* g ’ s-2k(p-1)
Combining (a) and (c), we obtain (i). Combining (b),(d), and ﬁ(ei) = 6(i~l)ei_1,
we obtain (ii).

Theorem 4.7. The following relations among the Ps and ﬁPS are valid

on all homology classes of all Adem objects in C(p, ).

X _ - i-a. a-boi- P
() 1 p=2 and a>2b, BB _12(21 a,a-b-i-1)P B

. _ ati
(ii} If p>2 and a > pb, PaP = 2(-1) (

b : pl—a,a-(p-l)b-1-1)Pa

P
+b-i i

. ati, . .
and BP P = iZ(~l) (pi-a,a-(p-1)b-i-1)pP_ . P

_ ati, |, .
(iii) I p>2 and a2pb, P BB = iz:(.l) (pi-a,a - (p—l)b—1);3Pa+b_iPi

-1 pi- an1, a-(p-1)b-i)F . .BF

3 1
1

and

BE BE = - %“(-1)3*’1(1& ~a-1,a-(p-1)b-0)BP_,, 6P,

Proof. Note first that the second relations of (ii) and (iii) are implied by
the first for objects which are reduced mod p, but are logically independent in our
general setting. Let (K,©) be an Adem object in ((p, ) andlet x ¢ Hq(K).
Definition 4.1 implies that we have a Zp-homotopy commutative diagram

2 2
W, eWPe k(9 —2Lls ve  xP(q)

. 2 T

P\ P 1®0P p
Wl®v(W2® K") Hg) ———> W, ®_K(q)

K(q)

2

Since xP is Z 2 invariant in KP {a), we have, for all r and s,
p

2 2z
(3) £ (w1 le ®ef®x" ) =t (w (c ®el)®x").
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In the other direction, U introduces the sign (-1)™%% and we have
2
() 0,106 (180UV) (e ®eP@®xP) = (- 1)““15 D_(x) .
k r s
Since W*Q* = w*ﬂs* Y2 Lemma 4. 4 gives the formula
_ rs+mqg
(C) W*¢*(er® eS) - ("1) w>:<¢,:<(es® er)'
Combining formulas {a) and {¢), we obtain the formula
2 rs +m pZ
(@ £ w®1)(Fle ®e )@= )=(-1) e (w®1), (F (e Be )Bx" ).

In view of (b), (d) gives relations on iterated operations, and these relations are
explicit since ¢* is known., We prove the three parts of the theorem successively
In all parts, the statements about binomial coefficients are verified by writing out
the p-adic expansions of the relevant integers and appealing to the remarks in
Notations 4. 5.

(i) By (b} and (d), Lemma 4.6 implies the formula

(e) Z(k,s-Zk) r+2k- s z (£,x-21) s+21-rDr~l(x)'

k )]

Formula (e) is valid for all r and s, and we set r=a-2q and s =b-q for our
fixed a >2b. If we then change variables to j=b-k and i=a-q-{ andapply

Definition 2. 2, we obtain

f -j, 2j=b-q)P P = -q-1i,2i-a)P P (x).
() %juo 2ibe® g P00 = Dlaca-h 22, B0
The condition a > 2b guarantees that the same terms do not appear with non-zero

coefficients on both sides of (f). Now suppose that q = b-2'+1 for some t> 0.

Then, if j # b, ¢
(b-j, 2j-b= q) = (b-j,2-1-2(b-j)) = O.

On the right side of (f}, Pa.-f-b iP’i(x) = 0 unless Zto—l = b-gq 2 2i-a, while if
2t > 2i-a, then
(a-g-i, 2i-a) = (Zi-a,a-b—i-l+2t) = {2i-a,a-b-i-1).

Thus (f) reduces to the desired relation (i) when ¢ = b-2'41 for some t> 0. By

Lemma 4. 3, it follows that {i) holds for all q.
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(ii} Observe that pw, = w,B and that, by the proof of part {v) of Proposition 2. 3,
the Bockstein operation 8 in H*('r; Zp) is given by ;S(ek® ef) = ﬁ(ek)®e§ ,
where ﬁ(ek) = 6(k-1)ek_1. Now since (c) holds with §, replaced by pf,, so does
(d); that is,

2
(an £, (w® 1)*(‘3¢>;<(er® es)® xpz) - (_1)rs+mqg*(w® 1)*(ﬁ¢*(es® er)®xp ).

Replace rand s by 2r and 2s in (d) and (d') and let € = 0 or 1} then, by (b)
and Lemma 4.6, (d) and (d') imply the following formula for & = 0 and € =

respectively.

(g) 2( 1) v(25)(k, s -pk)D y)

2r+{2pk-2s){p-1)-¢ 25 2k(p-1

=S )™, )k, r-pe)D
j 4

2s +{2pf -2r){p-1)-¢ DZr -24 (p-—l)(x)'

In(g), set r = a(p-1)-pam and s = b{p-1)-gm and change variables to j = b-k
and i=a-mq-£. Let :3OPS = P_ and ;slps = BP_, by abuse; then, by Definitions

2. 2 and a check of constants, we obtain

() S -1 oo, pi-b-ma) B
J

P.(x)

a+bJJ

~E 1) (2 - ma -1, pi-a)f P (x)

P
ath-i i

Again, a > pb ensures that the same terms do not appear on both sides of (h).

t-1

Now suppose that ¢ =2b-2(1+p+... +p ), t>0. Then {(b-j, pj-b-mq) =
unless j = b and, onthe other side of (h), 88 Pa+b iPi(x) = 0 unless

t-1
1+... +p = b-q/2 2 pi - a, when pt>pi—a implies

(a - mq-i, pi-a) = (pi-a,a-(p-1)b +p -1-i) = (pi-a, a-(p-1)b~i-1}.
Thus {h) reduces to the desired relations (ii) when g = 2b-2{1 +... + ptn}) for
some t> 0. By Lemma 4.3, it follows that (ii) holds for all «q.

(iii) Replace rand s by 2r and 2s-1 in (d) and (d'); then, by (b) and Lemma

4.6, (d) and (d') imply the following formula for € =0 and &= 1, respectively.
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. k+m
® -1 q”(zs"l)(k’s'1'pk)Dz-.«HZpk-zs+1)(p-1)-sD2s-1-2k(p-1)(x)

k
_ £ +mq
=(1-¢) ; (-1) v(2r)(£, r-p! )D25-1+(2p/z —2r)(p-1)P2r-21 (p-l)(x)
!
) ;(-1) "(Zr'l)u’r'l'p“DZSHZpﬁ -2r+)(p-1)-¢ DZr—l—Zl(p«l)<x)'

In (i), set r = a{p-1)-pam and s = b{p-1)-gm and change variables to j = b-k
and i=a-mq-{. By Definitions 2. 2, we obtain

. b, . e
() JE(-l) (b=, pj-b-mq-1)8" P, BP(x)

= (1-8) X (-1)*X(a-ma-i, pi-a)pB,, (P(x)

. 3
- 12(" 1)a+1(a'mQ”i: pi-a-1)p Pa+b-i5Pi(X)

Again, a > pb ensures that the same terms do not occur on both sides of the

equation, Now suppose that q = 2b—2pt, t>0. Then (b-j,pj-b-mqg-1) =0 unless
t

j = b. On the other side of (j), Bpa+b iPi(x) =0 unless p > pi-a, when

(a-mg-i, pi-a) = (pi~a,a—(p—1)b-i+(p-1)pt) = (pi-a,a-(p-1)b-i),

£ t
P el e e
and f a+b-iﬁPi(x) 0 unless p > pi-a-1, when
t
(a-mgq-i, pi-a-1}) = (pi-a-1l,a-(p-1)b-i+(p-1)p) = (pi-a-1,2-(p-1)b~i)

Thus (j} reduces to the desired relations (iii) when g = Zb—Zpt for some t< 0,

and Lemma 4, 3 implies that (iii) holds for all q.

Remark 4, 8. It should be observed, for use in section 9, that the relations (f),
{n), and {j) derived in the proof above are valid for arbitrary integers a and b
(without the restrictions a > pb or a2 pb). Indeed, these conditions on a and
b were only required in order to obtain disjoint non-trivial terms on the two

sides of the cited equations,
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5. Reindexing for cohomology.

We have geared our discussion to homology, but the reformulation appro-
priate to cohomology is obtained by a minor and standard change of notation. Thus
let K be a Zp—complex Z-graded by superscripts, with d of degree plus one. If
we regrade K by K_q = Kq, then the theory of the previous sections applies.
Equivalently, we can regrade W by non-positive superscripts and reformulate
the theory. Obviously, this in no way changes the proofs. Let (K,8)¢ { (p,®),
with K and W graded by superscripts, and let x ¢ Hq(K) Then
Di(x) = e*(e-i® xp) ¢ Hpq_i(K), {20, and we may define P°(x) = P—-s(x) and, if
p> 2, ﬁ»Ps(x) = 5P_S(x). Explicitly, Ps{x) and }SPS(X) are defined by the
formulas

(1) If p=2, Ps(x) = Dq S(x) € Hq+S(K), where Di =0 for i<0; and

(2) 1 p>2, P°(x) =(-1)°v(-q)D () € uat2s(e-g) ong

(g-2s)(p-1

) e Hq+2s(p-1)+1(K), where

s _ 3
BP (%) = (-1) V(-q)D(q-Zs)(p-l) - 1(x
Di =0 for i<0 andif q = 2j-& , E=00r1, them v{-q)= (‘l)j(m!)e .

]
s
Of course, if p = 2, we should write P = Sq in order to conform to

standard notations, but we prefer to retain the notation P°, In this way, the
Cartan formula and Adem relations are formally the same in the cases p = 2 and
p> 2.

The P° and ;SPS are natural homomorphisms and are defined for all
integers s. If (K,8)e¢ (p,o) and xc¢ Hq(K), then
(3) If p=2, Ps(x) =0 if s> q and Pq(x) = xZ ; and
(4) If p>2, P(x)=0 if 25> q, BP°(x) = 0 if 2s > q, and P (x) = x® if 2s = q.
Note that we do not claim that Ps(x) =0 if s <0 or that P° = 1; these formulas
are not true in general. If (K,8) is unital, then Ps(e} =0 for s #0. If (K,9)

is reduced mod p, then
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s-1 s | s " s .
{5) pP =sP if p=2 and BP  is the composition of P~ and the Bockstein
g if p> 2.
The external Cartan formula now reads

(6) Px@y) = S P®Py) and, it p> 2
itj=s

P x®@y) = S (3P 0@ Plly) +(-1)%8 ¥l @ I T (y)).
itj=s

s s ;
We have oP = Pt and P = -ﬁPscr and of course the Kudo transgression
theorem takes on a more familiar form with grading by superscripts in case (ii).

The Adem relations, reformulated in terms of the Ps, take on the form given in

the following corollary.

Corollary 5.1, The following relations among the P° and {ESPs are
valid on all cohomology classes of all Adem objects in £ (p, o)
(i) If p22, a<pb, and E=0or 1 if p>2, §=0 if p = 2, then

. Z(~1)a+i(a - pi, (p-1)b - ati-1)gt p21P-ipt

i

s p?p

(ii) If p>2, a<pb, and € =0o0r 1, then

p° P pP® = (1-8) 30 (-1)*"¥a- pt, (p-1)b - ati-1)pp? PP Ip!
i

- S apis1, (p-1)b-a+)gf PP TP igpt
1

1
(where, by abuse of notation, B P° = P° and p P° = pP%),

While the two forms of the Adem relations given in Theorem 4.7 and the
corollary are completely equivalent, they work out quite differently in practice.
The relations of Theorem 4.7 apply to positive complexes, in homology, with
a,b 2 0; but a,b>0 in Theorem 4.7 corresponds to a,b < 0 in the corollary,
which is designed for use in cohomology with a,b > 0., For this reason, the Dyer-
Lashof algebra [ 17], which operates on the homology of infinite loop spaces, is a

very different algebraic object than the classical Steenrod algebra.
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6. Cup-i products, Browder operations, and higher Bocksteins.

We here discuss ui-products and certain homology operations of two
variables, which were first studied by Browder in [4]; these operations occur in
the presence of a un-product and the absence of a unH—product and are central
to the study of the homology of (n+1)-fold loop spaces. We shall also obtain a
very useful result, Proposition 6.8, on higher Bockstein operations. In section
10, we shall show that this result suffices to give a complete computation of the
mod p cohomology Bockstein spectral sequence of K(m,n) for any Abelian group
7 and any prime p.

Throughout this section, A is a commutative ring, w is the cyclic group of
order 2 with generator &, and W is the canonical Arw-free resolutionof A. Let

Ai = o+ (--1)1 ¢ Amw, so that d(ei) = Aie. for i21. If (K,8)e &(mn,A), then

i-1

we may assume that the restriction of 6 to eo® KQ®K agrees with the given
product on K by (i) of Definition 2. 1.

Definition 6.1, Let (K,8)¢ £ {(w,n,A) andlet xe¢ Kq and y € Kr' For
%i(iﬂ)

0 £i<n, define x  y=(-1) G(ei®x®y). Then Wy is the product on K
1

and if i > 0, then Vi:K®K —> K is a chain homotopy of degree i from Vi

i-1
to (-1) v, ;- @ ; that is,

(1) ey y) = DGy + ()T waly) Fx g v+ (DT 0w

If A=2Z d K i 1 h P =D =
5 and X ¢ q is a cycle, then i+q{x} i{x} {Xui x},
which, in cohomology, was Steenrod's first definition [25] of the squares. We now

define the Browder operations for (K,0) ¢ € (m, n,A).

Definition 6.2. Let (K,8)¢ ¢ {(m,n,A), n<oo, and let x ¢ Hq(K) and
y € Hr(K) Observe that if a and b are representative cycles for x and y, then

. . (n) 2
A
n+len®a®b is a cycle in W'/ @® K" whose homology class An+1en®x®y

depends only on x and y. Define )\n(x, v)e H {K) by

q+rin
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A (x,y) = (-1)nq+16*(An+len®x® y). Note that we have chosen not to pass to

‘& x?,

A

equivariant homology; of course, we can do so, and, in W(nL
1A e ®a®b= (-1 ®a®b - (-1)7T @b®a.
n+l n n n

ngin +~1—n(n+1)

2 ntqr
(ag, b-(-1)"

Thus kn(x, y} is represented by (-1) b% al.

The following proposition contains many of the elementary properties of

the )\n; its proof is immediate from the definition,

Proposition 6.3, Let (K,9)e g’(w,n,A), n < oo, and consider

K Hq(K) X H_(K) ——> Hq+r+n(K).

. . . . R K
(1) )xn induces a homomorphism }xn. Hq(K) ® Hr(K) Hq+r+n( )

(ii) If f:K —> K' is a morphism in {(w,n,A), then xn(f*® £,)= £,
(iii) If © 1is the restriction to W(n)® K2 of 6': W(n+l)® KZ —> K, then )\nz 4]
{iv) If n =0, then )\O(x,y) = xy - (-l)qryx

(v) If (K,0) is unital and the restriction of 6 to W(n)®(e®K +K®e) is
homotopic to €® 8, # the product, then kn(x, e}=0= )\n(e, ¥).

(_l)qr+1 +n(q+r+l)

N

(vi) )\n(x, y) = v,x) and, if 2= 0 in A, )\n(x, x)=0

A

(Note that the first part implies an(x,x) =0 if n+q is even,)

The ?\n satisfy the following analog of the external Cartan formula.

Proposition 6.4. Let (K,8) and (L,0'}) bein {£(mn,A), n <o and

A a field, Let x e Hq(K)’ x' e Hr(K), y e HS(L) and y'e Ht(L)' Then
(s+n) (r+t+n))\n(

A (x®y, x'®y) = (1) ax @ (v, y') +(-1)° x,x)®y'y,

Proof. Let a,a’',b,b' represent x,x',y,y' respectively. Let

n{q+s)+l »

<D

¢ =(-1) (a len®a®b®a'®b’), so that ¢ represents )\n(x®y,x'® v').

n+
By (1) of Definition 1. 2,
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n X ~

z eJ.@aJe j in W, and the definition of & shows that
! n-

j=0

<

A~
o

~—
1]

(_1)rs+n(1+r+s)-j(q+r)e(ej Ra®a")® e'(o[jen_j® b® b')
(-l)rs+n(r+s) - j(q+r)9(aej® a®a")® e'(afj+1en_j® b®b')

Let 6= S (—1)rs+n(r+s)_(j+1)(q+r)9(ej®a®a')®6'(o[je

. Qb®0b'). Then
j=1 !

ntl
a straightforward calculation demonstrates that

r(s+n)+sn+n

c+de) = (-1) 9(e0®a®a')®6'(An en®b®b‘)

+1

rin)+gnin +1

+ (-1 e ®a20a)Q0(d" e By®y) .

o nt+l

n+l

Since L is homotopy commutative for n > 0, 08'(a eo®b®b') represents

t
(-1)S y'y for any n, and the result follows.
We next prove that the )\n commute with suspension.

Proposition 6.5. Let (K',8') ¢ ¢ (m,ntl,A) and (K",8") e ¢(m, n,A).

Let K be a A-complex and let £:K' —> K and gi:K—> K" be morphisms of
complexes such that gf = 0, Define

(n+1) 2 =—=(n+1)

QiKY +W 2

(KO K rw™gx?

b

= W

—(n+1

) L win) wr(ntl)
where W =W +Aen+1 (aen_*_1 ¢ W

). Suppose given a w-morphism
~
0: K —> K such that the following diagram is commutative:

W(n+1)®K,®K, 1Qi®f 1Re® ¢

i’( W(n)®Kn® K

el e 6"
K f g

~

> K"

Let x,ye Ker f,. Then O')\.n+1(x,y) = )xn((rx, oy) e Coker g,.
Proof. Let a'e K"l and b'e K'r represent x and y respectively. Let

a=1f(a') and b =f(b') and choose uc¢ K and v e Kr such that d(u) = a

qtl +1
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and d{v)=b. Define c ¢ K by

c=(-1)% e ®udv - (-1)m+qen+1®a‘§9V - (-1)r(q+l)en+1®b®u'

ntl

Then a straightforward calculation demonstrates that

dlc) = en+1®a®b+(-l)n+qren+1®b®a= (-1)"a ®a®b

n+2%n+1

(ntl)g+1

Thus (-1) f0'(A ®a'®@b') = (-1)(“+1)(q+1)de(c) and

n+2en+L

+1)(g+l +1)+1

(-nEE o) = P oua e @ g(0)@ 5(v)),
ntl n

by our commutative diagram, and this proves the result.

The analog for the Browder operations of the Adem relations is the follow-
ing Jacobi identity: let x ¢ Hq(K), y e Hr(L)’ and z e HS(K); then, under appro-
priate hypotheses,

(qtn)(s+n) (rin)(gtn)

(-1) MG (yp2) + (-1) (v x (2, %))

() G ) = o,

and, if 3=0in A and gin is odd, )\n(x, xn(x, x)}= 0. We omit the proof as an
easier geometric argument can be obtained for the homology of (n+1)-fold loop
spaces, This jdentity, and the identity of (vi) of Proposition 6. 3, lead to a notion
of Xn-algebra which generalizes that of Lie algebra (or Xo~algebra). There is
also a notion of restricted }\n-algebra which is important for the applications. In
the case A = ZZ’ the restriction is already present in our algebraic context; it is
the last Steenrod operation for an object {K,8)e ¢ (2,n). The following addendum

to Proposition 2.3 gives some properties of this operation that are needed in the

study of {n+1}-fold loop spaces.

Proposition 6.5. Let (K,8)e¢ £(2,n). Let gn =P :Hq(K) —>H (K).

gin 2q+n

Then

(i) §.(x+y) = € (x) + € (y) +\ (x,y), and
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{(ii) 5§n(x) = (q+n-l)Pq {x) + Kn(x, px) if (K,8} is reduced mod 2

n-1

2
Proof. For (i), if a and b represent x and vy, then, in K,

(a.+b)2 = a2 + b2 + An ab, and the error term A len® a@®b yields the stated

+1 +

deviation from additivity of én. Part (ii) follows from a glance at the proof of
(v) of Proposition 2, 3.

We now relate the )\n to the Bockstein operations on H(K) when
(K,8)e¢ C(mn, Zp) is reduced mod p. In contrast to the Steenrod operations,
the higher Bocksteins are all of interest.

Proposition6.7. Let (K,8)¢ ¢{mn, Zp) be reduced mod p. Let

x,y ¢ H(K), deg(x) = q. Assume that ﬁr(x) and ﬁr(y) are defined, Then
ﬁr)\n(x, y) is defined and, modulo indeterminacy,

By = A (B xy) + (- (x,8_y).

Proof. Let (K,0)= (K® zp,’é@ Z ). Let a,bec K be such that their
mod p reductions ’é’,g ¢ K represent x and y, We may assume that d{a) = pra’
and d{(b) = prb'; the mod p reduction a' and b' of a'andb' represent 5r(x)
and ﬁr(y). In W(n)®§2, d(An

e ®a®b)= (-l)nprAn+ en®(a'®b+(—1)qa® b').

+1 1

By reduction mod p and a check of signs, this implies the result.

Surprisingly, the following fundamental result appears not to be in the
literature, although it is presumably well-known. It allows complete calculation
of the mod p homology Bockstein spectral sequence of QX = Lim Q"s™X for any
space X and, as we shall show later, the mod p cohomology Bockstein spectral
sequence of K(w,n). Together with the previous result, it also suffices for the

computation of the mod p homology Bockstein spectral sequence of QnSnX, n21.

Proposition 6.8, Let K be a Z-graded associative differential ring

which is flat as a Z-module, Let K have a ul—product such that

deg aat.ﬁ d(b) + ab - (~1)

(a) d(a v b) =.d(a) Ul b - (_1) dega degbba
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and, for case (ii), such that the Hirsch formula (b) holds

(b) abu, ¢ = (-1)degaa(bu1 c) +(_1)degbdegc(

\ ay c)b .

Let ﬁr denote the r-th mod p Bockstein on H(K® Zp), Bl = B, Let

ye H (K® Zp) and assume that ﬁr_l(y) is defined, r 22. Then Br(yp) is de-

2q
fined and, modulo indeterminacy,

2

(1) If p=2 and r=2, p(y’)= 5(Y)Y+P ﬁ(y)

(i) If p>2 and r=2, ﬁz(yp) = p-l g S ir (Bly -1 oaiy)yPTh
J:
(i) If p22 and r23, B (y) =p__ (y)y"" 1

Proof, Let be qu be such that its mod p reduction b represents vy.
We may assume that d(b) = pr_la, and then a is a cycle whose mod p reduction

a represents ﬁr_l(y). Clearly we have
amPb) = pr-libl-labp-l, and
i=1

aabP iy by = Pt o P moa ptY, 2<i<p.

Therefore d(bp + pr-1 i abp_l'\-'l bl_l) = prabp-l mod Pz w2 .

If r>3, then 2r-2> r and part (iii) follows. Thus let r = 2; we must now take

p-i bl_l).

into account the terms arising from d(b) = pa in d(ab |

If p=2, then

d(b2 +2au1 b) = 43.b+4a\.41 a.

Since the mod 2 reduction of aw a represents quﬁ(y), this proves (i), Thus

assume that p > 2. Then

i- -1 2
Py P ﬁ: abp b 1) = pzabp + pzc +pc', where
¢ "% i abJ 1abp - bla1 and c' = E abP™! v bl Lapiti-l .
i= 1<j<i<p

By the Hirsch formula, and a separate reindexing of the two resulting sums, we

find that
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- B il -
c= § [(ab ™) lul b HapP ™ - apP Han' Y b1
2<j<i<p

. il 1
Therefore if e = E abP lvl (abl J v b’ ), then
2Lj<ifp
s . 21 i-iol
d(e) = -c + _—é abP 1u1 (ab' 2 il ) modp.
2<j<igp

Comparing d(e) to c', we easily find that

P .
a(pP +p2 abPly

. ) 2 . i
L pil + pze) = paabp - P ﬁ: (i-l)aubp lul ab’
i=2 i=2

= pzabp-1 + pzi j(abp-‘j-1 v abj_1 - abj-1 v abp-j-l) mod p3
i=1
By Definition 6.2 , this implies (ii) and so completes the proof.

Of course, the terms involving )\l in (ii) are zero if K admits a
uz-product. The general result is needed for second loop spaces. The Hirsch
formula is valid for the cochains of a space [8,16], for the chains of a second
loop space [10], and for the dual of the bar construction of a cocommutative Hopf

algebra [16]. In connection with this formula, we make the following remarks.

Remarks 6.9. Let K be an associative differential Zp-algebra, p > 2, with a

ul-product which satisfies the Hirsch formula. Define

< >p:H25_1(K) ~ HZsp-Z(K) as follows. Let 2, reF)rle:sent X € HZs-l(K) and
define—:l a, =il a, v 2 for 2<i<p. Then d(ai) =§: ajai-j and

3= F:Zl\ ajap-j is a cycle. A computation demonstratJes that if {ai | 1<i<p}

is arJ1;r set of elements of K such that a'1 represents x and

d(a]!.) = aJ! ai_j for 2<i<p, then 3' = ;&:i a3 all3'j is homologous to 2. Thus the

class of & depends only on x, and we define <x>P = {2}. In the applications, it
is often the case that if (K, 8) ¢ ¢&(p,p-2), then <x>P = -ﬁPs(x). Kraines [11]

has proven this result for the cohomology of spaces, where it reads
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<x>P = -ﬁPs(x) for x ¢ st+1

(K), and Kochman [10] has proven it for the homo-
logy of iterated loop spaces. A general proof within our algebraic context should

be possible, but appears to be difficult,

7. The category of simplicial A-modules

We here develop some machinery that will allow us to apply the theory of
the previous sections to a large simplicial category [9A . We shall specialize
to specific categories of interest in the next section. We assume familiarity with
the basic definitions of the theory of simplicial objects and of acyclic models
(see, e.g., [15,§1,2,28,29]). Let A be a commutative ring, and let a, Cﬂ-—
and 10_. denote the categories of (ungraded) A-modules, positively graded
A-complexes, and simplicial A-modules. Let C: /£—> A be the normalized
chain complex functor (for K¢ /d , C{K) is the quotient of K, regarded as a
chain complex with d = 2 (-l)idi, by the subcomplex generated by the degenerate
simplices), Define H,(K) = H(C(K)) and H (K) = H(C¥(K)), where
C*(K) = HomA(C(K),A) is given the differential &(f}(k) = (-1)q+1f(dk) for

(K). The following key lemma is based on ideas of

c4
fe (K) and ke Cq+1

Dold [ 5 1.
Lemma 7.1. Let 7 be a subgroup of Er and let W be a Arn-free
resolution of A such that Wo = Aw with Am-generator e, Let

Kl’ ooy Kr ¢ J& ; then there exists a morphism of A-complexes

X, X
CIWOC(K F... 8K ) —> WROC(K,)®... ®C(K )

1

which is natural int he Ki and satisfies the following properties:
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(i) For o ¢ 7w, the following diagram is commutatives

W®GC(K, X ... X K ) ———> WO C(K)® ... ®C(K )

lg v

(]
W®C(Ko(1) Xeeo X Ko’(r))__> W®C(KU(1))® te ®C(K0"(r))'

(i) ® is the identity homomorphism on W® CO(K1

X oo XK ).
(iii) <I>(eo®kl® e ®kr) = eo® g(kl® ®kr) if ki € Ki is a j-simplex,

where é:C(Kl X ... X Kr) —3 C(K1)® - ®C(Kr) is the Alexander-Whitney
map.

(iv) ®(WOC(K X...XxK))C > WOCK)®...®8C(K )], .
) YKL r

Moreover, any two such @ are naturally equivariantly homotopic
Proof. Since (K X L)j = Kj® Lj , formulas (ii) and (iii) make sense,

Write Aj = C (K

X... X = v .o
LS Kr) and Bj [C(K1)® ® C(Kr)]_) We construct

¢ on Wi®Aj by induction on i and for fixed i by induction on j. Formula (ii)
defines @ for j=0 andall i and formulas (i) and (iii) define & for i =0 and
all j, Thus let i21 and j2>1 and assume that & is defined for i'<1i and for
the given i and j'< j. Choose a An-basis {wk} for Wi. It suffices to
define @ on w®=x for w ¢ {Wk} and x e Aj’ since ® can then be uniquely
extended to all of wi®Aj by (i), Let AA[j] denote the free simplicial
A-module generated by the standard simplicial j-simplex [15,p.14]. Then the
functor w@ Aj is represented by the r-fold Cartesian product AA{j]r, and

we® B(AA[j]r) is acyclic. Therefore ®(w® Aj ®...8 Aj) can be defined by
choosing a chain whose boundary is @dw® Aj ®...8 AJ,), and ® can be carried
over to arbitrary W®k1 R... ®kr by representability, Now (i), (ii), and (iii) are
clearly satisfied and (iv) follows from the fact that Ck(AA[j]) =0 for k>j. The

proof that ® is unique up to natural equivariant homotopy is equally simple,
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Remarks 7,2. Define W1 W® C(K1)® L ® C(Kr) - W®C(K1 X ... X Kr) by
T=1®1n where 1 :C(K1)® ces ®C(Kr) — c(K1 X ... X Kr) is the shuffle map.
Since 71, unlike £, is commutative, ¥ is equivariant, By an easy acyclic
models proof, ¥ and ¥® are equivariantly homotopic to the respective identity
maps.

We shall only be interested in the case XK, = ... = Kr; here

1
W C(Kr) — WQ® C(K)r is a natural morphism of Aw-complexes, The
general case was required in the proof in order to have the representability of the
functors Aj. Starting with objects of the following category sa , we shall use

& to obtain diagonal approximations and so to pass to the category

Plr,0,A) C L (m, 0,A) defined in Definitions 2, 1.

Definitions 7.3, Let B denote the following category. The objects of

A are pairs (K,D) where K¢ Ji(l and D:K —» KX K is a morphism.in .
such that (DX 1) = (1 XD)D and tD =D, where t{(x®y) = y&x. The morphisms
f:(K,D} — (K', DY) in [910, are those morphisms ftK—> K' in L such that
(£X £)D = D,

Each Ke dJ admits the natural diagonal D(k) = k®k, and ,{(L is there~-
by embedded as a full subcategory of e, However, an object K« J& may
admit other interesting diagonals, For example, if K is a simplicial cocom-
mutative coassociative A-coalgebra, then the coproduct Y !K—=>KXK isa
permissible diagonal; that is, (K, ¢ ) e [ . The following remarks will be of

use in the study of relative and reduced cohomology.

Remarks 7.4. (i) I L CXK in 4, define H,(X,L)= H(C(K/L)) and

sk B
H (K,L) = H(C (K/L)). If (K,D) el and D(L) is contained in LXK + KX L,
then K/L admits the diagonal D induced from the composite

D X
K >K X K ——T K/L X K/L, where w:K—> K/L is the projection, and

then m is a morphism in J 47/ P



- 194 -

(ii) Let X = AAfO] ¢ S ;5 thus ?\l.n =A for n>0, each di and s, is the identity,
and C(;'\) = CO(X) = A, Give A the natural diagonal., We say that {K,D)} ¢ &
is unital if we are given a monomorphism v :;{ —> K in M and an epimorphism
6:K—>K in ,ja; such that & =1 and (X 1)D = (1 XE )D (where
AXK=K=K X'}'\.). If (K,D) is unital and IK = Ker €, then K = V(K)@ IK and
for ke IK, D(k) = k® v(1) + v(1)® k + D(k), where D(k)e¢ IK X IK, Clearly,
(1K, D) is isomorphic to (K/V(K),B) in 90

If (K,D)e 90 , then C*(K) is an associative differential A-algebra, with
cup product defined as the composite

% #
1) w:c RO (K L [c(K)® C(K)]" 2> c¥ (& x K) 22— c¥(k).

Here o is the natural map, o(x@ v}{k®1 ) = (_l)degydegk

x(k)y(t ), and £ is
the Alexander-Whitney map. If (K,D} is unital, then C(K) is unital (via v*)
and augmented (via g:z).

We now define a functor I':#@ —> F(m, w,A) and then show how to use

T to apply our general theory to H (K) for (K,D) e M& in the case A = Zp'

Definitions 7.5. Let (K,D) ¢ 90 and write D for the iterated diagonal

K—>K', Let nC Zr and let W be a Arn-free resolution of A with Wo = Am,
Define A:W@® C(K) —> C(K)r to be the composite
D @

(2) AW® C(K)——L@w—> W® C(K') —> W®C(K)er%> c(K)®

% r r, ¥
Let a:C {K) —> [C(K)'] be the natural map and define a Awm-morphism

s r *
0:WRC (K) —> C {K) by the formula

d

(3)  alw®x)(k) = (-1)"° BV B ()(A(w®K)), we W, x ¢ CHK)T, ke C(K).
Since © may be defined for =# = Zr and then factored through j:1W —>V as in
Definition 2.1, and the resulting composite is Aw-homotopic to the original & de-
fined in terms of W, © satisfies condition (ii) of Definition 2,1. By Lemma 7.1,

formula (3) specializes to give

s sk %
(4) 6(e0®x) =D gua(x) for any x ¢ C (K)*, and
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(5) ow@® x) = e(W)D*a'(x) if xe COUK)T and we W,

By (1) and (4), © satisfies condition (i} of Definition 2.1, Since 6 is natural on
morphisms in B0 | we thus obtain a contravariant functor I': P —> £ (m, 00, A)
by letting T'(K,D) = (C*(K), 0) on objects and I'(f) = C*{f) on morphisms., By (5),
if (K,D) is unital in ©¥0 then I'(K,D) is unitalin £ (m, c0,A). IfA = Zp’ T is
cyclic of order p, and (K,D) = (ﬁ@ Zp,f)@ Zp) where ﬁ is a Z-free simplicial
Z-module, we agree to choose 0 for K to be the mod p reduction of 0 for f{’ H
then I'(K,D) is reduced mod p {since C(%') is Z-free and therefore C*(ﬁ) is
Z-flat, as required by Definition 2.1).

Observe that, by Definition 6.1, we now have ui-products in C*(K) for
any (K,D) e B0 . When A = Zp’ the results of Proposition 2,3 will clearly apply
to the Steenrod operations P® defined on the cohomology of objects (XK,D) e 8o. |
If (K,D) and (L,D') are objects of 0., then KX L admits the diagonal
D= (1 XtX 1}DXD'); if D and D' are the natural diagonals, then so is g Thus

(C*(K X L), 6) is defined in ¥ (m, 00,A). The following lemma compares
(C*(K X 1.),0) to (C*(K) ® C*(L), ®) and will imply the applicability of the ex-
ternal Cartan formula to H*{K X L) when A = Zp.

Lemma 7.6 . For any objects (K,D) and (L,D') in BQ , the following

diagram is Aw-homotopy commutative

wec (kx L)" o cHxx L)
18 (&5)* l 1Q (Y7 . ¢* l n*
w®[C" (k) ® c¥(L))F c*my®@ct(L)

#*
That is, 7 and £¥ are morphisms in the category & (m, o0,A).
Fad
Proof. By the definitions of 8 and 6= (6® 0)(1® TR 1)}{(¢ ® U}, it suffices

to show that the following diagram is Aw-homotopy commutative:
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A=(ER1)H1QD)

W ®C(K X L) C(r x L)"
1@n| [1®¢ | |e”
W ® C(K)® C(L) UARANI@TRNWLO®1® 1) > [C(K)@C(L)]r

Since (1®D@1®DN(I1Q@TR WO 1R ={1QTR®1Ny®1®1){1®DBD), if
welet #=ER®1)F andlet u: K'x LT —» (KX L) be the evident shuffle, so that

~
D = u(D X D'), then this diagram becomes

wRC(rx L) —B2XD we ok xLY) 1885 w@c([x x LIF) £ ocmx L)t

1®q| 1Q¢ 1®n| [1®¢ ||t

W®C(K)®C(L}ﬁ3@g> WRC(KT)®C(LT) U(ERFIQ TR (YR 1P1) [C(X® C(L )

The left-hand square commutes by the naturality of n and £. Since the diagonals
are not involved inthe right-hand square, we can prove that it commutes up to

r
Aw-homotopy by an acyclic models argument, with K' and L replaced by

K )<...>(Kr and L

1 X,oe X Lr so as to have domains given by representable

1
functors for fixed w e W, On zero simplices, the diagram commutes for any

we W andon e ¢ W, as the simplices vary, the diagram is A-homotopy com-
mutative by a standard acyclic models argument. This starts the inductive con-

struction of the desired homotopies, and the proof is completed precisely as was

the proof of Lemma T.1.

Corollary 7.7, If (K,D)e P00 | then I'(K,D) is a Cartan object of
g (v, 0,A),

Proof. Since D:K—> KX K is commutative and associative, itis a
morphism in {9 . Therefore the cup product (1) is a morphism in (§ (w, co, ),

as required,
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Lemma 7.8. If (K,D)e QQL , A= Zp’ then I'(K,D) is an Adem object

of & (p, o).

Proof. In the notations of Definition 4.1 (with Yo = ZPZ , it suffices to

)
o2

prove that the following diagram is T-homotopy commutative:

2 w®l . 2
W ewW, P& c* (k)P

v & c*(Kk)P o
1® u \ b

C (K)

p ) /
p_1®6 w1®cﬂ(1<)p °

All maps © are as defined in Definition 7.5; by dualization, it suffices to prove

that the following diagram is T-homotopy commutative

WOl y®ok)—2B s c(r)P

P
W, ® W ® C(K)

T®1 aP

1RQ A

w2p® W, ® C(K) ——=> W2p®C(K)p v

—— W, ®C(x))°

2 2
Let §=(E®1)® and define o = f(w® l):W QW p® C(Kp ) —> C(K)P . Since

= g(1®D), A(w®1) = o(1®1Q D), D:C(K) —> C(KP ). By the naturality of @,

the following diagram is commutative:

W1®WZP®C(K)T—®P—> wg’@wl@c(xp)m W2p®C(K)p —-U—->(W2®C(K))p

1®1®D 1R1®D 1QDP (1®D)P
2
W1®W§®C(Kp )% WP®W1®C(KP RN W2p®C(Kp)p L>(W2®C(Kp))p

2 2
Let B = gPUu(1x@)(Tx1): W, X sz X C(KP ) —> C(K)P . By the diagram above,

1
APU(1 X A)(T X 1) = B(1 X 1 X D). Thus it suffices to prove that @ and B are

T-homotopic., Since @ and B do not involve the diagonal, this can easily be shown

by acyclic models precisely as in our previous proofs.,
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The following theorem summarizes properties of the Steenrod operations
that are valid for arbitrary objects of the category Pl , A= Zp. Of course, we
use the notations of section 5 since we are dealing with cohomology.

Theorem 7.9, Let (¥,D)e¢ IN]eo , A= Zp. Then there exist natural
homomorphisms p° and, if p> 2, ﬁPS defined on each Hq(K); degree (P%) = s
if p=2 and deg(ﬁEPs) = 28(p-1)+€ , £€=0or 1, if p> 2. These cohomology

operations on oo satisfy the properties

(1) BePs 0 if s<0 orif p=2 (€=0)and s>qorif p> 2 and 2s+€ > q.

(i1) P°(x) = x% ifp=2ands=q; P(x)=x" if p>2 and 2s=gq
-~ ~ -~ -
(iii) If (X,D) = (K@ Zp,D@ zp), where K is Z-free, then BP° ) = sP® ifp=2
and ;SPS is the composition of B and P° if p>2.
. P . s . » #
(iv) P°= S P'®P°" and pP°= S (BP'@P° '+ P'®BP°Y) on H (KX L);
b
the internal Cartan formula is satisfied in H (K)
{v) I f1K'—> K and g:K—> K" are morphisms in 80 such that gf = 0,
: -1
then o-,StPS = (-l)E 5£Pscr , where O':Hq(K") — p? (K') is the suspension
£ B3 %k
associated with C (K") —»> C (K) — C (K').
. €S € €8
(vi) If LE K and D(L)C€ LXL, then 6P = (-1)pP & where
L q+l . . .
§:HYL)—> H* (K, L) is the connecting homomorphism,
(vii) The ﬁEPS satisfy the Adem relations as stated in Corollary 5.1,

Proof. For (i), we must prove that ﬁePs =0 for s<0 (the rest is the
convention e, = 0 for i< 0); by formulas (5.1} and (5.2}, it suffices to show that
Di(x) =0 for i>(p-1)q, deg (x) = q. By {(3) of Definition 7.5, it suffices to show
that A(ei®k) =0 for ke Cpq 1(K) Now A ={E®1)%{1®D) and, by (iv) of

Lemma 7.1, if i> (p-1)q, then

o(e, ®D(K) ¢ S° W__ ®[CK)], C Ker (@ 1).
i i$pq  Pa j

(ii) and (iii) follow from Proposition 2. 3; (iv) follows from Corollary 2.7,

Lemma 7.6, and Corollary 7.7; (v) and (vi) follow from Theorem 3.3, noting for
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(vi) that the suspension associated with C*(K/L) — C*(K) — C*(L) is the
inverse additive relation to the connecting homomorphism §; ({vii) follows from
Theorem 4.7 and Lemma 7.8.

By Theorem 3.4, the Kudo transgression theorem applies to appropriate
spectral sequences involving objects of na and, under the hypotheses of {iii} of
the theorem, Proposition 6.8 applies to compute the higher Bocksteins on p-th
powers of elements of H*(K), (K,D) ¢ ©0.. In the next section, we shall show
how to compoute P° for arbitrary objects (K, D) ¢ B0 and shall give non-trivial

examples to show that p° #1 in general.

8. Simplicial sets and simplicial restricted Lie algebras

We shall here obtain the Steenrod operations on the cohomology of

topological spaces, simplicial sets, and simplicial restricted Lie algebras, and
: o %* .

shall consider the evaluation of P~ on H (K) for any (K,D) e i , A = Zp’

Let J denote the category of simplicial sets. For K« 4 ,let K denote
the free simplicial Abelian group generated by K. Let A be a commutative ring

~
and define a functor A: Z — B0 by letting A(K) = K@ A with its natural dia-
gonal D; here Bl is as defined in Definition 7.3 and D is induced from the
diagonal k—> (k,k) on K. Composing A with I' of Definition 7.5, we obtain
a functor I'A: 3 — ¥ (v, 0,A) for any ™ C z - Let J denote the category
of topological spaces and let S: T — A‘ be the total singular complex functor.
Then TAS: J —> P(m, o,A) is defined. If (K,L) is a simplicial pair, define
A(K,L)= K/L@®A., Then T'A is defined on the category 32 of simplicial pairs
and T"AS is defined onthe catetogy TZ of topological pairs. Since the normaliz-
ed cochains with coefficients in A of a simplicial pair (K, L) and of a topological
ES o A

pair (X,Y) may be defined as C (K,L}=C (K/L®A) and

* *
C (X,Y) = C (SX,SY), the results of the previous section apply to the cohomology
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of simplicial and topological pairs.
For the remainder of this section, we take A = Zp and we let w be cyclic
of order p. Via TA: AZ — y(p, ), we have Steenrod operations Ps, s >0,
b )X b
on H (K, L) forall (K,L)e 4, henceon H (X,Y) forall (X,¥)e 72. of
course, if p = 2, P° is usually dencted by qu. Theorem 7,9 gives all of the
standard properties of the p° except P® = 1. We now show that P° = 1 follows

]
from the previously obtained properties of the P,

1,
Proposition 8. 1. P° is the identity operation and, if p =2, P is the

Bockstein operation on the cohomology of simplicial (or topological) pairs,

1

Proof, Since {3?0 = P" if p = 2, it suffices to prove that P° =1, If

(K, L) ¢ "JZ’ L non-empty, then Hx(K, L) = H'F(K/L, P), where P 1is a point

~
complex. Thus it suffices to prove that Po(x) =x for xe¢ Hn(K) = Hn(K, P),
since the result for L empty will follow trivially., If K(n) is the n-skeleton of

K, then ﬁn(K) — ﬁn(K(n)) is a monomorphism, and we may thus assume that

n)

K= K( . Then, by the Hopf Theorem [24, p, 431], there exists f1K —> s such

~

%
that f (in) = %, where i:x ¢ ™(s™) is the fundamental class of the simplicial

£ £

n-sphere, It therefore suffices to prove that Po(in) = i:l . Now for any K, the

suspension isomorphism s*, I—IqH(SK) —_— ?Iq(K) may be defined as the composite

+1
HqH(SK) — (CK, K) —> %K), where CK is the simplicial cone of K,
% s K, % 2
hence S commutes with the P . Since S (in) = i;_l for n>1 and

* % % o

Po(io) = (iO)p =i (where io generates fi(s%) = Zp)' this proves the result,
We now use the fact that P° = 1 on the cohomology of simplicial sets to

show how to compute P° on H (K) for any object (K,D) e B . In fact, we have

the following addendum to Lemma 7,1 when W is the canonical pr-free resolu-

tionof Z .,
p

Lemma 8.2, Let Ki € ,X(L , 1 <i<p, and let ki be a g-simplex of Ki'

Then, for any ®:WQ C(K1 X... XK

p) —> WQ C(K1)® e C(Kp) which satisfies
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satisfies the conclusions of Liemma 7.1,

mg -1
E®1)2(e  )BK B ... 8k)= (-1) vi-9) K ®... 8k,

i £,
where v(-q)=1 if p=2 and wv(-2j+&)=(-1(m!) , €=0orl, if p> 2,

Proof. Let Aq be the fundamental q-simplex of AA[q], Since Aq is a
Zp-—basis for Cq(AA[q}), we clearly have that

(i) ®Aq®... ®Aq) = yeO®Aq®... ®Aq mod Ker€®1), ve z m

@(eq(p-l)

By the naturality of & (or by the proof of Lemma 7.1), (i) implies

(ii) (€x1)%(e p-l)®k1®"’ ®kp) = €(\/)k1® ces ®kp for any ki e (K.) .

1 i'q

To evaluate €&(y), let iq € Cq(Sq) represent the fundamental class of Hq(Sq); we
q _ 2 . . . G .k Gy

may take S- = A[g]/Alq] so that i is a basis for Cq(S } and 1q e CH8™) is

well-defined. By (ii) and D(iq) = iq@ e ® iq, Definition 7.5 gives

3 - N . *p Pyt mq
(1) e, \®F ) = eli DE®V@(e @1 )] =(-1)TE).

ES

_>:< - _>}< '*p L
){lq} =i o v(-q)e(eq(p_l) @G ") = ig * Thus

o,.%
Since P {i = -q)D
c { q} w-q) iq

a(p-1
(-—l)m':i v(~-q)€(y) = 1 and the result is proven.

Corollary 8.3. Let (K,D) ¢ . Write D(k) = >, k(1)®.. QxP) . cq(xp)
for ke Cq(K), and regard each k(l) as an element of Cq(K). Letx ¢ Cq(K) be
a cocycle., Then P°{x} is represented by that cocycle vy e cHK) such that

y(k) = 2 x(k(l))- e x(k(p)) € Zp for each ke Cq(K) . In particular, if

. s«
D(k) = N{ « KP for each ke K, wke re N = z a' e an‘, then P° =0 on H (K).

Proof. By formulas (5.1) and (5.2), y = v(-q)@(eq(p_1)®xp) represents
p° {x} , and the result follows by an easy computation from Definition 7.5 and
the lemma.

We now give a useful application of the theory for which the Steenrod
operations satisfy the results of Theorem 7.9 and p° = 0. Let J and ¥ denote

the categories of restricted Lie algebras and of primitively generated Hopf algebras
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over Zp' Let F: A —> £ denote the free restricted Lie algebra functor, let
vi X — A denote the universal enveloping algebra functor, and let P:H —4
denote the functor which assigns to He H  its restricted Lie algebra of primitive
elements., By a result of Milnor and Moore [19, Theorem 6.44], PV(L) = L. for
Lel and VPH=H for He? . By Theorems of Witt and Friedrich [9,
Theorems 7 and 9, p.168-170], extended to restricted Lie algebras, if Ke a
and T{K) is the tensor algebra of K, then V{FK}= T(K) in # and FK = PT(K)
in £ . These statements clearly remain valid for the categories YR fx and
4dM of simplicial objects in a . X’ , and H [see 15,Deﬁnition2.1], We shall need
the following algebraic lemma.

Lemma 8. 4. Let L be a restricted Lie algebra and let IV(L) = Ker &,

£:V{(L)—> Zp , be its augmentation ideal, Let

V(L) —> V(L)p = V(L) ®...® V(L) denote the iterated coproduct. Then, for
each x e IV(L), there exists vy e V(L)P such that y(x) = Ny.

Proof. Let mFK-—> L represent L as a quotient of a free restricted
Lie algebra. Then V(w) = V(FK) —> V(L) is an epimorphism of Hopf algebras,
and we may assume that L = FK, Clearly we may also assume that K is a finite
dimensional prmodule. Since T(K) admits a grading under which it is connected,

[19, Proposition 4. 20] implies that the p-th power operation £ is zero on the

sk

augmentation ideal of the dual Hopf algebra T(K) . The cocommutativity of T(K)
implies that, for x ¢ IT(XK), ¢({x) can be written in the form

P sk
(%)= Ny + 2 Zi® e @ z, in T(K)®. By the triviality of £ on IT{K) , each

z; = 0 and the result follows.

We now sketch a definitional framework for the study of homotopy invariants
of simplicial restricted Lie algebras. Define a category sz as follows, The
objects of x{:fz are pairs (L, M) suchthat L e Jgf and M is a restricted Lie

ideal of L and the morphisms f:(L,M)—> (L', M') in sz are morphisms
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f:L.— L' in ,JX such that f{M)C M!, Two such morphisms, f and g, are

said to be Lie homotopic if there exist morphisms of restricted Lie algebras

L — L
hys q g+l

, 0€i< q, such that hi(Mq) C M:l 44 @nd the identities (i) - (iii)

1
of [15, Definition 5,1] are satisfied, Define the homotopy, homology, and coho-

mology groups of (L, M) e (f.}fz by
(1) (L, M) = H(L/M) and
(2)  H,(L,M) = H(IV(L/M)) and HY(L, M) = H (IV(L/M))

The homology and cohomology groups on the right sides of these equations are as
defined at the start of section 7, with L/M and IV(L/M) regarded as simplicial
Zp-modules. The argument of [15, Proposition 5.3] shows that Lie homotopic
morphisms in 4:(2 induce the same morphisms on homotopy, homology, and
cohomology. By [15, Theorem 22.1], w*(L, M) and H*(L, M) are, respectively,
the homotopy groups of L/M and of IV(L/M) regarded as simplicial sets. The
Hurewicz homomorphism h: -n'*(L, M) —> H*(L, M) may thus be defined as the map
induced on homotopy from the inclusion L/M — IV(L/M), Since

IV(L/M) = IV(L)/IV(M), we have natural long exact homotopy, homology, and
cohomology sequences on pairs (L, M) ¢ 1:(2, and h defines a natural trans-
formation of long exact sequences. Note that H*(L, M) is the augmentation ideal
of the Hopf algebra H*(V(L/M)) if H*(V(L/M)) is of finite type., Consider
FAS" = F(gn ® Zp),where s™ is the simplicial n-sphere. It can be proven that
nn(L) is the Zp—module of Lie homotopy equivalence classes of morphisms

FAS" —> L for Le¢ 4 andthat H (FAS") =H (@ st

) is the augmentation
ideal of the free commutative algebra on one primitive generator of degree n.

Our theory immediately yields Steenrod operations on Hm(L, M).

Theorem 8.5, There exist natural homomorphisms P® and ,if p> 2,

ﬁPS defined on H (L, M) for (L,M)e .4:(2. These operations satisfy the con-
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clusions of Theorem 7.9 (except that the hypothesis of {iii} is not satisfied in
general} and, in addition, the operation P° is identically zero,

Proof. We may regard C*(L,M) = C(IV(L/M)) as an object of P&, with
diagonal D= m , the reduced coproduct as defined in Remarks 7, 4(ii). Thus
Theorem 7.9 applies directly, and P° = 0 follows from the previous lemma and
corollary,

In [22], Priddy has given a different definition of H*(L) and H*(L). Let W
be the functor from simplicial Zp-algebras to & defined by Moore [20]. If A

is a simplicial Zp-algebra, then TVO(A) = Zp and V—Vq(A) =A ®... ®AO,

g-1
q>0, as Zp—modules. The face and degeneracy opem tors are as defined in
[15, p.87]. For L« AX , WV(L) is a simplicial cocommutative coalgebra with
coproduct ¢ given by
- ' ] n '
Lp(aq_i@... ®a )= > (aq_1®... ®al )1®(a) ,8...8a!),
. oes - . " X :

where a, ¢ Vi(L) satisfies (ai) z ai® al' . Priddy defines
H,(L) = H,(IWV(L)) and H (L) = H'(IWV(L)), where IWV(L) is regarded as a
simplicial Zp—module. For spectra, Priddy's definition and ours clearly differ

nt+1
)

sk ~ %
only by a shift of degree; with his definition, H (FASn) = H'(S = Z . By

P
Definition 7.3 and Remarks 7.4(ii), (C(IWV(L), ¥ ) ¢ & and therefore Priddy's

H*(L) alos admits Steenrod operations which satisfy the conclusions of Theorem

7.9 (except, in general, for (iii)) and P° = 0.

9. The dual homology operations; Nishida's theorem

For applications to loop spaces and to obtain a result used in the proof of the
Adem relations, we shall discuss the homology operations P: whose duals are the

Steenrod operations on the mod p cohomology of a space X, Of course,

.
b £ b ol

H (X) = H(X) = Homz (H*(X), Zp) and, if H_(X) is of finite type, H

p
s LS
Define B, on H,(X) by P°=(B})"; B, is clearly well-defined if H

*

(X) is of

b
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finite type, and either a direct limit argument or the next proposition imply that

P: is well-defined in general. P*s lowers degrees by s if p = 2 and by 2s(p-1)
if p> 2. Our results on the p° immediately yield the dual results for the P*S.
We shall write the operations P*s on the left; the order of composition in the dual
Adem relations must thus be reversed (that is, H*(X) is a left module over the
opposite algebra of the Steenrod algebra). The following proposition was used in

the proof of Lemma 4.6, Formula (2) of the proof is essentially Steenrod's defini-

tion [30] of the Di .

Proposition 9.1. Let X be a space and let d = &4 ®D):W®T‘_C*(X) —

W®“C*(X)p. Consider d*:H*(w; H*(X)) —> H (m H*(X)p). Let x e HS(X). Then

: k k
(i) If p= 2, d*(er®x) = zk>er+2k-s®P* (x)®@P, (%) .

.. _ k k,_\p
(i1} If p> 2, d*(er®x) = v(s)%:(-i) er+(2pk-s)(p—1)®P* (%)

- 6 () Ws-1) 3 (-1)e ®P, p(xP.

" r+p+{2pk-s){p-1)

where u(2j+E€) = (-1)X(m!)®  and  8(2j+€) =€, &=0or 1.

Proof. We may assume that H_(X) is of finite type. We shall compute
% % * o .p * * . .
d:H(mH X)) = H (m)@H (X) and then dualize. In the notations of
Lemma 1.3, H(X)P= e Z,m®B asam-module, and
p ®, % p * * *
H (m3H (X)) =H, (mM®A @ B. Itfollows that H (v ;H (X)") 2H (7)@A @B .
*__k
We claim first that d (B ) = 0. To see this, we make explicit the isomorphism
* & s
from B to the homology of (W@_ﬂ pr@ B) . For ye B, define
Fe (W® z n®@B)* by
LU
F(w® a1®b) = g(w)y(b) for we W, 0£i<p, be B,
Then y is a cocylce and y —> ¥ induces the desired isomorphism. Define
i — *
v:pr~—> zp by v(1) =1 and v(a') =0, 1<i<p, and define y ¢ (W@pr@B)

#*
for ye B by
?(w®a1®b) = &(w)v(al)y(b) for we W, 0<i<p, be B,
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Clearly ';‘r(w®a'1®b) = FN[w® ai®b]). Therefore

FHwOx) =Y (w®x) = yd (Nw®x) = 0

$e

for we W and x ¢ H_(X) since Nw®x is a boundary in W®H,_(X) (because

dle,) =N and d(TP™? ) = Ne_. in W). This proves that @ (B ) = 0,

2i €2i-1 ©2i+1 2i

ES £ %
We next compute d on Hg(w)®A . Let ye Hq(X) and x ¢ Hpq-i(X)' By

Definition 7.5, we have the formula
(1) D) = 0,(e,®yI() = (1'% €® 1) (yP)(e,®%)
(where the isomorphism @ from the tensor product of duals to the dual of tensor
products has been omitted from the notation).
Let w, be dual to e Then EQ 1)*(yp) = w0®yp and therefore
a*(w_® yP)e,®%) = (-1)'ID, (y)(x).
For any z e Hpq-i(X), the sign in the definition of a gives
(w, ® z)(e, ®x) = (-1 P10,
Comparing these formulas, we see that
(2) dw ®y") = = (-1)'w, ®D,(y)
To compute dﬂ:(wj@ yp) for j> 0, observe thatif p: W —> W = Zp®1rw is the

natural epimorphism, then we have the commutative diagram:

da,
W® H,(X) - e H,k(X)p
¢ ® 11 184 @1
(WR W) ® H,(X) —— (W W) ® H*(X)p
p®1Q1 l i p®1Q1
— 1Q® dx = P
WO W H, (X)) —————> WRWB H/(X)")

(The upper rectangle requires an easy acyclic models argument.)} Dually, a is
. * p P . *

a morphism of H (w)-modules. Now Wj(wo® y )= w ®y" and, in H (m),

iji = wi+j if p=2 or either iorj is even and ngi =0 ifp>2 and iand]j

are odd by formula (1,2), Therefore (2) implies the formulas
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(3) if p=2, W®y‘ z\v {y) and

(4 i p>2, 4 (w,®y) sz i@ Dp(v) = 6+ 2wy By ().

By formulas (5.1) and (5. 2) and a reindexing, (3) and (4) become

k

(5 if p-2, d*(wj® ) = Swi,  ®P ) and
k

(6) it p>2, d(w®y) =v(-g" %<-4>kwj+(q_2k)(p_i)®pkm

-1 K
- 5(+) v kE Ha-2K)(p-1)-1 & PP 1Y)-

We now dualize, d*(H*(v)® H, (X)) < H (m)® A since d (B)=0. For xe HS(X),
we may therefore write

- P
dle ®x)=2] ®tapg @ B 1 Eg () ¢ H (X).

Let ye Hq(X) Using the Kronecker pairing <, >, we have

() <w_ ®yP e @x)> = (-1)Te™

Yy E >
r+s-pg Y qr(x) ‘

Since <Pk(y),x> = <y, P, (x)> (5) implies that if p = 2, then

3

(8) <d (w 8y, e ®x> = <w ®F Uy, e ®@x> = <y, B, Ux)>,

r+s-2q

S~
Thus Eqr(x) =P q(x) if p=2 and, with k = s-q, this implies (i). Now assume

sk

%

that p> 2. By (6), d ( ®yp) has a summand involving w_ only if

Wr+s-pq
q= s-2k(p-1)-&£ , k>0 and €= 0 or 1, hence Eqr(x) = 0 for other values of q.

For g = s-2k{p-1}, (6) gives

P - -1 k+rg k
rH{2pk-s)(p-1) B Y 1 e, ®x> = v(-a) T(-1)TTE<y, Blx) >

By (7) and (9), B (x) = (-0) ™90 'P{(x) if q= s-2k(p-1); since

(-1)™4 v(-q)“1 = y(q) = wv(s), this yields the first sum of (ii). Observe next

that <By,x> = (—1)q+1< ¥, Bx> by the chain and cochain definitions of the

4 deg f+1

Bockstein and the sign convention 6&(f) = (-1} fd used in defining C (X).

Now for q = s-2k(p-1)-1, (6 ) gives
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*® P _ -1, ,\kt+r(q+1)+ k
(10)  <aw 4 ion)(pe) BV h e, @ x> = 8 (r)v(-a)(-1) A<y, BB(x)>
By (7) and (10), Eqr(x} B N (r)P*kﬁ(x} if q = s-2k(p-1)-1; since
5§{r)=0 if r is even and (_1)mqv(_q)-1 = y(q) = v(s-1), this yields the second

sum of (ii) and so completes the proof.

Remark 9.2, The proof above used no properties specific to topological spaces
and so applies to compute
d, = ®4(1®@ D), 1 H (r; H (K)) — H,(r; H(K)P)

£
in terms of PS and ﬁR{S {where BP: is defined by (ﬁP:) = »{SPS if no

Bockstein is present) for arbitrary objects (K,D) ¢ M

We now give a new proof of a result due to Nishida [21], which is essential
to the computation of Steenrod operations in iterated loop spaces., Let
K(Zp’ 1) = E/m where m operates properly on the acyclic space E; by [14,IV 11],
C*(E) = an@ C*(E/w}. Let g¢:E —> E/n be the projection and let f: W — C*{E)
be a T-morphism over Zp. If W= Zp ®wW’ then f induces f: W —> C*(E/v), and

fp 1is homotopicto of, p: W —> W. By Remarks 7.2, if % is the shuffle

map, then we have the following homotopy commutative diagram for any space X:

W C,.X) 12! CE)Q C.(X) — s (E x_X)
1 d l 1®D 1XD
we C*(X)p O C.(E) ®WC*(XP) ———>C(E xwxp)
V@1 D®1 1 Dx 1
W@ W® C,(x)° E®HB n, C(E XE)® C,(xF) —T—s C(EX EX_xP)
lp®1®1 lcr><191 ox 1% 1

e W@ﬂC*(X)P _'IMC*(E/W X E)@wc*(xp) —1 5 c*(E/n X E xﬂxp)

Let f, = (P10 1)*( y® 1)*: H*(n’; H*(X)p) —_— H*(ﬁ) & H*(v ; H*(X)p). The hori-
zontal arrows are homology isomorphisms and we therefore have Steenrod opera-

. s
tions P, on H*('n'; H*(X)), H*(Tf; H*(X)p), and H*('n')® H*('n'; H*(X)p) such that d
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and p, commute with the Pi . The following theorem uses d, and B, to
evaluate the P*s on H*(‘IT; H*(X)p). Our result differs from Nishida's by a sign;
the reason for this is that our formulas {2) and (6) in the proof above differ from
the corresponding formulas in [30, p. 103 and p.119]. We were pedantic about

signs in the preceding proof because of this disagreement. We shall need the

following identity on binomial coefficients in the proof of the theorem.
Lemma 9.3, > (i,a-i)(n-i,i+b-n) = (n, a+b-n) for a >0, b>0, and n> 0.
i
Proof, The result is obvious if b = 0, when i = n gives the only non-zero

summand on the left. Using (c-1,d) + (¢, d-1) = (¢, d), we find that the result for

the triples (a,b-1,n) and {a,b-1,n-1) implies the result for the triple (a,b,n).

Theorem 9.4. Let X be a space, x ¢ Hq(X). Then, in H*(W;H=,<(X)P),

P2
(i) If p=2, P:(er® x%) = S (s-2i, rtq-2s+2i)e ® P(x)°.

i

() 1 p>2, Bie ®xF) = 3 (s-pi,[F]+am-ps+pide 0 g ) OB

r-s+2i

+ 8(r)alq) Z(S-pi—i, [%—1-] +gm-pstpi)e

1

iarP
r+pt2(pi-s)(p-1) ® P, plx)

where a(q) = v(q)—1v(q-1) = —(-1)mqm! and &(2j+¢€) =€, E£=0or 1.

Proof, We assume that s > 0, since the result is trivial for s =0, If r =0,
then e ®x" is in the image of H (EXXP)—> H (Ex XP). In H(ExXP),
P:(eo® xp) = 2 eo® P;i(x)® e ® P;p(x) summed over all p-tuples (ii’ vens ip)
such that > ip = s, The sum of all terms with any ij # ik lies in eo®NH*(X)p
and is thus zero in H*(E X"Xp). Therefore P*S(eo®xp) = 0 unless s = pt, when
Pz(eo®xp) = eo® Pi (x)p, which is in agreement with (i) and (ii}, Recall that, by
Definition 1, 2 and the proof of Lemma 4.6, we have the following relations in

H,(m).

bd

(a) If p=2, F;gi(ej) = (i,j-Zi)ej__i and \,b(er) = z ej®er
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(b) It p>2, Ple) = (i,[i/2]-pile and Yle ) = > 8(r,je. ®e_ .
J r J r-j

j-2i(p-1)

where &(r,j) =1 unless r is even and j is odd, when &{r,j) = 0.
If q=0, then d*(er®x) = er®xp and therefore

P*S(er®xp) = d*(P:( 1®x) = P::(er)®xp;

°r
by (a) and (b), the result holds in this case. We now proceed by induction on g
and for fixed q by induction on r. Thus assume the result for q'< q and for
our fixed q and r'<r. Let z= R*s(er® x) and let z' denote the right side of
the equation to be proven, Write z-2z'= 3 ei@ y; € H*(v;H*(X)p). We shall
first prove that p*(z-z') = eo® {z-2z'); this will imply that y; = 0 forall i>0
since if i is maximal such that Vs # 0, then ei® e0® 1A clearly occurs as a
non-zero summand of p*(z-z'). We shall then prove that v, = 0 by explicit com-
putation and so complete the proof. We give the details separately in the cases

p=2and p> 2,

(i) p= 2. Since plz) = P;:p*(er® xz), we find by {(a), the Cartan formula in

2
H*(Tf)® H*(n’; H,{X)"), and the induction hypothesis on r, that

(c) pu*(z) = P:( JE ej® er—j® xz) = lzj: (i,j-Zi)ej_i® P*S-i(er_j® xz), where
Ps—i

13

2 k, \2
- ' it . p £ 0> 0.
(er_j®x ) Sk (s-i-2k,r-j+q 23+21+2k)er-j-s+i+21@ % (X)7 if j>0

The terms with j=1i> 0 are zero since (i,-i} = 0, Applying the lemma to those
(i,j) suchthat j-i= £>0, with a=1, b= r-2+g-5, and n = s-2k, we see that
(c) reduces to the formula

).

(d) p.*(z) =e, Rz + E (s-2k, r+q-Zs+2k)e1 Re ® P*k(x

K,1>0 r-s+2k- 4L

A glance at the right side of (i) shows that p(z-z') = eo® {z-z'), hence v, = 0 for

i> 0. To compute Yo observe that P° = 1 and Proposition 9. 1 imply

) )
(e) e ®x = d"(er+q® x) + % er+2k® P (x)" .
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P\,,Sd = d*P*S , the Cartan formula on H_(m@ H_(X), and Proposition 9.1

evaluate Pf d,(e . @®x), and the induction hypothesis on q evaluates

r+q

P*S(er-i-2k® Pf:(x)z} for k> 0. Carrying out these computations, we find that

(e) implies the formula

() 2= S (s-f,r+q-zst20)e ®r p (x°

k, £ r-s+2k+21
{_k
+ kgo:l(s-zz ,riqtk-2st2L)e o o ® P, B(x)

2

In principle, (f) must imply (i) directly, but our argument with p shows that we
need only consider those terms involving e with 2(k+L) = s-r. Let t=ktl-s

and ¢ = q-k-{; then these terms become

£ 2

k. sH-k (x)°.

{ -
{g) E (k-t,t+c-2k}e @ P, P, (X)Z + E {cH+f-s,5-21)e ®F, Pd‘s
k>0 o- 1<stt ° 7

By formula {f} of the proof of Theorem 4,7, rephrased as in section 5 and dualized
{with the order of composition reversed under dualization since we are writing the
operations Pj on the left), and by Remarks 4.8, (g) would be zero if £ = s+

were allowed in the second sum; thus (g) reduces to

1/ (s-r
(h) (C+t, 'S'Zt)e0® E::S%(x)z = (q'S: I’)eo ® :P* /2 )(X)Z .

Since (h) is equal to the summand of z' involving e it follows that v, = 0.

(ii) p> 2. For brevity of notation, write d = 2{p-1). As in the case p= 2, we

find by (b) and induction on r that

A

(1) plz)=> 6(r,j)(i,[j/Zl-pi)ej_diQ?Ps'i(er_j®xp) , where, if j> 0,
ij

s-1i Py _ i r-j _ . ko \P
P, (er-j®x ) %(s i-pk, [—5~]+ am ps+p1+pk)er-j+d(pk~s+i)® P, (x)
. : -j+i : k
+ 8(r-j) alq) Z(s-l—pk-i,[r—‘]z—]+qm-pS+p1+pk)er_j+p+d(pk_sm®P* B(x)P

k
The terms with j = di > 0 are zero. By the lemma, applied to those (i,j) such

that j-di=£>0, with a =[£/2], b= E;—E] + gm-s(p-1), and n = s-pk for the
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[rli

first sum and a =[£/2], b = }+ gm-s(p-1), and n = s-pk-1 for the second

sum, (i) reduces to

() bylz)=e ®z+ > 6(r,0)(s-pk,[ Z]+am-pstpk)e, ®e ® B, ()"

kTS0 r+d{pk-s}-4

ko \P
+k§>06(r ,216(r-1)a(q)(s-pk-1, [ ]+qm ps+pk)e Re r4p+d(pk-s)- £ ®P*£3(x)

Now &{r,£)6(r-£) = 8(r)5(r+1,1), and it follows from a glance at {ii) that
}L*(Z-z’) = eo®(z-z‘). Thus y, =0 for i>0. To compute Yo observe that

Proposition 9. 1 implies that

P -1 k k, \p
(k) e ®x" = v(q) d*(er-l—q(p-i)®x) - k% (-1) er+dpk® P, (x)

k k P
+ - P
6(r) a(q) Ek (1) © epidpk D Fx P0x)
Precisely as in the case p = 2, we can compute P: on the right side of (k);

carrying out this computation, we find
(1) == Z(-i)k(s-l [r/2]+gm-ps+pt e ®Pk Pﬁ(x:)p
& ! r+d(pktpl -s} = "% T

- 5(x)a(q) §<-1)k<s-z (x/2]tamepstotle o @B pR) (0P

k
-kgol’l(-i) (s-p2, [x/2]4k(p-1)4am-pstplle .,y 1oy @F P (x)®

_ r+'1 _ me k, .p
ox)a(a) %}J 1) (e-pt-1, [HR] +ilp-t)ramepstptle yo o, (®FL PR ()
+ 8(x)a(a) 37 (1) (e-pt, I H(p-t)sqmepatptle oo @B RS(07 .

Consider the first and third sums, with r+d{pk+pl-s) =0, Let t= ktf-s and

c = g -d{k+2). Then these two sums become
k k
(m) > (1) (ot t4me -pl)e_® B, BN
k
- z (--1)S+t+lZ (t +mc-s,s-pl)e ®P Ps+t E( )p .
I<s+t

Consider the remaining sums of (£), with r+p+d(pk+pf-s) = 0; r is odd, hence

&(r) =1, Let t be as above and let c' = c-4. Then these three sums become
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OREELUDS (-4)(k-t, ¢ +mec'-pk-1)e_ ® BB} (x)P

s+t+d st+t-{
) ( < (x)P

' J4
- oaq) E (-1 £+ mc -s,s—p!l-i)eo®P* gP

<+t

tald) 3 (-0 (4 4mer-s, s-p)e @ P BT )P
{

By formulas (h) and (j) of the proof of Theorem 4.7 (with &= 0), rephrased as in
section 5 and dualized, we see that (m) and (n) would be zero if £ = s +t were
allowed in the second sums. Therefore, by an easy verification, (m) and (n) re-
duce to the following expressions, where i=k+{ = s+t.

{o) {s-pi, % + gm - ps+pi)eo®P;(x)p with dpi = ds-r, and

{p) a{q)(s-pi-1, 3:2*:1 + gqm - ps +pi)eo®P*1[3(x)p with dpi = ds-r-p.

Clearly (o) is equal to the summand of z' involving e, in its first sum and (p) is
equal to the summand of z' involving e in its second sum. Thus Vo © 0 and

the proof is complete,

10. The cohomology of K(mw,n) and the axiomatization of the P°

s

We recall the structure of H*(K(ﬂ, n); Zp) = H (m, n, Zp) and compute com-
pletely the mod p cohomology Bockstein spectral sequence of K(m, n) in this
section, We also show (as should be well-known) that Serre's proof [23 ] of the
axiomatization of the Sqi using K(Zz, n) can be simply modified so as to apply

in the case of oddprimes. We shall consider only the cyclic groups w= Z :*
P
1 £t < oo, where, by convention, Z . = Z., We first fix conventions on admissible
P
monomials relative to t.

Notations 10.4. (a) p=2. For I=(s ,s. ), we say that I is admissible if

grere e Sy

si_>_ ZSi+1 and skzi. The length, degree, and excess of I are defined by

L(I) =k, d(I) = z;sj, and, if I=(s,J), e(I) = s-d(J). Define
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P =P ...P P °, where Pts‘=1=‘s if s> 2, pt1

1
B, if t< o, and P = 04
t oo

thus, if t = oo, we agree that admissibility requires Sk > 2. The empty sequence

I is admissible, with length, degree, and excess zero, and [ determines the

identity operation.

(b) p>2. For I= (§,,ks ), 81=Oor1,wesaythatlis

1 1,...,£k,sk, 8k+1

.. . >
admissible if si_ psi_H K

L) =%k, 4aI) = e+ > 2s,(p-1), and, if 1= (¢,s,7), e(l)=2s+€-a(7).

+$_,+1 and s, >1 orif k=0, when I=(E). Define
i

£ s €

s, &
I k 1
Define P, = B 1pl  pgkp kﬁtkH, where =1 forall t, p, =B, for t< oo,
1
and B__ = 0; thus, if t = o, we agree that admissibility requires € =0,
o k+1
2
We now give a quick calculation of H (Z D Z ).
P P
3 £
Lemma 10. 2., H (Z,1, Zp) = E(ii) and H (Z,2, Zp) = P(iz). If t< oo, then
3 2 E3
H (Z Z_) = P(i i i) =1 H (Z = E(i P i i
( Zt,i, 2) (11), with ﬁt(li) i and ( pt,1,Zp) (11)® (ﬁt(li)) if
p> 2.

1
Proof. K(Z,1)=S" and K(Z,2) = cP®, so the first statement is obvious.

sk %
For the second statement, H (Z " 1, Zp) =H (Z ¢ Z ), and we can define a
P P
AZ t—free resolution of A, with coproduct, precisely as in Definition 1.2 (with
P

t
p there replaced by p’) for any commutative ring A. The result follows by an

easy computation.

Theorem 10.3, If n>2 (orif n=1 and either p> 2 or t< w), then

0
H (2,
P

I
{Pt in] I is admissible and e(I) < nor, if p> 2, e(I) =n and 17 1}, More-

,n,Z ) is the free commutative algebra generated by the following set:

#
over, H (Z e Zp) is a primitively generated Hopf algebra.
p

Proof. The lemma gives the result for t<o and n=1 and for t= o and

n = 2. Assume the result for n-1. Of course, the Serre spectral sequence
{E_} of K(Z ,n-1)—>E — K(Z
¥ pt P

E_ =H(z z )
= I’ n)
2 pt P

t,n), E acyclic, satisfies

®H*(Z ,,n-1,2 ) and E_=2Z_.
p P o 7p
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First, let p = 2; then, regarding squares as Steenrod operations, we see that we

E
may rewrite the polynomial algebra H (Z ,n-1,2

¢ 2), additively, as the exterior
2

algebra E(S), where
s={ Ptlin A | Tis admissible and e(I)<n}.

1

I
By Theorem 3. 4, Pt in transgresses to Ptin. Define an abstract spectral

-4
sequence of differential algebras, {E'r}, by letting E'2 = P(r8)® E(S), where 7(8)

is a copy of S with degrees augmented by one, and by requiring s € S to trans-

gress to Ts € 1(8), Clearly E'OO = ZZ' Define a morphism of spectral sequences
£

f:E' —>E by f =g®14, where g.P(x$)—>H (Z ,,n,Z,) is the morphism

T r r 2 Zt 2

I
of algebras defined on generators by g(-rPt i ) = Ptlin; clearly commutation

n-1
with the differentials determines fr for r> 2. Since fzo* and foo are iso-

%0
morphisms, f = g is an isomorphism by the comparison theorem [14, p. 355].

2
Now let p> 2. We may rewrite H (Z 1:,n,ZP), additively, as E(S)® Q(T), where
P
Q denotes a truncated polynomial algebra (xp =0 for xe¢ T) and where

S = {Ptlin ) | Iis admissible, e(I) < n-4, d(I) +n even},

T = {Ptl iy | Iis admissible, e(I) < n, d(I)+n odd}.

(Note that e(I) = d(I) mod 2, hence d{I)+n even and e(I) = n-1 is impossible.)

By Theorem 3.4, Ptlin transgresses to (-1)d(I)PtIin and,’ if
-1 I '
in-i)p transgresses to (-i)n ﬁPth in' Define an

-1

I I
a{I)+n = 2q+4, P;:ln b2 (Pt

abstract spectral sequence of differential algebras , {E'r} , as follows, Let

E, = [P(rS)®@E(r)® P(rT)] ®[E(S) @ Q(T)]
(the bracketed expressions are the base and fibre, respectively)., Here ¥$ and
7T are copies of S and T with degrees augmented by one and pT is acopyof T
with degrees multiplied by p and then augmented by two. The differentials in
{E;} are specified by requiring s e S to transgressto Ts e 7S, te T to trans-
gress to Tte TT, and 'x'1:®tp-1 to transgress to pt ¢ pT. An easy computation

demonstrates that E'oo = Zp. Define a morphism of spectral sequences
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' 5
fr:E‘r — Er by f2 = g® 1, where g:P(rS)QE(rT)Q® P(pT)—> H (2 ¢

yn, 2 )
p P

is the morphism of algebras defined on generators by

I

a1 1 I, a L . .
i ={- i =z . BPP = i, A
g('rP,c 1nw1) (-1) Pt i and g(th i g AL if d(I)+n = 2q+ s in

n-‘1>
the case p = 2, the fr for r > 2 are determined by commutation with the
differentials, and g is an isomorphism by the comparison theorem. The last

statement follows since, by the external Cartan formula, if X is an H-space and

sk
x ¢ H (X) satisfies {(x)= Z x'@ x", then

= S SR ® PI(x") and gp(x) = ST(B(x") @ x" + (-1)3°8 F'x1 @ p(xn)).

itj=s
I
Thus, since i and ﬁt().n) are primitive, so are all of the AR
We can now compute the mod p cohomology Bockstein spectral sequence
E
{ 1'} of K(z ¢

P
algebras such that E

,n). Recall that {Er} is a spectral sequence of differential

b
= H (pt,n, Zp) and E is the homology of Er with

1 r+i

b
respect to ﬁr for r> 14, Since H (pt,n, Z} is a direct sum of cyclic groups with
one generator of order pr for each basis element of Im(ﬁr) C Er and one
generator of infinite order for each basis element of Eoo’ the integral cohomology
of K(Z t,n) is completely determined, additively, by {Er} If t<o and n=1,
p

L impli E =E E, =E =2 1 -

emma 10, 2 implies that 1 N and e . P’ hence we need only con
sider the case n 2> 2.

Theorem 10.4. Let n > 2. Define a subset S of the set of generators for

E, =H (Z o T zp) given in Theorem 10.3 by

1
P

{(a) I p=2, 8= {F;Iin] s, and d(I} +n are even and £(I)> 0}.

1
I
(b) If p>2, S= {pt 1n| 51 =0, d(I)+ n is even, and £(I) > 0}.
For ye S, define z(y)= B(y)y + quﬁ(y) if p=2 and degree (y) = 2q and define
-1
z{y) = ﬁ(y)yp if p> 2. Define an algebra Ar(n,t) by
{c) Ar(Zn, o) = P{ln} and Ar(Zn-H,co) = E{in}.

(a) Ar(Zn,t) = P{izn} @E{ﬁt(Zn)} if r£t<o and
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r-t r-t
P . P -pP .
A = P E >
L2n,t) {12n } @ Elali, )io }oif r>t,
. Rl Vs 2n_,. . _ -
where Z(lzn) = ﬁ(lzn)12n+ P ﬁ(12n) if p=2 and t=1
and z(i. ) =g(i )ip'1 if either p>2 or t>1
2n 2n’ " 2n
= E{: ; if r<t<
(e) Ar(2n+1,t) E{12n+'1} ®P{ﬁt(12n+1)} if r<t<oo and

A (2nH,t)=Z if r>t.
r p

r L
Then, if r>1, Er+1 =P{yP | yes} ® E{z(y)yp pl y ¢ S} ®Ar

r r
P )=z(y)yp P ofor ye S, and B

0t

T

r
.P ~ . P - P
(if )= Z(lzn)lzn .

{y -

B

r+i r+t

Proof, We first compute E_ separately in the cases p=2 and p> 2, Let

2

p = 2 and define subsets T and U of the set of generators of E, by

1

T= {PtIin' s, is even, d(I)+n is odd, e(I) < n-1, and £(I)> 0}

U= {Ptlin] d(I) +n is odd, e(I) = n-1, and £(I)> 0},

-1 I
Recall that ﬁPS = sP° and observe that if Pt in e U, then I = (2q,J), where

d(J) + n = 2q+1, and ﬁPtIin = (Pg in)z. Let C be the (additive) subcomplex of E1

which is the tensor product of the following collections of subcomplexes:

(1) P{p(y)} @E{y} for ye T, and

- 2 2q

(ii) P{z"}® E{y} for y=P 'z ¢ U, deg(z)= 2q+1.

Let IC be the positive degree elements of C. Then H{IC) =0 under B, and

therefore E2 is isomorphic to H(Ei/IC). If ye T WU, then quy e U,

deg y = 2q+1, and therefore C is actually a subalgebra of E1 and Ei/IC is a

quotient differential algebra of E It is easy to see that

i

E1/IC = P{y'ye s} ® E{ﬁ(y)l y € s} ® A'i(n,t), .

where A‘i(n,t) is the quotient of the polynomial algebra generated by i and, if
2 .
t < oo, 6t(in) by the ideal generated by inz if n is odd or by ﬁt(in) if n is

even. Therefore
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H(E,/1C) = P{y’| y ¢ 5} ® E{(ply)y| y< S} ® A}(n,0),

where A'(n,t) = A

5 n,t) unless n is even and t =1, when

Sl

2
. - . . s o s . -
AZ(n’ t) P{ln I ®E{ ﬁ(ln)ln}. ForyeS or y i if n is even and t =1,

2
z(y) = Bly)y + P qﬁ(y), deg y = 2q, is a cycle in E, which projects to the cycle

1
2
Bly)y in E1 /IC. Since z{y) bounds in Ei’ it follows that EZ has the stated

form if p = 2. Next, let p> 2 and define a subset T of the set of generators
f E
o 1 by
T = {Ptlin | 21 =0, d(I)+n is odd, and £(I)>0 }.
Then, as a differential algebra, E1 breaks up into the tensor product of the fol-
lowing collection of subalgebras:
(iii)  P{y}®@ E{B(y)} for yeS
{iv) E{y} ® P{B(y)} for ye T
(v) The free commutative algebra generated by in and, if t< oo, ﬁt(in).

The algebras in {(iii) have homology P{ yp} ® E{z(y)}, those of (iv) are acyclic,

and that of {v) has homology A _{n,t), hence E_ is as stated. Now assume that

2( 2

Er+1 is as stated, r > 1 and any p. Then Proposition 6.8 computes ﬁr+1 and

Er+1 breaks up into the tensor product of A

P{x} ® E{p

r+i(n’ t} with subalgebras of the form
r

r+1(X)}’ where x = yp , vy € S, This proves the result,

Finally, we prove the axiomatization of the P° on topological spaces.
Recall first that the Cartan formula and P° = 1 imply that the P® commute with
suspension [28, 30] and that we have shown in Proposition 8.1 that P° =1 is im-
plied by the commutation of p° with Sf=< and the fact that p° is the p-th power on
a zero dimensional class., Thus the axioms we choose {for convenience of proof)

are in fact redundant,
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Theorem 10,5. There exists a unique family {PSI s 2 0} of natural homo-
ES * s
morphisms H (X; ZP) - H (X Zp) such that deg(P ) =s if p= 2,
deg(Ps) = 2s(p-1) if p> 2, and
(i)  P° is the identity homomorphism
(ii) Ps(x)=xp if p=2 and s=deg x or p>2 and 2s = deg x

(iii) P%(x)

0if p=2 and s> degx or p>2 and 2s > degx

(iv) PYx®y)= > Plix) ® Ply) for x®y e HYXXY)

iH=s
* g s ¥ 3 A R . .
(v} ¢ P" = P¢ , where o is the suspension of a fibration,

Proof. Suppose given {R°| s >0} which also satisfy the axioms. If
% e Hn(X, Zp), then x = f*(in) for some f:X — K(Zp, n), hence it suffices to prove
that Ps(in) = Rs(in). The result is obvious from (i), (ii), and (iii) if n=1 or if

p>2 and n= 2., Assume that Ps(i )= Rs(in_i) for all s and consider

y=Ps(in)-Rs(in), 0<s<n if p=2 and 0<2s<n if p>2. By(v), o'(y) =0,

n-1

where
0'*: H"(Z n, Z —> H* Z n=-1,2 .
( ]:! 4 :) ( p’ ’ p)

]
If p=2, ¢ 1is an isomorphism in degrees less than 2n and therefore y = 0,
Let p> 2. As shown in the proof of Theorem 10,3, (i) and (iv) imply that both
Ps(in) and Rs(in) are primitive., By Theorem 10.3, we see that

(!

i | 1 admissible, e(I) < n}

is a basis for the primitive elements of H*(Zp, n, Zp). The only elements of this
set which are in Ker o are p-th powers and elements of the form {ESPq(y),

deg y = 2q+1, which have degree 2pgq + 2. If n is odd, then y has odd degree

P
and is thus zero. If n is even, then all primitive elements in Ker ¢ have degree

at least pn, which is greater than the degree of y, and again y = 0,
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11, Cocommutative Hopf algebras

In this section, we consider the following category C . The objects of g
are triples C = (E,A,F) where A is a (Z-graded) cocommutative Hopf algebra
over a commutative ring A,E is a right and F is a left (Z-graded) cocom-
mutative A-coalgebra, Thus E and F are A-modules and cocommutative co-
algebras {not necessarily unital or augmented}, and their coproducts ¢ are
morphisms of A-modules., We say that C is unital if E and F are unital and
augmented and their units and augmentations are morphisms of A-modules. A
morphism y:C —>C' in (is atriple y= (e, \,B), where A:A—>A' isa
morphism of Hopf algebras and a:E —> E' and B:F — F' are \ -equivariant
morphisms of coalgebras; thus a(ea) = ale)\(a) and plaf) =n(a)p(f) for ec E,
ae A, and fe F, We say that v is unital if « and B are morphisms of unital
augmented coalgebras., For C and C'in { , define CRC'=(ERQE',AQA",
F®F')e { andobserve that

g = {U,,0):C=(E,A,F)—» (EQE, A®A, FRF)=CRC
is a morphism in &' 3 clearly Y is unital if C is unital. Define homology and
cohomology functors on the category ¢,' by
")

_ r(A,A) an st - XSt
(1) H(C)= Tor " /(E,F) a vYe)=E t(A,A)(E,F

We shall define and study Steenrod operations on H*(C) when A = Zp. The
results here generalize work of Liulevicius [13].

In the following definitions, we recall the description of H"‘(C), with its pro-

duct, in terms of the bar construction.

Definitions 11.1. For C= (E,A,F)e¢ (&, let C=(A,A,F)e .
Let JA be the cokernel of the unit A — A, Define the bar construction B{(C)
as follows. B(C)=EQ@ T(JA)®F as a A-module, where T(JA) is the tensor
algebra on JA, Write elements of B(C) in the form e[a1 ... Ias]f; such an

element has homological degree s, internal degree t = dege + Zdeg a, + deg £,
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and total degree s+t. Define €:B(C)—=>E® F and d:Bs *(C) — Bs { L(C) by
A ’ =L,
(2) Ele[ [f) = e®f, E(e[aL1 as]f) =0, and
(3) d(e{ail...las]f) = -eai[azl...las]f
s-1

- gi e[3 ] 13, [Ty lay e ol

— e - - _ {+deg x

- [ai ...}as_i]asf , where X = (-1} x

If E= A, then d is a morphism of left A-modules and dS +Sd=1 - ¢€ ,

where o¢:F —»B(C) and S:BS (C) —» B (C) are defined by the formulas

s+, %

(4) o{fy=[ } and S(a[ai[... [as}f) = [aiaii... as]f .

Clearly d = 1®Ad on B(C)= E@AB(E). By adjoint associativity,
Hom, (B(C), E¥) =B*(C) = Hom,,(B(E, A, A),F").

Therefore (1) admits the equivalent reformulation

(5)  H,(C)= H(B(C)) and H'(C)=H(B(C) = Ext, ,\(F,E").

Definitions 11.2, ILet C and C' be objects of & . Define the Alexander-

Whitney map £:B(CQ® C') — B(C)®@ B(C') and the shuffle map
n:B(C)@ B(C') — B(C®C') by the formulas

(6) é(e®e'{ai®a‘1[...Ias®a;]f®f’)

5
= _ (k) ™ 1yt t 11
2( 1) e[all. .. Iak]akH" af@®e ai'“ak[akﬂl' . lalle,
k=0 k
- t t {13
where p(k) = deg ef(k+deg ag... asf} +i§i: deg a {k-i+deg 2,y .asf)
s
+ 2 (1 + deg a!)dega.ﬂ. ..af , and
j=k# ) )
1 ]
(7) n(e[ail...]as]f®e[as_{_il...]asﬁ]f)
- oy v(m . '
= 2 ( 1) e®e [a-_n_(i)lool a'ﬂ'(s"‘t)]f®f ’

™

where a, € A if i< s, 3, ¢ A' if i> s, the sum is taken over all

(s,t)-shuffles w (see [15,p. 47]), and
P
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vim) = z {1 +dega,)(1 +dega +.).
w(i) > n{s+j) * st

The unnormalized bar construction EQ T(A)@ F admits a structure of simplicial
graded A-module under which £ and 7 are in fact the classical normalized
Alexander-Whitney and shuffle maps. Define D= £B{y ):B(C)— B(C)® B(C).
Then D gives B{C) a structure of coassociative coalgebra; if C is unital, then
B(C) is unital and augmented., If E = A, then D coincides with the morphism

of left A-modules defined inductively by

(8) D[ J) = [ @[ k" if ¢(= > '®f", and
(9) DS =SD, where S=S®1 + c¢ ®S on B(C)® B(C).
Clearly D on B(C) = E@AB(E) is the composite

E®AB(€)£®—D>E® E®,B(C)® B(C) 19181

E ®AB<'6)® E®,B(C).

We define the cup product on B*(C) to be the composite

(10)  u:B'(C)I®EHC) L [B(C)® ()] 2> B*

We have the following analog of Lemma 7.1; a more precise analog {in terms
of £ ) could also be proven, and an alternative proof by semi-simplicial rather

than homological techniques is available,

Lemma 14.3 . Let mbe a subgroup of Zr and let W be a Awv-free resolution
of A such that W = Anr with Am generator e . Let Ce £ . Bigrade

W®B(C) by [W®B(C)]_, = > W, .® B ((C).  Then there exists a morphism of
i+j=s

bigraded Am-complexes A:W ® B(C) —> B(C)* which is natural in C and satis-
fies the following properties:

(1) Alw®b)=0 if be BO’*(C) and w e Wi for i>0

{(ii) A(eo®b) = D{b) if b e B{C), where D is the iterated coproduct

(iii) If E = A, then A is a morphism of left A-modules, where A operates
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deg w deg a

on WQB(C) by a(w®Db) = (-1) W& ab,

(iv) A(wi®Bs (C) =0 if i>(r-1)s.

t
Moreover, any two such A are naturally Aw-homotopic.

Proof, Observe first that the cocommutativity of A ensures that (iii) is
compatible with the wm-equivariance of A, Observe next that it suffices to prove
the result when E = A, since we can then define A on W® B(C) = E@AW® B(C)
to be the composite

£®,W®B(C) LB2; E'®,B(C)" —— [E®, BC)]"

where U is the evident shuffle., We define A on Wi® Bs (€) by induction on i

t
and for fixed i by induction on s, Formula (i) defines A for s =0 andalli> 0
and formula (ii) and w-equivariance defines A for i=0 andall s, Let i >1

and s 21 and assume that A has been defined for i'<1i and for our given i and

s'<s, Let {wk} be a Aw-basis for Wi' By (iii) and w-equivariance, it suffices

to define A{w® S(y)) for we {wk} and vy e Bs-i *(EI-). Let
r . . !

= S (06)'®@5® 17! on B(C)". Then dS +Sd=1 - (¢¢)". We define
i=1

) Aw®S(y) = (-1)%°€ sa(w®y) + SA(d(w) ® S(y)).

Observe that (v) is equivalent to (ii) on w = e, and that (v) is well-defined by the
induction hypothesis, To verify that dA = Ad, write (v) in the form
A1 ®S)=SA(1®1 +d®S). Then:

dA(1 ® S)

dSA(1®1 +d®S)= (4 - SA)A(1®1 +d®S)

[A-3SAA®1 +183)J1®1 +4@S)

i

O +AA®S) - SA(AR 1) - SA(1® d) +SA(A® dS)

A+AAR®S) - SA(A® 1) - SA(1® ) + SA(AR® 1) - SA(d® Sd)

"

A+Ad®S) - A(1®dS)=A +A(dDS) - A + A(1Q® as)

Ad®1+1®d)(1QS)

(where no terms involving ¢ g are relevant by (i) and an easy verification). Thus
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(i}, (ii), (iii), and (v), together with m-equivariance, provide an explicit construction

of a natural morphism A of Aw-complexes. To see that (iv) holds, observe that

if we {wk} C Wi and y = aLi[aL2 RN Ias]f, then A(w® S(y)) is a linear combina-

tion in B(C)" of terms involving precisely the factors ai(J) and f(J) in the

B(C), where ¢(ai) = z ai(i)® B ai(r) and {f) = Ef(1)® -] f(r} give
the iterated coproducts. Thus no summand of A{w ® S(y)) can have homological
degree greater than rs. Since A{w® S(y)) has homological degree i+s > rs if
i > (r-1)s, this proves (iv). The uniqueness of A up to Aw-homotopy follows
easily by use of the contracting homotopy S on B(E)r.

We now pass to the category (P (m, o0,A) of Defitions 2,1,

Definition 11.4., Let C ¢ ; . Let o: B:“(C)r — [B(C)r]ﬂ: be the natural

map and define a Am-morphism 6:W® B (C) — B*(C)r by the formula

(11)  B(w®x)(k) = (-1)°8Y X A(w®K), we W, x¢ B (C)F, ke B(C).
Since 8 may be defined for == Er and then factored through j:W >V as in
Definition 2.1, and the resulting composite is naturally Aw-homotopic to the
original 6 defined in terms of W,8 satisfies condition (ii} of Definition 2.1. By
the lemma, formula (11) specializes to give

e

(12) e(e0®x) = D*a(x) for any x e B'(C)r and

{13) Hw®x) = £(W)D*Q’(X) for any x ¢ Bo’*(C)r and we W.

By (10) and (12), 8 satisfies condition (i) of Definition 2.1, Since © is natural

on morphisms in {, we thus obtain a functor I': & —> (m, 0,A) by setting
{C) = (B*(C),G) on objects and I'(y) = B*(y) on morphisms. By (13), if C is
unital in C’ , then T'(C) is unitalin P (m,00,A). If A= Zp’ m is cyclic of
order p, and C = E@ Zp where C is Z-free {(that is, %,2, and T are Z-free),
then we agree to choose 8 for C to be the mod p reduction of & for C; P(C)

will thus be reduced mod p. Note that if x e B*(C) has bidegree (s,t), then

8(w®x) has bidegree (s - degw,t). W@Ba{(C)r and B*(C) should be thought of
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as regarded by total degree in defining the functor T,
Observe that, by Definition 6.1, we now have ui-products in B*(C) for any
Ce C,' . When A = Zp’ the results of Proposition 2.3 will clearly apply to the
£

Steenrod operations in H (C), and the following lemmas will imply the applicability

of the external Cartan formula and the Adem relations.

Lemma 11.5. For any objects C and C' in ﬁ , the following diagram

is Anw-homotopy commutative,

w®@ B (c®ch)® o B c®c
1@ ("] |1em™T el |*
we B (C)® B (C)]T — 22— B¥(C)® B¥(C")

Proof. It suffices to prove the An-homotopy commutativity of the diagram

W@ B(C)® B(C!) SABA(UBTRNWRIBY) | 15c)® B(c

1®¢ 1®n £ |n

W®B(C®C) a > B(C®C")"

and this diagram need only be studied with C and C' replaced by C and C',
Since B(C-@.C’)r and [B(E)@B(E')]r have obvious contracting homotopies, the

result follows by an easy double induction like that in the proof of Lemma 11.3.

Corollary 11.6. If Ce (o , then T'(C) is a Cartan object of € (m,00,A)

Lemma 11.7, If Ce & , A= Zp’ then T'(C) is an Adem object of &(p, o).
Proof. Precisely as inthe proof of Lemma 7. 8, it suffices to prove the

T-homotopy commutativity of the following diagram:
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2
w, ® W P@B(C) 8! vy®B(Cc) —A 5 B(C)P

T® 1 aP

wPeW, ®B(C) -»i%w;@ B(C)? —Z— (W, ® B(C))P

2
We need only consider this diagram with C replaced by €, and, since B(?f)p

has a contracting homotopy, the result then holds by another easy double induction.
The following theorem summarizes the properties of the P° and ﬁPS on
H*(C) for Cef , A= Zp. We shall be very precise as to grading since there is
considerable confusion on this point in the literature. We are thinking of H*(C)
as regraded by total degree in applying our general theory. An alternative
formulation that is sometimes convenient will be given after the theorem.
Theorem 11.8. Let Ce & , N = Zp' Then there. exist natural homomorph-
isms P' and, if p>2, BP' defined on H (C), with

s4i~t, Zt(

() PuH®YC)— H C) if p=2;

(b) Pi:HSt(C) — HsKZi-t)(p-i),pt(c) and

6P HSt(C) s +(2i-t)(p-1), pt(c) it p>2.
These operations satisfy the following properties:

(i) P =0 if p=2 andeither i<t or i> s+t

)
n

0 if p>2 and either 2i<t or 2i> s+t
BP = 0 if p> 2 and either 2i <t or 2i> s+t

(ii) Px)=x" if p=2and i=s+t orif p> 2 and 2i= s#

~ pe i-1 i i
(iii) If C=CQ® Zp, where C is Z-free, then PP = iP" if p= 2 and BP

is the composition of B and P if p>2.

. X . - . i _ . - "
(iv) P= z PP and pP’ =2 (@ P! +P1®6PJ ) or H{C®C');

the internal Cartan formula is satisfied in H(C)
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(v) If viC'—>C and §:C—> C" are unital morphisms in C such that

#y = 0 on the cokernels of the units, then chi = Picr and crf:3Pi = - ﬁPio—,
where o: HSt(C") — Hs-l't(C‘) is the suspension.
(vi) The Pi and ﬁPi satisfy the Adem relations as stated in Corollary 5.1.

Proof. If x¢ HSt(C), then Di(x) = G*(ei®xp) € Hps-i’Pt(C). The Pi and
[3Pi are defined by formulas (5.1) and (5.2), with x having its total degree
q = s +t; thus (a) and (b) are valid. The vanishing of Pi(x) for i<t if p=2
and of BE Pi(x) for 2i<t if p> 2 follows from part (iv) of Lemma 11.3. The
remainder of the theorem follows immediately from our general theory and the
previous lemmas. For (v), note that the composite
B*(C") B—*(&-> B*(C) -—Em) B*(C') is zero on the kernel of the augmentation
B*(C") — Zp_ An alternative formulation of (v) in the non-unital case can easily
be obtained.

In addition to {v), the Kudo transgression theorem, Theorem 3.4, applies to
appropriate spectral sequences involving objects of c . The hypothesis of (iii)
is seldom satisfied in practice, and ﬁPi is generally an independent operation
having nothing to do with any Bockstein. There is an alternative definition of the
operations, which amounts to the following regrading of our operations . Define

i i i+

() B'=sq = P uc) — ut T Y

C) if p=2;

(a) Bl P1+t: S Zt(C) Hs+21(p-1), Zpt(c) and
o ™ o
bt = ppitt, po Zt(c) Hs+21(p 1)+, Zpt(c) i p .

This regrading is reasonable if p = 2, but has the effect of eliminating all opera-

. st
tions on H

(C) for t odd if p > 2; of course, these operations are non-trivial
since, if s andt are odd, the p-th power operation on HSt(C) is non-trivial in
general. The results of the theorem can easily be transcribed for the -1\51 and ﬁf’i;
for example, the Adem relations are still correct precisely as stated but with all

P' and BPl replaced by P' and 6%”1. The motivation for the reindexing is just

: ~o : sos . . . .
the desire to make P the first non-trivial operation. This operation is of
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particular importance in the applications, and we now evaluate it,

Definition 11.9. Let C=(E,A,F)e [ , where E,A,and F are positively

graded and of finite type. Then B¥(C) may be identified with
% %* *
E @ T(IA")®F . Define X :B°HC) —> B PHC) by

P]¢P ;

st(

x(e[a1|... Ias]ﬁ) = E.p[alpl...fas

Then N\ commutes with the differential and induces X\, :H (C) —> H®’ pt(C). Oof
course, if p> 2, then \({ &[all.. . [as]ﬁ) =0 if £ ,@,, or ¢ has odd degree

and thus )\* =0 if t is odd.

Proposition 11.10. Let C = (E,A,F) e & , where E, A, and F are

positively graded and of finite type, Let x ¢ Hs’t(C) where t is even if p> 2.

Then ‘f’o(x) = )\*(x).

Proof, Let y = e[a1 [... las]f e B, {C). A straightforward, but tedious,

’pt

calculation demonstrates that

Moy @) = (DT v (-e)7

(e'fa)

ces |a’s]f’) + Nz,

where the sum is taken over the symmetric summands ¢'® .., de', a;@ e ® a;,
and f'® ... ®f' of the iterated coproducts. (A moment's reflection on the case

C = (Zp’ ZpG’ ZP), where G is a group, and a glance at Lemma 8,2 should con-

vince the reader of the plausibility of this statement.} The result now follows

easily from the definitions,

Remarks 11,11, If p> 2, then it can be shown by a tedious calculation that

1,2t

~o p P .
-BP (x) =<x>" for xe¢ H {C}, where C = (Zp,A,Zp) e £ and <x>F is as

2s+1, Zt(

defined in Remarks 6,9, It is possible that -ﬁﬂf’s(x) =<x>F forxe H C)

and any C ¢ C , but this appears to be difficult to prove.



- 229 -

Bibliography

1, J.F. Adams, On the structure and applications of the Steenrod algebra.
Comment. Math. Helv,, 1958,
2. J. Adem, The relations on Steenrod powers of cohomology classes.
Algebraic geometry and topology. A symposium in honor of S. Lefschetz, 1957,
3. S. Araki and T. Kudo, Topology of Hn-spaces and H-squaring operations.
Mem. Fac. Sci. Kyusyu Univ. Ser. A, 1956.
4. W. Browder, Homology operations and loop spaces. Illinois J. Math.,
1960,
5. A Dold, Uber die Steenrodschen Kohomologieoperationen. Ann. of Math.,
1961,
6. E. Dyer and R.K. Lashof, Homology of iterated loop spaces. Amer,
J. Math., 1962,
7. D.B.A. Epstein, Steenrod operations in homological algebra. Invent,
Math. I, 1966,
8. G. Hirsch, Quelques proprietes des produits de Steenrod., C.R. Acad.
Sci. Paris, 1955.
9. N. Jacobson, Lie Algebras. Interscience Publishers. 1962.
10. S. Kochman, Ph,D, Thesis, University of Chicago, 1970.
11, D. Kraines, Massey higher products. Trans. Amer. Math. Soc. 1966.
12, T. Kudo, A transgression theorem. Mem, Fac. Sci. Kyusyu Univ,
Ser. A, 1956.
13. A, Liulevicius, The factorization of cyclic reduced powers by secondary
cohomology operations. Mem. Amer. Math., Soc., 1962.

t4. S. Maclane, Homology. Academic Press, 1963,



- 230 -

15, J.P, May, Simplicial objects in algebraic topology. D. Van Nostrand

npany, 1967,

16. , The structure and applications of the Eilenberg-Moore

ctral sequences {to appear).

i7. . Homology operations in iterated loop spaces (to appear),

18. , The cochomology of the Steenrod algebra (to appear).

19, J. Milnor and J,C. Moore, On the structure of Hopf algebras. Ann. of

h., 1965,

20. J.C, Moore, Constructions sur les complexes d'anneaux. Seminaire

ri Cartan, 1954/55.

21. G. Nishida, Cohomology operations in iterated loop spaces. Proc.

n Acad., 1968.

22. S. Priddy, Primary cohomology operations for simplicial Lie algebras.

ppear in Ill, J. Math,

23, J.P., Serre, Cohomologie modulo 2 des complexes d'Eilenberg-Maclane.

ment ., Math. Helv., 1953,

4. E. Spanier, Algebraic Topology. McGraw Hill Book Company, 1966.

5. N.E. Steenrod, Products of cocycles and extensions of mappings,

of Math,, 1947.

6. , Reduced powers of cohomology classes., Ann, of Math,,

7. , Homology groups of symmetric groups and reduced power

:ions, Proc. Nat. Acad. Sci., U.S.A,, 1953,

8. , Cyclic reduced powers of cohomology classes., Proc.

icad, Sci., U.S.A,, 1953,

7.

, Cohomology operations derived from the symmetric group.

1ent, Math, Helv., 1957,



- 231 -

30, N. E, Steenrod, Cohomology operations., Princeton University Press,

1962.



