
A GENERAL ALGORITHM FOR COMPUTING DISTANCE
TRANSFORMS IN LINEAR TIME

A. MEIJSTER*‚ J.B.T.M. ROERDINK† and W.H. HESSELINK†

University of Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands
email: a. meijster@rc.rug. nl, {roe, wim} @cs.rug.nl

Abstract. A new general algorithm for computing distance transforms of digital images

is presented. The algorithm consists of two phases. Both phases consist of two scans, a

forward and a backward scan. The first phase scans the image column-wise, while the second

phase scans the image row-wise. Since the computation per row (column) is independent of

the computation of other rows (columns), the algorithm can be easily parallelized on shared

memory computers. The algorithm can be used for the computation of the exact Euclidean,

Manhattan (L 1 norm), and chessboard distance (L ∞ norm) transforms.

Key words: Distance Transforms, Row-Column Factorization, Parallelization.

1. Introduction

Distance transforms play an important role in many morphological image proce-

ssing applications. They have been extensively studied and used in computa-

tional geometry, image processing, computer graphics and pattern recognition,

e.g., [1, 2, 3, 7]. The two-dimensional distance transform can be described as

follows. Let B be a set of grid points taken from a rectangular grid of size

m × n . The problem is to assign to every grid point (x , y) the distance to the

nearest point in B . If we use the Euclidean metric for computing distances,

and represent B by a boolean array b [·, ·], we thus want to compute the two

dimensional array dt[x , y] = , where

Here we use the notation for the minimal value of f(k)

when k ranges over all values that satisfy P(k).

Since the exact Euclidean distance transform is often regarded as too com-

putationally intensive, several algorithms have been proposed that use some

mask which is swept over the image in two scans, to compute approximations

like the Manhattan (city-block) distance, the chessboard distance, or chamfer

distances (see [1, 2, 3, 7]). The time complexity is linear in the number of

pixels of the image (i.e. O (m × n)), but it does not yield the exact Euclidean

distance, which is required for some applications. Another drawback of these

* A. Meijster works at the Computing Centre of the University of Groningen.
† J.B.T.M. Roerdink and W.H. Hesselink work at the Institute for Mathematics and Com-

puting Science.

332 A. MEIJSTER ET AL.

algorithms is that they are hard to parallelize for parallel computers since pre-

viously computed results are propagated during the computation, making the

process highly sequential. A recursive algorithm of order mn log m for the ex-

act EDT is given in [5]. In [6] a recursive algorithm of order mn for the exact

EDT is given by reducing the problem to a matrix search algorithm.

In this paper, which is based upon [4], we present a new algorithm that

also computes distance transforms in linear time, is simpler and more efficient

than [6], and is easy to parallelize. It can compute the Euclidean (EDT), the

Manhattan (MDT), and the chessboard distance (CDT) transform, defined by

If we define the minimum of the empty set to be ∞ , and use the rule z + ∞ = ∞
for all z , we find with some calculation

where

The algorithm can be summarized as follows. In a first phase each column

C x (defined by points (x , y) with x fixed) is separately scanned. For each point

(x, y) on Cx , the distance G(x , y) of (x , y) to the nearest points of C x ∩ B i s

determined. In a second phase each row R y (defined by points (x , y) with y

fixed) is separately scanned, and for each point (x , y) on R y the minimum of

for EDT, for MDT, and max

for CDT is determined, where (x', y) ranges over row R y .

2. The First Phase

The object of the first phase is to determine the function G . We first observe

that we can split G into two functions GT (top) and GB (bottom), such that

min where

We start with the computation of GT by introducing an array g to store its

values. It is easy to see that GT(i , y) = 0 if b [i , y] holds, and that, otherwise,

GT(i, y) = GT(i, y – 1) + 1 (or ∞ if y = 0). We can therefore compute

g [x , y] := GT(x , y) using only g[x , y – 1] in a simple column scan from top to

bottom. Similarly, we find GB(i , y) = GB(i ‚ y + 1) + 1. The second scan runs

from bottom to top, and computes G(x , y) directly, using GT from the previous

scan, and GB from the current one. After some simplification, this results in

the code fragment given in Fig. 1. Clearly, the time complexity is linear in the

A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS 333

Fig. 1. Program fragments for the first phase.

number of pixels (i.e. O (m × n)). In actual implementations it is convenient

to replace ∞ by m + n , since all distances in the images are less than m + n if

the set B is non-empty.

3. The Second Phase

In the second phase we want to compute EDT, MDT, or CDT row by row,

i.e. for all x with fixed y . Therefore, in this section we regard y as a constant

and omit it as a parameter in auxiliary functions, and introduce g(i) = G (i , y) .

Instead of developing an algorithm for each metric separately, we aim at a more

general algorithm for

(1)

The choice of the function f depends on the metric we wish to use, i.e.

It is helpful to introduce a geometrical interpretation of the minimization

problem of Eq. (1). For any i with 0 ≤ i < m , denote by F i the function

on the real interval [0, m – 1]. We call i the index of F i . In the case

of EDT, the graph of F i is a parabola with vertex at (i ‚ g (i)). In the case of

334 A. MEIJSTER ET AL.

(a) EDT (b) MDT (c) CDT

Fig. 2. DT as the lower envelope (solid line) of curves F i , 0 ≤ i < m (dotted lines). The

dashed vertical lines indicate the transitions between regions.

MDT the parabolas are replaced by V-shaped approximations, while in the case

of CDT we deal with ‘topped off’ V-shaped approximations (see Fig. 2). We

can interpret DT geometrically as the lower envelope of the collection {F i  0 ≤
i < m } evaluated at integer coordinates, cf. Fig. 2. The lower envelopes

consist of a number of consecutive curve segments, whose index we denote by

s[0]‚ s [1]‚..., s [q] counting from left to right. The projections of the segments

on the x-axis are called regions , and form a partition of the interval [0, m) by

consecutive segments. The computation of DT now consists of two scans. In a

forward (left-to-right) scan the set of regions is determined using an incremental

algorithm. In a backward (right-to-left) scan the values DT(x , y) are trivially

computed for all x.

We start by replacing the upper bound m in (1) by a variable u and define

The geometric interpretation is that we restrict the set B to the half plane to

the left of u . Clearly, DT(x, y) = FL(x, m).

For given upper bound u > 0, we define an index h to be a minimizer at

x if, in the expression for FL(x , u), the minimal value of f (x , i) occurs at h .

In general, x may have more than one minimizer. defined as the least index h

with 0 ≤ h < u such that f (x, h) ≤ f (x , i) for all i in the same range, i.e.

(2)

We clearly have FL(x , u) = f (x , H (x , u)), hence DT(x , y) = f (x, H(x , m)).

Therefore, the problem reduces to the computation of H (x , m).

We consider the sets S(u) of the least minimizers that occur during the scan

from left to right, and the sets T (h, u) of points with the same least minimizer

h. We thus define

(3)

A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS 335

(a) above (b) below (c) intersection

Fig. 3. Location of F u (dashed curve) w.r.t. the lower envelope (solid line).

Clearly, S (u is a nonempty subset of [0, u), and We)

define the regions for u to be the sets T (h , u) that are nonempty. It is easy to

see that the regions for u form a partition of [0, m).

The aim is the case where u = m . Indeed, for x ∈ T (h , m), we have

H (x, m) = h and hence DT(x , y) = f (x , h). The second phase of the algorithm

therefore consists of two scans: scan 3 computes the partition of [0, m) that

consists of the regions for m and scan 4 uses these regions to compute DT. For

given u, only the curves with indices from 0 to u – 1 are taken into account. The

minimizer of x corresponds to the index of the curve segment whose projection

on the horizontal axis contains x. Let the current lower envelope consist of

q + 1 segments, i.e. S(u) = {s[0], s[1], . . . , s [q]}, with s[l] the index of the l-th

segment. Consider what happens when F
u

is added. Three situations may

occur:

(a)

(b)

(c)

F u is above the current lower envelope on [0, m – 1], cf. Fig. Then

S (u + 1) = S (u), since the set T (u , u + 1) is empty.

F u is below the current lower envelope on [0, m – 1], cf. Fig. Then

S (u + 1) = {u}, i.e., all old regions have disappeared, and there is one new

region T (u , u + 1) = [0, m).

F u intersects the current lower envelope on [0, m – 1], cf. Fig. The

current regions will either shrink or disappear, and there is one new region

T (u , u + l).

We start searching from right to left for the current region which is inter-

sected by F u . This can be determined by comparing the values of F u and F l at

the begin point t[l] of each current region l = q , q – 1, . . ., until we find the first

l = l * such that Then F u is not the least minimizer

at t [l *], and there must be an intersection of F u with F l * in region l*. Let x *

be the horizontal coordinate of the intersection. If l* = q and x * ≥ m we have

case (a); if l* < 0 we have case (b); otherwise case (c) pertains.

336 A. MEIJSTER ET AL.

Fig. 4. Program fragments for the second phase.

To find x *, we introduce a function Sep, where Sep(i , u) is the first integer

larger or equal than the horizontal coordinate of the intersection point of F u

and F i with i < u , i.e.

(4)

We thus have x* = Sep(s[l *], u). Clearly, the function Sep is dependent on

which distance transform we want to compute. In the next section we will

derive the expressions for the function Sep, but in the remainder of this section

we simply assume that Sep is available.

We introduce an integer program variable u . It is convenient to represent

S(u) by an increasing sequence of elements. Since the regions form a partition

of [0, m) by consecutive segments, we can represent them by the sequence of

their least elements. According to the case analysis above, the regions are to

be adapted at their end. We can therefore implement these sequences in two

integer arrays, s and t, with an integer variable q as index of the end point.

We start with the forward scan, see scan 3 in Fig. 4. We have S(1) = {0},

and T (0, 1) = [0, m), and thus start with q = 0, s [0] = 0, and t[0] = 0. In a

loop, variable u is incremented, and thus the representations of S and T must

be updated by means of the case analysis above. For details, we refer to our

report [4].

To investigate the complexity of the forward scan, we consider the expression

q + 2(m – u), which is initially 2m . In every execution of the body of the outer

loop (scan 3 in Fig. 4), and also in every execution of the body of its inner loop,

A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS 337

Fig. 5. Cases for finding Sep for MDT.

the value of the expression decreases. This implies that the time complexity

of the scan is linear in m . Note that, the average number of iterations of the

inner loop is at most two. The algorithm uses less than 2m comparisons of ƒ

values, and function Sep is evaluated less than m times.

When the forward scan is finished, we have completely determined the parti-

tion of [0, m) in regions. Given these regions, we can trivially compute dt-values

in a simple backward scan (see scan 4 in Fig. 4).

4. Derivation of the Function Sep

The derivation in the previous section was independent of the actual metric

used The functions dependent on the metric are ƒ and Sep. In this section we.

compute expressions for Sep for EDT, MDT, and CDT. The easiest is EDT.

We find for i < u

Here, we denote integer division with rounding off towards zero by div. Thus,

we find for EDT that

If we use the Manhattan metric, the analysis is slightly more complicated.

Since we have to deal with absolute values in the expressions, awkward case

analysis is necessary if we want to compute Sep analytically. Therefore we

prefer a geometric argument. We have to consider three cases (see Fig. 5).

If g(u) ≥ g (i) + u – i , the graph of F u lies entirely above the graph of F i

for all x, thus we choose Sep(i, u) = ∞ . If g (i) > g (u) + u – i , the graph of F i

lies entirely above the graph of F u , so F i (x) ≤ F u (x) for no x at all. Thus, we

must choose Sep(i, u) = –∞ to satisfy (4). In all other cases, F u intersects F i

338 A. MEIJSTER ET AL.

Fig. 6. Cases for finding Sep for CDT, where γ = (u – i)/2. Cases

Cases

at So, if we want to compute MDT we use

For the case of CDT we have |x – i | max g (i) ≤ |x – u | max g (u). We

consider two main cases, which each can be split up in three sub-cases. First

we consider the case g(i) ≤ g (u). From Fig. we see that the increasing

segment of F i (y = x – i) intersects the decreasing part of F u (y = u – x), or

the constant part (y = g (u)). Let γ be the vertical coordinate corresponding

with the middle of i and u (x = (i + u)/2), i.e. γ = (u – i)/2. From Fig.

we see that if we have

From Fig. 6(b)-(c), we see that the increasing part of F i intersects the constant

segment of F u at i + g (u), and thus we have

Putting the three cases together, we can conclude

A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS 339

TABLE I

Timing results in ms. From left to right: EDT, MDT, and CDT.

The other main case is g(i) > g (u). Again, in Fig. we see that if g (i) ≤ γ,

the intersection at (i + u)/2 is the separator. If g(i) > γ (see Fig. the

horizontal segment of F i intersects the decreasing part of Fu at x = u – g (i).

Just like in the previous case, we can put these cases together. This results in

the following expression for Sep:

5. Parallelization, Timing Results, and Conclusions

Since the computation per row (column) is independent of the computation

of other rows (columns), the algorithm is well suited for parallelization on a

shared memory machine. In the first (second) phase, the columns (rows) are

distributed over the processors. The two phases must be separated by a barrier ,

which assures that all processors have completed the first phase before any of

them starts with the second phase. The theoretical time complexity of the

parallel algorithm for p processors (where p ≤ m min n) is (m n/ p).

We ran experiments on an Intel Pentium III based shared memory parallel

computer with 4 cpu's, running at a 550MHz clock frequency. We performed

time measurements using several binary images, and found that the execution

time is almost independent of image content, and scales well w.r.t. the number

of processors. This is as expected, since the amount of work per row and

column is almost the same. In table I the timings for square images are given

for p = 1 to p = 4 processors. Note that the computation of MDT and CDT is

only slightly faster than the exact EDT. We also implemented the sequential

algorithm of [7] for CDT, and found that our algorithm is less than a factor of

2 slower, which can easily be overcome by parallel processing.

The algorithm can be easily extended to d -dimensional distance transforms

by separating the problem into d phases, each solving a one-dimensional prob-

lem, as carried out above for the case d = 2.

340 A. MEIJSTER ET AL.

References

1 .

2 .

3 .

4 .

5 .

6 .

7 .

G. Borgefors. Distance transformations in arbitrary dimensions. Computer Vision,

Graphics, and Image Processing, 27:321–345, 1984.

G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics,

and Image Processing, 34:344–371, 1986.

P. Danielsson. Euclidean distance mapping. Comput. Graphics Image Process., 14:227–

248, 1980.

W. H. Hesselink, A. Meijster, and J. B. T. M. Roerdink. An exact Euclidean distance

transform in linear time. Technical Report IWI 99-9-04, Institute for Mathematics and

Computing Science, University of Groningen, the Netherlands, Apr. 1999.

M. Kolountzakis and K. Kutulakos. Fast computation of the Euclidean distance maps

for binary images. Information Processing Letters, 43:181–184, 1992.

S. Pavel and A. Akl. Efficient algorithms for the Euclidean distance transform. Parallel

Processing Letters, 5:205–212, 1995.

A. Rosenfeld and J. Pfaltz. Distance functions on digital pictures. Pattern Recognition,

1:33–61, 1968.

