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Abstract 

For a general class of robots with elastic joints, we in- 
troduce an inversion algorithm for the synthesis of a 
dynamic feedback control law that gives input-output 
decoupling and full state linearization. Control de- 
sign i s  performed directly on the second-order robot 
dynamic equations. The linearizing control law i s  ex- 
pressed in terms of the original model components and 
of their time derivatives, allowing an eficient organi- 
zation of computations. A tight upper bound for the 
dimension of the needed dynamic compensator is also 
obtained. 

1 Introduction 

It is well-known that the main source of vibration in 
industrial robot manipulators is due to  the presence 
of joint elasticity between the driving actuators and 
the driven links. This is caused by the deformation of 
transmission elements such as harmonic drives, belts, 
or long shafts during high-speed motion and/or hard 
contact with the environment [l, 21. Advanced robot 
controllers aimed at the accurate and stable tracking 
of trajectories defined beyond the structural flexibility 
(i.e., in terms of link motion) should be designed on 
the basis of a more complete dynamic model of the 
robot [3 ] .  

The modeling of robots with elastic joints dates 
back to  the early 80’s [4]. More recently, a detailed 
analysis of the model structure has been given in [5], 
where it was used for proving asymptotic stability of a 
simple regulation controller. In [6], the case of motors 
mounted on the driven links is considered. Finally, a 
reduced dynamic model has been introduced in [7], ne- 
glecting gyroscopic terms in the kinetic energy of the 
motors. 

It was shown [8] that standard tools for control- 

ling nonlinear systems, such as feedback linearization, 
input-output decoupling, or inversion control (see, 
e.g., [9]), are not sufficient in the case of robots with 
elastic joints. As a matter of fact, the complete dy- 
namic model of robots with elastic joints fails to  satisfy 
the necessary conditions for input-output decoupling 
and/or full linearization by static state feedback [3] - 
as opposed to the case of rigid robots where the above 
methods are all equivalent to the ‘computed torque’ 
technique. Instead, the reduced model of elastic joint 
robots [7] can always be linearized and decoupled by 
means of a suitable nonlinear feedback from the robot 
state. 

For the general case, it is useful to  resort to  the 
larger class of dynamic state feedback controllers. In 
this control scheme, the input torque applied to  the 
robot depends both on the robot state and on the 
state of a dynamic compensator of proper dimension. 
The first linearizing and decoupling solutions were ob- 
tained for a planar 2R arm (compensator of dimension 
four) [lo] and an elbow-type 3R robot (compensator 
of dimension six) [ll]. Later on, taking advantage of 
the model analysis given in [5], it was proven that the 
whole class of robots with elastic joints can be lin- 
earized via dynamic feedback [12]. The relevance of 
this result for accurate trajectory tracking is that  we 
can then easily design a global stabilizing feedback on 
the linear side of the problem. 

On the other hand, the high complexity and the 
need to  derive the actual controller on a case-by-case 
basis are the main limitations of the dynamic lineariza- 
tion approach. In addition, there is no general re- 
sult on the dimension of the linearizing dynamic com- 
pensator which, even for a given number of elastic 
joints, still depends on the specific kinematic arrange- 
ment of the arm [13]. These difficulties stem from 
the use of nonlinear control methods based on a state- 
space representation of the plant. For mechanical sys- 
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tems, the transformation from second-order (Euler- 
Lagrange) equations to state-space format, though 
simple, may obscure some relevant model property. 
Moreover, subsequent computations (essentially, Lie 
derivatives and brackets of vector fields [9]) would mix 
the contributions of the single dynamic terms, result- 
ing in complicated expressions that are difficult to ma- 
nipulate and debug, and also hard to  be interpreted 
physically. For these reasons, after about ten years 
from the first theoretical results, there is still no im- 
plementation of a dynamic feedback linearization con- 
troller, not even for simple robots with elastic joints. 

In this paper, we present a general algorithm for the 
design of the dynamic control law which is constructive 
and does not resort to state-space equations. The algo- 
rithm proceeds by solving three successive partial lin- 
earization and input-output decoupling problems, di- 
rectly working with the robot dynamic model. The fi- 
nal control law is defined in terms of the original model 
components and of their time derivatives, allowing a 
simple and recursive organization of the required com- 
putations. Furthermore, we are able to  characterize in 
a precise way a tight upper bound for the dimension 
of the dynamic compensator. 

In the following analysis, we consider a class of dy- 
namic models that, though not the most general, in- 
cludes all instances considered up to now in the lit- 
erature. Elastic joint robots within this class cannot 
be linearized nor input-output decoupled using only 
static state feedback. After introducing the algorithm 
for a generic N-jointed robot, we illustrate the results 
on a planar 2R robot. 

-0  s 1 2 ( q l )  S13(ql,  42)  * * ' SlN(q1 ,  . . . qN-1) - 
0 0  s23(42)  ' ' ' S 2 N ( Q 2 , .  . ' ,QN- l )  

0 0  0 . . .  SN-1,N ("1) 
0 -0  0 0 d 
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2 Review of Dynamic Modeling 
Consider an open kinematic chain of N f l  rigid bodies, 
interconnected by N joints undergoing elastic deforma- 
tion. The robot is actuated by electrical drives which 
are assumed to be located at  the joints. Let q E lRN 
be the link positions, Qm E lRN be the motor (i.e., 
rotor) positions, and Q E RN be the motor positions 
as reflected through the gear ratios. We have then 
Qmz = Q,rz, ( i  = 1,. . . , N ) ,  with gear ratios r, 2 1. 
Variables q and e will be used as generalized coordi- 
nates. Note that the direct kinematics of the robot 
arm is a function of q alone. The following assump- 
tions are made: 

Assumpt ion  1 Joint deformations are small, so that 
elasticity in the joint is modeled as a (undamped) lin- 
ear spring. 

Assumption 2 The rotors of the motors are modeled 
as uniform bodies having their center of mass on the 
rotation axis. 

7 

Assumption 2 implies that both the inertia matrix 
and the gravity term in the d,ynamic model will be 
independent from the position I? of the motors. 

Following the Lagrangian approach, we compute 
the kinetic energy of the robot structure (including 
links and motors as rigid bodies) as 

Assumption 3 Matrix S in eq. (1) is constant. 

For instance, Assumption 3 is valid for a spatial 
3R elbow manipulator and for planar robots with any 
number of rotational joints. In the latter case, it can 
be shown that the elements of S are Si, = JmjrJ ,  apart 
from those entries that are structurally zero. 

The potential energy is given by the sum of the grav- 
itational energy, for both motors and links, and of the 
elastic energy stored at  the joints. By virtue of As- 
sumptions 1 and 2, we have 

in which K = diag(K1,. . . , K:%}, Ki > 0 being the 
elastic constant of joint i. 

The robot dynamic model is obtained from the 
Euler-Lagrange equations for the Lagrangian L = 

505 



T - U .  Under the above assumptions, the 2N second- 
order differential equations have the form (see, e.g., [3] 
for a detailed derivation) 

B(q)4; + se + c(q,  4 )  + g ( q )  + K(q - e )  = 0 ( 3 )  
sTg + J e  + K ( Q  ~ q )  = 7 ,  (4) 

where c(q,  q )  are Coriolis and centrifugal terms, g(q)  = 
(XJS/ i3q)T  are gravity terms, and T E BN are the 
torques supplied by the motors. 

We note explicitly that in the case of a single link 
and for some other special kinematic structures with 
elastic joints (e.g., a 2R polar robot) it is found that 
S = 0, implying no inertial couplings between the link 
and the motor dynamics. The same situation is forced 
by the modeling assumption introduced in [ 7 ] ,  namely 
by considering in the angular part of the kinetic energy 
of each rotor only the term due to its relative rotation. 
When S = 0, the model is always feedback linearizable 
by static state feedback. Thus, from now on we assume 
s # 0. 

3 Inversion Algorithm 

A dynamic state feedback control for the input torques 
T in eq. (4) is a law of the form 

7 = a(.,<) +P(z,E)v (5) 

I = Y(G0 +S(z,E)v (6) 

where x = ( q , Q ,  q ,  e )  E is the state of the robot, 
( E lRM is the state of the dynamic compensator (of 
order M to  be defined), and v E BN is the new control 
input. 

Our objective is to  design such a control law so that 
the closed-loop system made by eqs. (3-4) and (5 -  
6) is represented by decoupled chains of input-output 
integrators, i.e., 

( 7 )  

with the additional requirement that 

N 

i=l 

where p i  the closed-loop relative degree of the output 
variable q i .  Condition (8) implies, beside input-output 
decoupling, also full state linearization (in the proper 
coordinates) of the closed-loop system. Satisfaction of 
these control objectives enables to  solve the problem 
of tracking a desired trajectory q d ( t ) ,  in a global sense 
and with a prescribed linear error dynamics. 

In the following, we propose a design algorithm 
that proceeds incrementally, first achieving partial lin- 
earization and input-output decoupling for two simpler 
subproblems and then obtaining from there the final 
solution. The main aspect is that all derivations are 
based directly on the robot dynamic model (3-4). 

3.1 Input-output decoupling w.r.t. 0 

From the structure of eq. (4), we define the following 
control law for T :  

7 = J u  + s T g  + K(0 - q ) ,  (9) 

where U E lRN is a new control input. This control 
law imposes the dynamics 

B(q)4; + s u  + 4 4 1 4 )  + g ( q )  + K(q - Q) = 0 (10) 
e = U .  (11) 

The implementation of control law (9) by state feed- 
back requires to eliminate the link acceleration g. Solv- 
ing for 4; in eq. (10) and substituting in eq. (9) gives 

T = [ J  - STB-l(q)S] U + K ( Q  - 4 )  (12) 

- S T W q )  b ( q ,  4) + d4) + K(q - 011 . 

Equation (11) shows that a linear and decoupled 
relation has been obtained between each input com- 
ponent ui and each output 8% (i = 1, . . . , N ) ,  by using 
a static state feedback law T = ~ ( q , Q , q , u ) .  In the 
closed-loop system, we have 2N states (namely, q and 
q )  that are unobservable from the output 8. 

3.2 Input-output decoupling w.r.t. f 

By defining a new output f as 

f = B(q)ii + 4% 4) + 9(9) + Kq, (13) 

eq. (3) can be rewritten as 

f ( q , q ,  4;) + su - Ke = 0, (14) 

where eq. (11) has been used. We note that output f 
has the dimension of a generalized force. Differentiat- 
ing twice eq. (14), we obtain 

f ( q ,  q ,  4;) + Sii - Ku = 0. 

By defining the following control law for U 

(15) U = K-l [Sii + w'] , 

j ( q ,  4, 4;) = w', 

where w' E lRN is a new control input, we would sim- 
ply get 

(16) 
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i.e., a linear and decoupled relation between each in- 
put wi and each output fi (i = 1 , .  . . , N ) .  Owing to 
Property 1, the control law (15 )  inherits a hierarchical 
structure and is thus well defined, even if its imple- 
mentation requires input differentiation. 

To avoid input differentiation, we proceed in a dif- 
ferent way by adding on each input channel ui a string 
of integrators. In particular, 2 ( i  - 1) integrators, with 
states &.j, are put on the i th channel (i = 1,. . . , N ;  
j = 1,. . . , 2 ( i  - 1)): 

ui = 4il 
421 = 4i2 

- 
42,2( i - l )  = wi , 

where Ur E RN is a temporary control input. The total 
number of added integrators is N ( N  - 1). Denote by 4 
the vector collecting the states of all these integrators. 
Differentiating 22 times the ith scalar equation in (14), 
and keeping into account the dynamic extension (17), 
we obtain, for i = 1,. . . , N, 

channels is N ( N  + 1). Therefme, in the closed-loop 
system, we have still 2N unobservable states from the 
output p. 

3.3 Iinput-output decoupling w.r.t. q 

As the last algorithmic step, we tackle the input- 
output decoupling and linearization problem for the 
original output q .  The mapping from f to q,  repre- 
sented by eq. (13), contains the main nonlinearities of 
the robot link dynamics. In ordler to cancel them in a 
well-defined way, we need to dynamically balance the 
input-output relations in eqs. (1.9). In fact, differenti- 
ating 2(N - i) times the ith equation in (19) we get 

d 2 ( N - i )  d2i  fi d2(N- i )u , i  

&2(N- i )  &2i - &2(N-if- (20) ~- - 

for i = 1,. . . , N ,  where bi(q) the ith column of the link 
inertia matrix B(q).  

To avoid differentiation of the input w, we add 
2(N- i )  integrators, with states ,&j, on the i th channel 
( i  = 1 , .  . . , N ;  j = 1,. . . ,2 (N - 2 ) ) :  

wi = $il 

$21 = $22 

(21) 
- 

$i ,2(N- i )  = 

where g E RN is a temporary control input. The total 
number of integrators is again N ( N  - 1). Denote by $ 
the vector collecting the states of all these integrators. 

Resume the vector notation and rewrite eqs. (20), 
using eqs. (21 ) ,  as 

N 

= - s ~ , ~ + ~ ~ ~ + ~  - sz3+3,22+1+ K ~ G ~ .  
3=2+2 

By defining recursively the control law for E 

KNGN = WN 

KN-IGN-I  = S N - ~ , N G N  + W N - I  

KZGZ = SZ,Z+l~Z+l + 

(18) 
N 

S2343,2z+l + WZ 
3=2+2 

( i  = N - 2,  N - 3 , .  . . , l), 
Performing differentation term lby term gives 

Equations (19) show again a linear and decoupled 
relation between each input wi and each output ff, 
resulting now from the application of the linear dy- 
namic compensator U = u(4,w) obtained through 
eqs. (17) and (18). Indeed, when combining this com- 
pensator with eq. (12), a nonlinear dynamic state feed- 
back T = ~ ( 4 ,  @, Q, d, w) is defined for the original robot 
torque input. The total number of states of the robot 
and of the compensator is N ( N  + 3)  whereas, from 
eqs. (19), the number of states on the input-output 

where 

+ c{2N)(q,cj)  + g { 2 N } ( q )  + Kq{2N) ,  ( 2 2 )  

and we lhave used the notation a{z)  := d z a / d t 2 .  There- 
fore, by defining the linearizing control law 

(23) 
- w = B(q)w + n(q,@,. . . , q { 2 N + l } ) ,  
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we finally obtain Also, efficiency is obtained by exploiting recurrent 
calculations. 

We have implicitly assumed that all the strictly 
upper triangular elements of matrix S in eq. ( 3 )  
are different from zero. If some of these elements 
vanish, the dimension of the required dynamic 
compensator may decrease together with the 
lengths of the input-output integrators chains (7). 
The output relative degrees can also become one 
different from the other. Therefore, the value 
M = 2 N ( N  - i) is in general an upper bound 
to the dimension of the linearizing dynamic con- 
troller. 

Note that eq. (23 )  can be seen a generalization of the 
computed torque method for rigid robots and is glob- 
ally defined thanks to the positive definiteness of the 
link inertia matrix B(q). 

Input-output decoupling and linearization has been 
achieved by means of the nonlinear dynamic feedback 
w = w ( q , q , .  ' . { 2 N + 1 } ,  $ , U ) ,  obtained from eqs. (21) 
and (23 ) .  Note that the dependence of this control 
law on q and on higher derivatives can be eliminated 
recursively, in terms of the robot state ( q , Q ,  q ,  8) and 
compensator state ($, $). 

Define the total state of the dynamic compensator 
as < = (q!~,$), which is of dimension M = 2N(N - 1). 
By combining eqs. (12), (17), (18), ( 2 l ) ,  and ( 2 3 ) ,  we 
obtain a nonlinear dynamic state feedback control law 
7 = T( Ic ,< ,u )  with the structure (5-6). Furthermore, 
eqs. (24 )  are in the form (7) with uniform relative de- 
grees p ,  = 2 ( N  + l), for all i = l , .  . . , N .  Condi- 
tion (8) is then fulfilled since the number of states on 
the input-output channels ( 2 N ( N +  1)) equals the sum 
of the number of states of the robot ( 4 N )  and of the 
compensator (2N(N-1)) .  Thus, we have no more un- 
observable states left in the closed-loop system, which 
is in turn completely described by the linear input- 
output dynamics (24 ) .  

3.4 Remarks 

0 Stable tracking of a reference trajectory q d ( t )  is re- 
alized by any standard control technique for linear 
single input-single output systems. For example, 
using pole assignment we choose, for i = 1,. . . , N ,  

where the kij 's  are coefficients of Hurwitz polyno- 
mials having prescribed roots in the complex left- 
half plane. From eqs. (25 ) ,  it follows that perfect 
tracking is obtained for 2(N + 1)-times differen- 
tiable trajectories. 

0 The main computational effort of the dynamic 
controller is concentrated in the evaluation of the 
term (22 ) ,  which in turn requires the explicit ex- 
pressions of the linearizing coordinates q{i}  (i = 
2 ,  . . . ,2N + 1) (see also eqs. ( 2 5 ) ) .  These compu- 
tations can be customized for a specific robot arm 
since all components of the control law are defined 
in terms of the available dynamic model elements. 

0 

0 

4 

It is immediate to verify that, when S = 0, the 
three steps of the above algorithm build up the 
static feedback linearizing controller of [7]. In 
particular, the dynamic extensions in eqs. (17) 
and (21) vanish. 

Application to a 2R planar robot 

The dynamic model of a two-link ( N  = 2 )  planar robot 
with elastic joints (see Fig. 1) has the form of eqs. (3-4) 
with 

0 Jm27-2 
. = [ o  0 1  

where c2 = cos q 2 ,  s2 = sinq2, and the dynamic coeffi- 
cients are 

a1 = 11 + m l d l  + (mr2 + m2)ty + Jm2 + I2 -t mad: 
a2 = I z + m z d i  

a3 = mse ldz ,  

being m, the total mass of the i th link (including, for 
the first link, the stator mass of the second motor), 1% 
the inertia around its center of mass, d, the distance 
of the center of mass of the i th  link from the i th joint, 
( 1  the length of the first link, and mr2 the mass of the 
rotor of the second motor. 

In this case, the single nontrivial element in matrix 
S is non-zero and the linearizing dynamic compensator 
has dimension M = 4, attaining its theoretical upper 
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bound. Also, from eq. (24), the closed-loop system will 
be equivalent to two chains of 6 input-output integra- 
tors. These results are consistent with those found 
in [lo]. The following derivation should be compared 
with the (partial) results contained in that paper, in 
order to fully appreciate the reduction in complexity 
of the controller. 

m2 I2 I 

Figure 1: A 2R planar robot with elastic joints 

The control law (12) becomes in this case 

71 = Jmlr? u1 + K1(el - ql)  
J r  

A 
7 2  = - m2 [ r p  ~ u 2  

+ a 2  Kl(q1 - 01) - ( a 2  + a3C2)  K 2 ( q 2  - 6 2 )  

- a;s2c2 4; - a 2 a 3 s 2  (ol + 42)2] -+ ~ ~ ( 0 ~  - q2), 

with A = det B = az(a1 - 122) - U; cos2 q 2  > 0, and 
similarly A with 61 = a1 - J m 2  in place of al .  

The dynamic extensions (17) and (21) are both of 
dimension 2. Combining them with control law (18) 
leads to  

U2 = 4 2 1  

4 2 1  = ($22 

$11 = $12 

$12 = 211. 
- 

Finally, the control law ( 2 3 )  is 
- 
U1 = (al + 2a3c2)v l  + ( a 2  f a3C2)Uz f n] 
- 
212 = ( a 2  + a 3 c 2 ) v l  + a 2 v 2  + 722. 

The two-dimensional vector n is here, dropping depen- 
dencies, 

To get am idea of the involved computations, we give 
hereafter only the expression of the sum of the terms 
related to  the link inertia matrix (first four above): 

Indeed, evaluation of terms could be organize( differ- 
ently. Similar formulas are obtained for ~ { ~ } ( q ,  4). 

To complete the construction of the controller, we 
need the explicit expressions of the linearizing coordi- 
nates. These involve computing, in the proper order, 
the following time derivatives as functions of the robot 
and compensator states: 

Note that inversion of the link inertia matrix should 
be performed only once. 
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Using instead a dynamic linearization algorithm de- 
fined on the state-space representation of this robot, 
as in [lo],  leads to a complete expression of the con- 
trol law contained in about 200 lines of high-level code, 
already after careful optimization of redundant com- 
putations. 

5 Conclusions 

For a class of robots with elastic joints in which static 
state feedback fails to achieve exact linearization and 
input-output decoupling, we have introduced a new 
general algorithm for the synthesis of a model-based 
dynamic state feedback law reaching the same control 
goal. 

Only the second-order robot equations have been 
used in the analysis and in the control design. More 
physical insight is gained by working directly with the 
dynamic model terms, while control computations can 
be efficiently organized and thus quite reduced. 

Although we have assumed throughout the paper 
ideal conditions, with perfect knowledge of the robot 
dynamic models and availability of full state measures, 
the present result can be used as a starting point for 
the definition of adaptive and robust controllers, pos- 
sibly based only on feedback from the link position 
output. 

We are currently considering the extensions of this 
algorithm to the case of robots with mixed (rigid or 
elastic) type of joints [14], or with visco-elastic joints. 
In the latter case, a zero-dynamics appears and only 
input-output linearization, with internal stability, can 
be achieved. 
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