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Abstract : !

A recursive algorithm for estimating linear models with both constant
and time-varying parameters is derived by maximization of a likelihood
function. Recursive formulas are also derived for derivatives of the
‘lj_kelihood. fﬁnction; the derivatives are needed for numerical evaluation
of some parameters. Smoothing formulas are also derived. The esti-

mation algorithm 1s compared with others for similar classes of models.
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‘1. INTRODUCTION

In recent years many economists and statisticians have observed that
the traditional linear model with constant coefficieﬁts is inadequate for
the description of several phenomena.. Individual effects across a
population or systematically varying behaviour over time offer two examples.
The literature on stochastic parameters has protided several arguments
justifying the nonconstancy of parameters over different observations,
the reader is referred to Rosenberg (1968) and Cooley (1971) among others.
A survey of the existing literature can be found in Rosenberg (1973a).
The state of the art in estimation techniques for several stochastic
parameter models has been summarized in Annals of Economic and Social
Measurements, Vol. 2, No. 4 (October 1973). | ;
 This . paper. presents ah algorithm for estimating stochastic variations
in a model that is more general than the most general model that has been
analyzed before, that of Rosenberg (1973b). | |
| ‘ In.Section 2 the problem that is solved is stated, in Section 3 the
| recursive formulas for the maximum likelihood estimators are.computed;

Section Y restates some well known results about smoothed estimates, and

Section:5 gives a brief summary of the results.




2. PROBLEM STATEMENT

The model that will be analyzed is the following

Y& AJc o + BtB,c+€Jc | (1)

Ct= 1,2,..., T
where |
V¢ - 2 x 1 vector of'observations at time +t
o - rx1 vector of constant parameters
Bt -k x 1 vector of randomly varying parameters
Ap,Be - (xr) and (fxk) matrices of observations of explanatory

variables at time t.

€r - &x1 gaussian vector of randdm terms with the following
properties

E(e,) = 0 t=1,2,.1., T | (@

E(eieﬁ)f= o Q Gij i3= 1,2,...,T 3"

v ) 2
where Q 1is a symmetric 2xf positive definite matrix, o is a scale

factor, and Gij is the Kronecker delta.

The random parameters will be assumed to obey a transition relation

of the Markov kind.
By = @By g * g | RS2

where u, are normal with E(ut) =0 t=1,250.., T (5)

o,

% The apostrophe (') denotes transposition.




2 . .
E(uiué) =0 Rsij 1,371,2,...,T " (6)

where R is a symmetric kxk positive definite matrix. The initial vector
B will be assumed constant but unknown.

A model like this can arise for example in the analysis of a cross-
section of time series. Rosénberg (1973b) analyzed a model like this
with the exception that he did not consider the constant term ¢a.~ The
recursive formulas that he presented do not hold when such a vector of
constant parameters coexists with the vector of stochastic ones. A
particular case of model (1) with 2=1, k=1 and_Bt=l was analyzed by Cooley
(1971) and Cooley and Prescott (1973). However,.tﬁeir procedures are not
recursive and can quickly become unmanageable for large sample sizes.
Sarris (1973) has analyzed a particular case with A{=0 £=1 but his
procedure is also not recursive.

The particular case of A=0 has also been analyzed extensively in
the engineering literature under the name of Kalman filters (see e.g.
Sage and Melsa (1971)). The difference between those models and the

’ épecial case of the one considered here (with AT=O) is that in our case
| the initial vector B, is constant but unknown, instead of having a well
defined prior density. The case of constant By gives rise to what is
‘ - called the starting problem which proved quite troublesome until

Rosenberg (1973b) solved it correctly.

We shall assume that the transition matrix ¢ depends on a vector

of constant and unknown parameters 6¢ (whose location in ¢ is known).




Furthermore Q and R will be assumed to contain vectors of unknown para-

meters Oq and Or respectively (with known locations in Q and R) We shall

define

0= (8; , 07, 07 (7

It is important to emphasize the assumptions that Q and R are both

positive definite. The most general model one would want to analyze in

this framework would be the following

- T
V&5 Yt T &t (8)
Ve ¢Yt—l ey o (9)

where all the previous assumptions ‘on the random terms hold except that

2
E(uiuj) = 0 Rsij

with R positive semidefinite. It is clear that (1) is a special case

of this model. If Yy is given a proper prior density then the results

of the Kalman filter literature cover this prpblem: However, when.yl

is constant and unknown, a case which is most prevalent in statistics

and econometerics, the Kalman algorithm does not hold and Rosenberg's
(1973b) algorithnxholds only if R is positive definite. The general
problem of arbitrary positive semidefinite R has not'as yet been solved.

The complete problem is now restated.

) 2 .
Problem. Estimate a,Bl,o, 0 and B, Bg,...,BT given the data yt,A.t,Bt

t=1,2,% 00,7
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where

1l

Yt A o+ B B+ ey (10

Bp® OByt Wy (L

3. MAXIMUM LIKELTHOOD ESTTMATTON

In this section we shall derive a recursive formula for the likeli-

" hood function.  Let us make the following definitions

y?l}_ = {yi, yjé+l,. .o ,yj} (12)
' 2 o
p = {u,Bl, o, 8} . (13)
j - ’
A; = A, Ai+1""Aj} (14)
B = {B.,B...,...,B.} |
i i27i+1277 7y

B i
\ ‘.

Then the likelihood of ﬁfgiven‘the data 1is

» T - s ‘

L AT gT Ty 'y = 7 =17t oty ro

LCwyy»A7>B)) = plyp|w) = “1P(yt | vy s A BLW 6
| R ,

where

P(YIIYj_Oa A%a B]ia uw = P (yllAlaBlaU) (17)

3.1 Computation of p(ytlylt-l, A;, BE, ")

In this subsection we shall compute one of the factors of (16).

In the process we shall also derive the Kalman filter for Bt'




-1 ,t t-1 t ot ot

: t t + t t
P8, |y AT BY W) = p(B, [y],AL BT 1)
t t o '
p(ytly A7 5B 51) o (18)
Let us assume that the density p(Btl A1 Bl,u) is normal with mean

Btlt—l and covariance matrix Mf[t—l. Frpm (10) we obtaln

tl t t

| -1
2/2 QIQI% exp {- =~ (y,-A0-B,B,)7Q

( 20 :

(y-Ay o-B B8O} | | (19"

We thus obtain that the left hand side of (18) is equal to

1 L exp {— — [ (yt A%u -B_ B )’Q“l
k+2 K+2) 1% % 20
aBE Py
| -1
(y,~A0-B.B) + (B, 8t|t )M -1 GH Btlt—l)]}’ (20)

By rearrangement of the terms inside the brackets of the exponent in (20)
we obtain the following equality.

b _1 . ‘ -~ —l - i
(y -Ao-B B )°Q "y ~A0~B B + BBy 1) M|y BB

=(Bt_6t|t)’M |t (Bt Bt[t) + (y~Ao-B, Bt )7

(Q + BM tlt 1B (yt “‘Btst[t-l) ‘ (21)
where 7 ,
M= 0f It L+ B QBT ] e-1Me | e-1Br [Q+BtM%|t-iB£]_l‘
Bl |1 @)

%  Two bars | | denote determinant.




3.2

| e
Belt ™ Ml o 1 Bl * P QT A)] =
Beje-1 * Mejeo1 B (Q+Bt [ 1e-1B0) (yt AOBB 1) (23)

The formulas (22) - (23) are with minor variations the ones known as

the Kalman filter in the engineering literature.

It is now easy to see from (18) and (21) that p(Bt]yE,AE,Bf,u) is
normal with mean Btlt and covariance matrix szflt given in (22) and

(23) respectively. Consequently p(ytlyt—l A; B{,p) is also normal with

mean Ao + B Btlt ;. @nd covariance matrix equal to Y (Q+B e |- lBt ).
along with the extrapolation formulas

Brep|t™ 9Be)t (24

M't"'ll't: M‘t"t+R (25)
and the initial conditions

Computation of the Likelihood Function

After the results of Subsection 3.1 we can apply (16) to 6btain

an expression for the likelihood function. We obtain

T
T T T t-1 ,t ot
L (U; yl’Al’Bl) = 1 lp(y'tly l’Bl’ )
: t=
T 71 exp =5 (yt t Bebefe1)”
t=1 (2n)£ 2t 2"

o”|QB,M ¢ [ e-1B¢ | %




(Q+BtM£|t-1B ) cythta—Bt §t]t*1)} 
B |
_ T O e .
= - = - exp { - i:lcyt Ag ‘BtBt[t-l)
Com) T4/ 2, T4 t1:11]Q+BtMtlt_IBt] 20
. el - g
(Q+BtMt|t—1Bt) (Vt"At“"BtBtlt—l)}‘ (28).

For maximum likelihood estimation of ﬂ,thiS'qﬁantity or its logarithm

must be maximized with respect to d,Bl,cz and 6.

2
3.3 Estimation'of‘a,Bl, o

In this section we present recursive estimators of o and Bl and an

estimator for o’. It can be easily seen from (22) - (27), that Mﬁ]j—l

does not depend on Bl,a or 02; and that Bj]j—l depends linearly on both

Bl and o. Let us thus denote i

Bslx T Hs|x slk®F =5 By 4(29)'

We can immediately see from (26) that My (o 0, B 1'0 = 0 El|0=I (30).
(Note that the:  0's: and ='s are kxr and kxk matrices respectively).

Using the formulas (23) and (24) we can cbtain recursive relations for

1, 0, and =. They are the following.
Mee |t M)t (31)
O LT Oy (32)
= 1]t et (33)




el T utlt-l Mile-1 B Q@BMijea t) (7 By (39

O gt T O ele-1 T M ranBe @B M| t) (A¥BL0 14 p) (35).
“tlt TS - M (Q*B My 1Bf ! B,z (36)
B R f = B ol = 1B t]t-1"t) Pt |-l .

These formulas are identical to those of Rosenberg (1973b) with the

addition of (32) and (35).

We rewrite the exponent of the likelihood function in (28) as follows

T |
tfl(yt'At“‘BtBtlt )7 (QBM tlt BT (A Bebile-1)
T - . '
= % (y,-A,0-B,u -B, © o -B.Z.,. 18,) (Q+B.M.,, B.) T
e e L R tTt|t-1"1 ttt-1t

YA Bl 1B @ t)e-1 Befe)eo1fr)

T
" I OBy ea)” (@B BOT - Bhe|e-1) *
i . ' -2 o'F-28" h.
o'Fpo + 8] HiBy + 2a' GBy ~ 2 a'f-287 hy, | (37).
where
Fs % (A4B, )" (Q+B Tyt 0
775 BB O (@BMyeaBe ) BB O ) GB)
T -1
Hp= 2 5 1P @B My e 7 Befejea ' (39).
T -1
GT = I (A't+B"t e 'tl't—l) (Q+B'tM't|'t—l B't) ' B_tE_tl_t_l ‘ (40).

t=1 -
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T | |
_ | . -1
= + (S] -
fp7 DAL 0 )T @By gBDT B ) ().
T 3 |
= L =70 B _“(Q+B,M B/) ™ (y,-B,u ) (42).
br” 2 fleat Lot £ -1

Maximization of the likelihood function with respect to o and Bl
is equivalent to minimization of the quadratic form in (37). We take
the derivatives of that expression and set them equal to. zero. We

obtain the following two eguations-

Fo + G ~fy = 0 | (43).
HT31+ G@a - hT =0 ' ‘ (ub).
or | |
- e r
FT GT o fT
) = ~ (45).
B | |
therefore
I E 1T
(04
. |t & T (46).
Byl S Hp B |
or ) ) ’
gud ~1.y-1 - |
o= G TA T (G R 7).
NPT o I Ccal U S (18)
1 = Hp GTV T Gr hpeGp B Iy _ )

The only thing that needs to be examined is the invertibility of
the matrix that premultiplies the parameters in (45). We now state and

prove a theorem that will guarantee it. Before we do this we define the

following two matrices.




W=
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g

X= | | - (50)

X25 B3¢ - o (51)

the theorem .can now be stated.

Theorem 1 . A sufficient condition for the invertibility of the matrix

3

s

GT” defined in. (45) is that the matrix

—

.
-

Xl . X2 has full column rank.

Proof. Let us assume that the matrix X= [Xl . X%] has full colum rank.
Then it will be true that the matrix X'X is positive definite and hence
invertible, and also that the matrix X'yYX, where ¢ is positive definite,

is also positive definite and hence invertible.

We now consider the original data and substitute Bt as follows
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— | - 2 —_
BpdBy g T g = 0 Bt-2_+ dupp Fupg T e

-1, .
R A T A

- J
:l- N

We then obtain

vy T A oFBoBytey

Yy = Ay 0¥B B By te,

‘A ot BoTls 4B g
yp = SAp ot B 7By + By ;

or more compactly.

y = X0ty v | (53).

Where y 1is the vector of left hand side observations and v is the
vector of obviously non-spherical residuals. Let us denote the covariance
matrix of v by V. Then it is well known that if the matrix X= [xl:xz]

is of full column rank, the best linear estimates of o and Bl are

obtained by Aitken's estimator which in this case is-

1~ = vt xvly (54).

The same exact expression- for a ﬁl is obtained if we write the like-

el N el

lihood function of y from (53) and maximize it with respect to a and Bl.
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However, this is exactly how we arrived at (45) only via a recursive
formula. Therefore, the normal equations must give the.same solution
in both casés. We conclude that the matrix W must be equal to the
producf of a nonsingﬁlar matrix and X'V_lX. Hence, since X'V_lX is
invertible we are done. ||.

The maximum likelihood estimator of 02 is easy tb find after the

expressions for o and’ Bl are substituted in (28). By differentiating

the likelihood function and setting the derivative equal to zero we obtain:

oA T R R o |
s n e
. T%' i:l(yt A% 7 Bl Ol Bt By

-

—l . Cal ”~ _ >~ .
[t-188) T BB -B @ tlt-1 BBy

(Q+BM,

T 7 -1
D O By’ @B My aBD T OBy -
=1 | |

: F. G.] -1 [f
- Gphp | ] T ! (55).
| Gr Hp e

3.4 Estimation of 6.

. 2

The estimators of Bt|t4l’ Mf|t—l’ a,Bl, and ¢ all depend on the
elements of the vector 6. The log-likelihood function for 8 is found after
substituting out the estimated values of cz,a, and*Bl. It is given by

the following expression.

T .

T T _T ‘
log L (95 yl; Al’ Bl) = - -.T_SQL— log Z (y't-B'tu'd't-l)
t=1
(Q+B.M 0
tE]t-1t
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" ‘ —1 "4 "'1 ,' v/ -
Wy Bpiy|eon? = fp FpeGipep) © fpehg (Hp-GpEnGr) g

o R R
- 26 (FGp By ap) G hy b -

TL

1 vy
2 7

. log |Q+Bt Mflt-l B7| +

(lcg T + log 2n+1) (56).
The above expression is impossible to maximize analytically with respect
to 6. NUmerical maximization of it will require the derivatives of this
expression with respect to the elements of 8. We now proceed to derive

- recursive formulas for these derivatives. The procedure will be to
consider each term of (56) separately and obtain its derivatives with
respect to each compoﬁent of 6. We will bear ih mind the decoﬁposition
of 6 into unknown elements of ¢, Q and R respectively given in (7).

The quantities whose derivatives will be needed are the following:
Helt-1° Q+ Bth|t—14 By lQ+BtM£|t—1Bt'= FoHpsGpsfrahy

From (38)-(42) it can be seen that the derivatives of FT,HT,GT,fT

and hq will be determined by the derivatives of H t]e-17 Etlt;l’

By

+
Hele-12 @ F By Myjenn
So the quantities whose derivatives must be computed are: .

Mo B ogfees Sefe-1 BMpje B and |QWBJM 4B

for all 1<_ t< T.

Referring to formulas (31) and (34) the derivative of ut|t—1 is easily

found.
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Me g1t = 9 Mt Oy |t (57).

90 36
90 . .
¢ij ¢1J ¢1J
au' ; ou oM - -1 _
tt = tlt-1 + Tt BY <Q+B e[t t) (yJc Bt“tlt—l)
30 9 30 ' |
%13 %913 bi5
-1, M ' -1
M1 t o, (QBM BT B Tt By (Q*By_1B0)
38,
ij

B%) o,
VeBikpjpn) = MppeaBe (@B M et 180 B ——Elﬁll (58):

96
oM
The matrices __ijiiiL can be computed recursively by differentiating
90,
955
(25) and (22).
W ¢ My | (59)
a0 ‘ 96
qij : qij
ou O oM -1 v
tit tlt-1 + Ttft-1 B (Q+B e [ 1B7) (yt'Bt“tlt-l)"
20 90 06
933 diy i3
(Q+B ) Q4 BJc BM'Jc -1 BJc
tlt 1B¢ tt|t- 18t 36 56
1] qij
(Q+BM Bt

tt|t- 18+
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ou
Ve Bebe |1~ Me|eo1Br (QFBM t]t-15¢ -Btae (60).
qij

BM% t-1 is again generated recursively by differentiating
36

Qi3 (25) and (22).
Mgy = ¢ FMplp |

tl o= ¢ tlt (61).
36 56 -

r.. r..

1] ij
S 1. _  Ou, CaM .
Tl = t)t-1 + Tt|t-1 (Q+Bt -1 t) (yt t“tlt 1) -
36 R3] a0

.. r.. ..

1] 1] 1]

-1
tlt-l B; (Q+B -
"Mt|t (Q BM t ot t- 1B t t tlt 1t
ljv _ o

(yt"Bt“t[t;ﬁ - t|t BBy t) By 2 (62).
aMt|f--l is recursively computed by (25) and (22).
aerij The initial conditions for (57)-(62) are

all zero.

From (32), (33), (35) and'(36) it can be seen that the derivatives of

Ct)t-1, Tl

Q+BtMIt|t_lBt depend on the derivatives of ut|t—l and

Mf|tél which we just analyzed.

So the last thing needed to complete the analysis is the computation of
- the derivatives of the determinant quantity. Let X denote a nxn matrix with

TOWS Xl, Kpaeens Xy Then the following formula can be proved easily by the

definition of the determinant function (n is a scalar)
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%) .
9|X ox X
_ |1} 21 2 1 © (83)
on on P) .

p 4 n . ’

2 .

. . Bgn

: + : +.. .+ 5

n X n

n.

If we denote the rows of Bt by b; i=1,...% and the rows of Mtlt—l by
+ .

. .. ,th - ..
nﬁ j=1,..., k, then the 13 element of BtM'tIt_lBt is given by
-~ . k ‘
{BtMtlt_lBt} i3 ° n§1 Bin M, b3 (64).

It can thus be seen that the derivative of the determinant depends upon the

derivatives of Mt which we analyzed.

|t-1
These recursive formulas for the derivatives are lengthier than the

computation required to compute the numerical dérivatives. The advantage,

however, is that we obtain the exact derivatives as opposed to numerical

approximations. The exact tradeoffs must be evaluated through numerical‘

experiménts which will be deferred to a later paper.

. SMOOTHED ESTTMATES OF B,

The procedure described in the previous section led to maximum
likelihood estimates of all the unknown constants i.e. a,Bl,Oz, and 6.

We also obtained the maximum likelihood estimator of BT namely

} B 2 _ . » ’ e ~ A
Bi|¢(Brs 0 075 0) = gy (0 + 0 11 (8) o+ 5,1 (8) By (65)

T
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For the solution to be complete we need estimators for Bt k=T that are‘
based on 41T the data from 1 to T and not only up to t as we have obtained.
We thus need "smoothed" estimates of Bt’ e. the‘quahtities BtIT’ as opposed

to "filtered" estimates Btlt'

What we would like to obtain ideally would be the density

"p(82,83,-..,BT|y$ ). As wevformulated the problem we have
available T

p(Bszl, B, 50,50 ,0) = TUTTEELTATL T

(68).

. 2
'P(yI]I_‘ lBlaO"aO ,6)

For the true values of the unknown conditioning parameters the postefior '

density if normal. We take the‘empirical Bayes view and estimate Bg as
the posteriorlnbde of (66) conditioned upon the estimated values of
81,a,02 and 6.

Sarris (1973) has shown formulas for the posterior mean and covariance
matrix of BE but those formulas are not recursive and hence of limitedr

practical value. Recursive formulas have been computed by Rauch et. al.

(1965) and are repeated here for completeness.

0 oa e L
Bepr =1 Bty O R 007 C

!
(67)

8t+1|T'¢8t|t)
M%lT - Mﬂt ¥ M%|t¢ (R+¢Mt|t¢ ) (Mf+1|TfMt+1[t) ¢'Mtlt
I (68)
t]t

The procedure starts at time T with BT]T and MTIT computed by the
formulas of Section 3.
Another method that could be used would be to consider the density

. 2
D8I, v1 | B0 5 0)

and maximize it with respect to 61,a,02,6 as well as Bg . The conditional

2 .
estimates of BE conditioned on B1,0,0 , 8 would be the same as obtained
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above. . However, the estimates of a,81,02,6 would not be the same. This
method has been used by Bar-Shalom (1973) and Masiello (1972). It is not
clear at this point how these two different methods of estimating the
unknown parameters compare.

. CONCLUSIONS

The contribution of this paper is two fold. First it presents a
recursive solution to the general problem of estimating a combination of
constaﬁt and time varying parameters. Then 1t presents recursive formulas
for the derivatives that are undoubtedly required to numerically maximize
the likelihood function withirespect to the pafameters that appéar

nonlinearly.

-

It is hoped that this type of approach will help the more general

problem of estimating combinations of time varying and constant parameters

which obey some non-random restrictions.
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