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Abstract /

A recursive algorithm for estluating linear models with both constant

and time-varying parameters is derived by rraxiization of a likelihood

function. Recursive formulas are also derived for derivatives of the

likelihood function; the derivatives are needed for numerical evaluation

of some parameters. Smoothing formulas are also derived. The esti—

rnation algorithm is compared with others for similar classes of models.
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1. INTRODUCFION

In recent years many economists and statisticians have observed that

the traditional linear model with constant coefficients is inadequate for

the description of several phenomena. Individual effects across a

population or systematically varying behaviour over time offer two examples.

The literature on stochastic parameters has provided several arguments

justifying the nonconstancy of parameters over different observations,

the reader is ref erred to Rosenberg (1968) and Cooley (1971) among others.

A survey of the existing literature can be found in Rosenberg (1973a).

The state of the art in estimation techniques for several stochastic

parameter models has been sununarized in Annals of Economic and Social

Measurements, Vol. 2, No. (October 1973).

This paper. presents an algorithm for estimating stochastic variations

in a model that is more general than the most general model that has been

analyzed before, that of Rosenberg (197 3b).

In Section 2 the problem that is solved is stated, in Section 3 the

recursive formulas for the maximum likelihood estimators are computed,

Section - L restates some well known results about smoothed estimates, and

Section 5 gives a brief summary of the results.
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2. PROBLEM STATEMENT

The model that will be analyzed is the following

t At
+ Btt+st (1)

t= 1,2,..., T
where

1 vector of observations at time t

1 vector of constant parameters

1 vector of randomly varying parameters

(2.,xr) and (Qxk) matrices of observations of explanatory

variables at time t.
- x 1 gaussian vector of random terms with the following

properties

0 t=1,2,h, T (2)

E(c1!)= Q ci 1= 1,2,...,T

2
where Q is a symmetric 2,x9. positive definite matrix, o is a scale

factor, and .. is the Kronecker delta.ii
The random parameters will be assumed to obey a transition relation

of the Markov kind

= t—1 + t-l (4)

where u are normal with E(ut) 0 t=l ,2,..., T (5)

y - 2 x

a- rx

At,Bt
-

The apostrophe (') denotes transposition.
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E(u.u!) = ci2R.. i,j=l,2,... ,T (6)1] 1]

where R is a syrrmetric kxk positive definite matrix. The initial vector

will be assumed constant but unknown.

A rrodel like this can arise for exaule in the analysis of a cross-

section of tine series. Ros:enberg (1973b) analyzed a model like this

with the exception that he did not consider the constant term c. The

recursive formulas that he presented do not hold when such a vector of

constant parameters coexists with the vector of stochastic ones. A

particular case of model (1) with 2..=1, kl and Bt1 was analyzed by Cooley

(1971) and Cooley and Prescott (1973). However, their procedures are not

recursive and can quickly become uimanageable for large sample sizes.

Sarris (1973) has analyzed a particular case with At0 £.=l but his

procedure is also not recursive.

The particular case of AO has also been analyzed extensively in

the engineering literature under the name of iKalman filters (see e.g.

Sage and Melsa (1971)). The difference between those models and the

special case of the one considered here (with Ao) is that in our case

the initial vector is constant but unknown, instead of having a well

defined prior density. The case of constant l gives rise to what is

called the starting problem which proved quite troublesome until

Rosenberg (1973b) solved it correctly.

We shall assume that the transition matrix 4 depends on a vector,

of constant and unknown parameters (whose location in is known).
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Furthermore Q and R will be assumed to contain vectors of unknown para-
meters and 0r respectively (with known locations in Q arid R) We shall

define

0 (e , o; op (7)

It is important to emphasize the assumptions that Q and R are both

positive definite. The most general model one would want to analyze in

this framework would be the following

yt + (8)

Yt= 4i
+ ii_ (9)

It-i

where all the previous assumptions on the random terms hold except that

E(p..) =

with R positive sernidefinite. It is clear that (1) is a special case

of this model. If is given a proper prior density then the results

of the Kalman filter literature cover this problem. However, when

is constant and unknown, a case which is most prevalent in statistics

and econometerics, the Kalnian algorithm does not hold and Posenberg's

(l973b) algorithm holds only if R is positive definite. The general

problem of arbitrary positive semidefinite R has not as yet been solved.

The complete problem is now restated.

Problem. Estimate c,$1,ci 0 and $2 $,... 'T given the data yt,At,Bt

t=l,2, :,T.
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where

At+tt+ct (10)

t-l + t-1 (11)

In this section we shall derive a recursive formula

function. Let us make the following definitions

{y±

p = {ct,i, a2, e}

3. MAXIMUM LIKELIHOOD ESTIMATION

hood

for the likeli-

(12)

(13)

(l'4)A= {A A A}i - i' L+i'"' j

B a {B1,B.1,.. . ,B.}

Then the likelihood of given the data is

L(p;,4,B)
= i , B,p) (16)

where

p(y11y10, A, B, p) = p (y1A1,B1,p) (17)

t.-l t t
3.1 Computation of p(y y1 , A1, B1, p)

In this subsection we shall compute one of the factors of (16).

In the process we shall also derive the Kalman filter for
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t—1 t t t-l t t t
A1, B1,i) = p(yI,y ,A1,B1,B1,p)

t-1 t t t t t
y1 ,A1,B1,p) p( y1,A1,B1,i)

t-l t t
pt Y1 ,A1,B1,i) (18)

t-1 t tLet us assume that the density p( y1 ,A1,B1,p) is normal with mean

and covariance matrix -• From (10) we obtain

e (ytt_Btt)Q

(yt_At _B)} (19)

We thus obtain that the left hand side of (18) is equal to

1 e - [ (y -A -B )Q
k+ k+2 ;5 2c tt

(2n)—-- c Q
MtIti

+ (t_t1t_i)Mt_i (20)

By rearrangement of the terms i,nside the brackets of the.exponent in (20)

we obtain the following equality.

ttYt Q'(yt ta_Bt)
+ tti-i Mtti i-i

tt +

(Q + BtMttiB)1 (yt_Ata_Btt (21)

where

MI4M;t1
+ Bt [Q+BtMtiiBJ'

BtMtIti (22)

Two bars denote determinant.
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Mtt[Mti tIt-l + t
tIti

+
i B (Q+BtMtJtiB)'(yt_Ata_BtIti) (23)

The formulas (22) - (23) are with minor variations the ones known as

the Ka:Lmmn filter in the engineering literature.

It is now easy to see fnm (18) and (21) that is
normal with mean and covariance matrix a2Mt!t given in (22) and

(23) respectively. Consequently p(ytIy',A,B,p) is also normal with
mean Aa ÷ BttI and covariance matrix equal to ci2

(Q+BtMtIt-l
along with the eth'apolation formulas

t÷ltt tJt (2k)

Mt÷ilt Mtit+R
(26)

and the initial conditions

(26)

0 (27)

3.2 Computation of the. Likelihood Function

After the results of Subsection 3.1 we can apply (16) to obtain

an expression for the likelihood function. We obtain

L (p; llp(yJy_l,4,Bt,p)
11 exp {--—.- (y_A _Btti1)

t1 (2n) 2JQ+BtMtltiBj
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(Q+BtNtitiBP' (ytAta_t tIt-1

T e - _1(Yt_A_BttitiY
(2)TQ/2T 1tMt ItiB!

2a

(Q+BtMt!tlB)' (yt_Ata_Bttit_i)}
(28).

For maximum likelihood estimation of p, this quantity or its logarithm

must be maximized with respect to c,,cr2 and 8.

3.3 Estimation of Cr,1, cY

In this section we present recursive estimators of a and and an

estimator for 02. It can be easily seen from (22) — (27), that M.

does not depend on ,a or cr, and that I3 depends linearly on both

and a. Let us thus denote 1

sJk slk
0
sjk

a +
sik (29).

We can irrirnediately see from (26) that p1 o 0 , 0 0 E (30)

(Note that the 0's. and E's are kxr and kxk matrices respectively).

Using the formulas (23) and (2) we can obtain recursive relations for

p, 0, and . They are the following.

't+1lt
(31)

® (32)

t+lIt tt (33)
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+M B
tIt

= It-1 tlt-1 (Q+BtMtlt_i (yt_Btptit_i)

o o —
MtiiB(Q+BtMtit_1B)' (At+Bto tIt-l

—

Mt t_i (Q+BM11Bp BtE tlt-i
(36).

These formulas are identical to those of Rosenberg (1973b) with the

addition of (32) and (35).

We rewrite the exponent of the likelihood function in (28) as follows

T

1t_Ata_Btt i-i (Q+BtMti_1c (yt_Ata_Ytit-i
T

iti —
Bt 0 tt-l a _BtEtItii) (Q+BtMtItiBY'

(yt__BtPtlt_i_Bt 0 tlt-l a_Bttitii)

T

tlt_BtPtIt_1 (Q+BM11Bp yt_BttIt_i +

a'FTa
+ i HTl + 2a' — 2 a T 2i r

where
T

A+B 0F = E
(At+B i-i' (Q+BtM±iiB

)_l (
tlt—l)

(38)T

T

k-l (Q+BtMtiiB) BtEtIti
(39)

t=l

T
E

(At+Bt 0 tit-i (Q+BtMtIt_i BPBtEt,t_i
(Lo).

t=l
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fTF E(A+B e
(Q+BtMtiisY' (yt_BtPtit_i) (41).

b itQ+BtMtIt_lBP' (ytBtt i-i (42).

Maximization of the likelihood function with respect to a and

is equivalent to minimization of the quadratic form in (37). We take

the derivatives of that expression and set them equal to zero. We

obtain the following two equations:

FTa
+ = (43)

-
hT

= 0 (44).

or

FTGT [T
I I (45).

therefore

a
= FT (46).

• C
bTj

or

(FT_'CY1 (47)

(- ' (- F1 (48).

The only thing that needs to be examined is the inveribi1ity of

the matrix that prenultiplies the parameters in (45). We now state and

prove a theorem that will guarantee it. Before we do this we define the

following two matrices
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A1

A2

(50)

Ar

B1

B24

X2E B342 (51)

T-1
BT

the theorem can now be stated.

Theorem 1 . A sufficient condition for the invertibility of the matrix

rFT G] defined in. ('45) is that the matrix
w I

X has full colunu-i rank.

Proof. Let us assinne that the matrix X [x : x2] has full, column rank.

Then it will be true that the matrix X 'X is positive definite and hence

invertible, arid also that the matrix X'i)X, where i is positive definite,
is also positive definite and hence invertible.

We now consider the original data and substitute as follows
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tt-1 t-l = + t-2 + Utl
tl 1.-

+ u. (52)
jzl

We then obtain

y1 A1 ;+B21+c1

A2 a±B21+B+E2

= ;+ + BT
(T_l_l_) +

or more' compactly.

y = X1;+X21
+ v (53).

Where y is the vector of left hand side observations arid v is the

vector of obviously non-spherical residuals. Let us denote the covariance

matrix of v by V. Then it is well known that if the matrix X [x1:
x2]

is of full column rank, the best linear estimates of a and l are

obtained by Aitkents estimator which in this case is

1—1 —1
(x'v X) x'v y (5'i.).

The same exact expression for a is obtained if we write the like-

lihood function of y from (53) and maximize it with respect to; and
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However, this is exactly how we arrived at (5) only via a recursive

formula. Therefore, the normal equations Trust give the same solution

in both cases. We conclude that the matrix W must be equal to the
I_i '—1product of a nonsingular matrix and X V X. Hence, since X V X is

invertible we are done. JI.

The maximum likelihood estimator of a2 is easy to find after the

expressions for a and are substituted in (28). By differentiating

the likelihood function and setting the derivative equal to zero we obtain:

- T A A I'
a -_ 1(yt_Ata

-
Btlltjti_Bt 0!_ a.BtEtIt j

(Q+BtMt jt_iBt) It_i_Bt e tlt-l a_BtE t-

= t Bp tIt-l' (Q+BtMtItiB)' (YtBttlt_l)] -

IFTGT -l T11— (j1h) I I (55)iJ
3.'i. Estimation of 8.:

The estimators of MtIt-i' a,1,
and a2 all depend on the

elements of the vector 0. The log-likelihood function for 0 is found after

substituting out the estimated values of a2 ,cx, andy It is given by

the following expression.

log L (8; y, 4, B) - T log

(Q+BtMtitiB)'
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tTtIt-l - (FT_G) fT-hi (_FT)T_

2f (FT_GT G) GTI

log
IQ+Bt Mtlt B + (log T + log 2+l) (56)

The above expression is impossible to maximize analytically with respect
to 0. Numerical maximization of it will require the derivatives of this

expression with respect to the elements of 0. We now proceed to derive

recursive formulas for these derivatives. The procedure will be to

consider each term of (56) separately and obtain its derivatives with

respect to each component of 0. We will bear in mind the decomposition

of 0 into un1aown elements of , Q and R respectively given in (7).

The quantities whose derivatives will be needed are the following.

tt-l'
+

BtMtiti, Bt, Q+BtMtItThB!, Ft,,GT,fT,hT

Pr'om (38)—(42) it can be seen that the derivatives of FT,HT,GT,fT

and hT will be determined by the derivatives of H
EtIt_i,

+ Bt Mt,ti B
So the quantities whose derivatives must be computed are

H
Etiti, Q+BtMtti B and IQ+BtMtIt_iBI

for all 1< t< T

Refering.to formulas (31) and (3k) the derivative of ttl is easily

found.
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:::+hlt

tIt + :: (57)

::tlt_1
+ MtIti B (Q+BtMtitiB)' (yt_BtPtit—i

ij i.j

_Mtlti (Q+BMtit 1BY' Bt
::

Bt (Q+BiiB)'

(yt_Bttit_i) MtItiB (Q+BM !tlB' Bt tlt-1 (58)

t 1
The matrices

-
can be computed recursively by differentiating

't1J
(25) and (22).

t÷ilt = tt (59)
30

::tlt ::tlt_1

÷

:tlt_1

MtltiB (Q+BtMtIt_1BP1 (:q.

÷ Bt

B)1]

(Q+BMiiB)'
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____
(Yt.Bt1Jtiti)

-
MtitiB (Q+BMi1BY Bttt_l (60).

Mt Iti is again generated recursively by differentiating

(25) and (22).

- A Lt- ____ (61).
r. • r..
3_I 11

::t
'tt- + Mt!t_l Bt (Q+BtMtt_i BY'(yt_Btpti) —

•.MIB(Q+BM1B) Bt tlt—1 B(Q+BtMt jt_1BP'
Or..

11

1 1-
MttiB(Q+BtMtItiBP Bt (62).

MtIti is recursively computed by (25) and (22).

The initial conditions for (57)-(62) are
•11

all zero.

From (32), (33), (35) and (36) it can be seen that the derivatives of

°tIti, k- Q+BtMtItiB depend on the derivatives of ft—i and

M which we just analyzed.

So the last thing needed to complete the analysis is the computation of

the derivatives of the determinant quantity. Let X denote a mm natrix with

rows , x,..., x. Then the following formula can be proved easily by the
definition of the determinant function (n is a scalar)
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xl xl
JxH x

— 1 2
•2 (63)

X2
:

____+ : +...+ n
x 1]n xn

If we denote the rois of Bt by b 1=1,. . . P and the rows of
Mt jt_i by

j=1,..., k, then the 1th element of BtMtItiB is given by

B M B} .. E b. m b (6'4).
tt!t-lt 1] n1 n j

It can thus be seen that the derivative of the determinant depends upon the

derivatives of Mt Iti which we analyzed.

These recursive formulas for the derivatives are lengthier than the

computation required to compute the numerical derivatives. The advantage,

however, is that we obtain the exact derivatives as opposed to numerical

approximations. The exact tradeoffs must be evaluated through numerical

experiments which will be deferred to a later paper.

SM99JD

The procedure desàribed in the previous section led to rriaximum

likelihod estimates of all the unknown constants i.e. and 0.

We also obtained the iraxijium likelihood estima.tor of T namely

tIt(1;; ;2 = (0) + T!T(0) c + (66)
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For the solution to be complete we need estimators for 1<t<T that are

based on all the data from 1 to T and not only up to t as we have obtained.

We thus need "smoothed" estimates of e. the quantities as opposed

to "filtered" estimates

What we would like to obtain ideally would be the density

p(2 ,,•. 'TIY ). As we formulated the problem we have

available T T 2T T 2 P(2,y Ift ,a,a O)
p(2jy1, 1,a,a ,O)

. 1 1 :.; (66).
T 2

p(y1 ,O)

For the true values of the unknown conditioning parameters the posterior

density if normal. We ta]ce the empirical Bayes view and estimate
as

the posterior mode of (66) conditioned upon the estimated values of
2

i,c,Ci and 0.

Sarris (1973) has shown formulas for the posterior mean and covariance

matrix of but those formulas are not recursive and hence of limited

practical value. Recursive fprmulas have been computed by Pauch et. al.

(1965) and are repeated here for completeness.

tIT tJt+MtJt Mtit t)_1 t+1ITtIt (67)

MtIT Mt!t
+

(÷1lTMt+l!t)
$

(R+M'Y' (68)

The procedure stares at time T with TlT and MTIT computed by the

'ormulas of Section 3.

Another method that could be used would be to consider the density

T 1a2
and maximize it with respect to 1,u,a2,0 as well as . The conditional

estimates of 13' conditioned on (3i,ct,G2, 0 would be the same as obtained



above. However, the estimates of a,i,a2,O would not be the same. This

method has been used by Bar-Shalom (1973) and Masiello (1972). It is not

clear at this point how these two different methods of estiiiating the

unknown parameters compare.

5. CONCLUSIONS

The contribution of this paper is two fold. First it presents a

recursive solution to the geneml problem of estimating a cothination of

constant and time varying parameters. Then it presents recursive fonnulas

for the derivatives that are undoubtedly required to numerically maximize

the likelihood function with respect to the parameters that appear

nonlinearly.

It is hoped that this type of approach will help the rrore general

problem of estirrating corrinations of time varying and constant parameters

which obey some non-random restrictions.
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