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Abstract

Scale score measures are ubiquitous in the psychological literature and can be used as both

dependent and independent variables in data analysis. Poor reliability of scale score measures

leads to inflated standard errors and/or biased estimates, particularly in multivariate analysis. To

assess data quality, reliability estimation is usually an integral step in the analysis of scale score

data. Cronbach’s α is a widely used indicator of reliability but, due to its rather strong

assumptions, can be a poor estimator (Cronbach, 1951). For longitudinal data, an alternative

approach is the simplex method; however, it too requires assumptions that may not hold in

practice. One effective approach is an alternative estimator of reliability that relaxes the

assumptions of both Cronbach’s α and the simplex estimator and, thus, generalizes both

estimators. Using data from a large-scale panel survey, the benefits of the statistical properties of

this estimator are investigated and its use is illustrated and compared with the more traditional

estimators of reliability.
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Scale score (also known as composite score) measures (SSMs) are very common in

psychological and social science research. As an example, the Child Behavior Checklist

(CBCL) is a common SSM for measuring behavior problems in children (see Achenbach,
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1991 for the version of the CBCL used in this paper). It consists of 118 items on behavior

problems, each scored on a 3-point scale (1 = not true, 2 = sometimes true, and 3 = often

true). The CBCL Total Behavior Problem Score is an empirical measure of child behavior

computed as a sum of the responses to the 118 items. The usefulness of any SSM in data

analysis depends in large part on its reliability. An SSM with poor reliability is infected with

random errors that obscure the underlying true score values. SSMs with good reliability are

relatively free from random error, which increases the statistical power of the variable for

analysis. As an example, Biemer and Trewin (1977) show that as reliability (ρ) decreases,

the standard errors of estimates of means, totals, and proportions increase by the factor

. In the same paper, the authors show that, for simple linear regression, the estimator of

slope coefficient, , estimates βρ rather than the true parameter, β; i.e.,  is biased toward 0

if the explanatory variable is not reliable. Estimates of quantiles, goodness-of-fit tests, and

measures of association in categorical data analysis are also biased. Thus, assessing scale

score reliability is typically an integral and critical step in the use of SSMs in data analysis.

A common method for assessing scale score reliability is Cronbach’s α (Hogan, Benjamin,

& Brezinsky, 2000), which is based upon the internal consistency of the items comprising

the SSM. It can be shown that, under certain assumptions (specified below) the reliability of

an SSM is proportional to the item consistency. Many authors in numerous disciplines have

used α to assess the reliability of scale scores (see, for example, Burney & Kromrey, 2001;

Sapin et al., 2005; Yoshizumi, Murakami, & Takai, 2006). For example, Hogan, Benjamin,

and Brezinski (2000) found that α was used in about 75% of reported reliability estimates in

publications by the American Psychological Association. One reason for its ubiquity is that

data analysis software packages (for example, SAS, SPSS, and STATA) provide subroutines

for computing α with relative ease. In addition, few alternatives exist for assessing

reliability in cross-sectional studies. Yet, Cronbach’s α and other so-called internal

consistency indictors of ρ have been criticized in the literature due to the rather strong

assumptions underlying their development (see, for example, Bollen, 1989, p. 217; Cortina,

1993; Green & Hershberger, 2000; Lucke, 2005; Raykov, 2001; Shevlin, Miles, Davies, &

Walker, 2000; Zimmerman & Zumbo, 1993).

For longitudinal data, an alternative to α is the (quasi-) simplex estimator that operates on

the repeated measurements of the same SSM over multiple waves of a panel survey. While

the simplex estimator relaxes some of α’s assumptions, it imposes others that can be overly

restrictive in some situations. A more general estimator extends the simplex model by

incorporating equivalent forms of the SSMs using the method of split halves (see, for

example, Bollen, 1989, p. 213). This method, referred to as the generalized simplex (GS)

method, relaxes many of the parameter constraints imposed by the traditional simplex

method.

The GS model also provides a framework based upon formal tests of significance for

identifying the most parsimonious model for estimating reliability. By imposing parameter

constraints on the GS model, estimators that are equivalent to α, the simplex estimator, and

several other related estimators can be compared for a particular set of data. As an example,

in situations where its assumptions hold, α may be preferred over the more complex,
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longitudinal estimators that typically have larger standard errors. However, for large sample

sizes, bias may be the determining factor and researchers may prefer to compute the

estimators of reliability from the unrestricted GS model. Even in these situations, it is

instructive to identify situations where the assumptions underlying α and the traditional

simplex model do not hold to inform future uses of the simpler models.

The next section briefly reviews the concept of reliability, particularly scale score reliability,

and introduces the notation and models needed for describing the methods. We examine the

assumptions underlying Cronbach’s α and consider the biases that result when assumptions

are violated, as often occurs in survey work. Section 3 considers some alternatives to

Cronbach’s α for longitudinal data such as the simplex approach and a generalization of that

approach that relaxes a critical and restrictive assumption of the simplex model. This section

also develops the methodology for testing the assumptions underlying several alternative

estimates of reliability. In Section 4, we apply this methodology to a number of scale score

measures from the National Survey of Child and Adolescent Well-being (NSCAW) to

illustrate the concepts and the performance of the estimators. Finally, Section 5 summarizes

the findings and provides conclusions and recommendations.

The Need for Alternatives to Cronbach’s α
To establish the notation used in this discussion, let Si denote the SSM for the ith person in

the population consisting of J items yij, j = 1,…,J; Si = Σj yij. Let E(·|i) and var(·|i) denote

expectation and variance holding the person fixed as well as all essential (i.e., stable/

repeatable) survey conditions that obtain at the time of the interview. Let Ei(·) and Vari(·)

(either with or without the subscript i) denote the corresponding operators over all persons in

the population and other sources of variation. The variance of Si can be written as the sum of

between and within subject variance components as follows:

(1)

(see, for example, Lord & Novick, 1968, p. 38). Thus, the reliability of S can be defined

generically as the ratio of the between subject component to the total variance; i.e.,

(2)

(Lord & Novick, 1968, p. 208). The term E(Si|i) is referred to as the true score of Si and thus

VariE(Si|i) is the true score variance. Thus, the reliability of Si is the ratio of true score

variance to the total variance of the SSM. The specific forms of ViE(Si|i) and Var(Si) depend

upon the assumed model for yij and/or Si. The goal of reliability analysis is to obtain

unbiased estimates (1) under the specified model.

One of the simplest models is the so-called classical test theory (CTT) model that assumes

an observation is equal to a true score, τij and a random measurement error, εij

(3)
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where τij = E(yij|i), εij = yij − τij,  and Cov(τij, εij|j) = 0. The CTT model

further assumes that the J measurements are parallel (Lord & Novick, 1968, p. 58); i.e., (a)

Cov(εij, εij’|i) = 0 for j ≠ j ≠ j’, (b) τij = τi, for all j (identical true scores), and (c)

 for all j (equal error variance). Under this model, (2) can be rewritten as

(4)

where  which implies that reliability improves as J increases. It can be further

shown that for a simple random sample of size n, Cronbach’s α given by

(5)

is unbiased for ρ(S) where

(6)

and var (S) is identical to (6) after replacing yij by Si and  by  (Lord &

Novick, p. 92).1 We use the symbol  to denote the estimator of . If the assumption

of tau-equivalence relaxes assumption (c) above to (c’) , or, in words,

error variances differ by item. Even in this more general situation,  is still unbiased for ρ(S)

after replacing  in (4) by . As will be discussed subsequently, Cronbach’s

α may also be estimated within a structural equation modeling (SEM) framework. (See

Figure 1 for the four-item path model corresponding to α).

It is well-known that when the uncorrelated measurement error assumption is violated; i.e.,

when Cov(εij, εij’,|i) ≠ 0 for some j ≠ j’,  is no longer an unbiased estimator of reliability

(see, for example, Lord & Novick, 1968; Green & Hershberger, 2000; Lucke, 2005; Raykov,

2001; Rae, 2006; Vehkalahti et al., 2006; Zimmerman et al., 1993; Komaroff, 1997; Shevlin,

2000). Correlated measurement errors occur, for example, when respondents try to recall

their answers to previous items so that they may respond consistently to later items rather

than answering later items independently. Interviewers and the general interview setting can

also induce positive correlations. As an example, the mere presence of an interviewer can

cause respondents to provide more socially acceptable rather than truthful responses to

sensitive questions. Random conditions such as the presence of family members, ambient

noise and other distractions during the interview, the respondent’s current physical/

emotional health, interview time constraints and so on can lead to inter-item correlated

1Other equivalent forms of  appear in the literature. For example, Henson (2001) expresses  as a function of the covariances
between two measurements.
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errors. These are transient effects due to conditions that obtain at the time of the interview

that may change or vanish should the interview process be independently replicated. For

survey designers and data analysts, these influences are not considered part of the true score

variance component (i.e., reliable variance). (For a comprehensive a review of the effects of

survey design on survey error, see Biemer and Lyberg, 2003).

Denote the cumulative effects of these error sources by δij where it is assumed that E(δij|i) =

0, Cov(δij, δij’,|i) ≠ 0 for some j, j’. Under this model, it is straightforward to show that ρ(S)

is given by

(7)

while

(8)

where σδδ’ = ΣiΣj≠j’, EiCov(δij,δij’,|i) and  (see Raykov, 2001).

Thus, the relative bias in  is

(9)

implying that positive error covariances (i.e., σδδ’ > 0) will induce positive biases in . As

we shall see, the bias in  can be considerable.

As Shevlin et al. (2000) note, researchers and analysts do not universally agree on the

interpretation of δij and its effects on α. Some researchers (Shevlin et al. cite Bollen, 1989)

believe that the correlations between the errors across items represent “consistent and

reliable” variance that should increase reliability as shown in (8). Under this argument, δij is

assumed to be constant conditional upon the ith unit. Hence, E(δij|i) = δij and, thus, should

be counted in the true score variance component, VariE(Si|i), rather than the error

component, EiVar(Si|i). This view of reliability holds that the expectation operator, E(g|i),

should be conditional not only on the respondent i and essential (i.e., stable/repeatable)

survey conditions, but also on all other extraneous variables that are operating during the

survey interview, including the transient survey conditions noted above. Shevlin et al.

suggest that this line of reasoning is inconsistent with the psychometric definition of

reliability, which is based on a specific trait being measured, not the trait plus all extraneous

error components.

For example, if S is intended to measure some aspect of child behavior, the estimator of ρ(S)

should reflect the variation of the child behavior factor (or true score), excluding the many

unknown and uncontrollable factors that may be simultaneously measured during a

particular interview. Using this interpretation of ρ(S), an interviewer’s influence on the ith

child’s responses should be counted as part of the error variance component rather than the
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child’s true score. This is the approach espoused in the present paper and, as such,

correlations from fleeting, unstable error sources will lead to biased ’s.

Cronbach’s α will also underestimate ρ(S) if assumption (b) does not hold (Alwin, 2007;

Raykov, 1998; Raykov & Shrout, 2002; Komaroff, 1997). For example, Raykov (2001)

considers the simple case where the true score for the jth item is a multiple (say, bj) of a

single common factor. He shows that the bias in  is proportional to the variation in the bj. A

similar result holds if the items comprising S are multi-dimensional (i.e., they measure two

or more correlated factors). For example, an SSM that is intended to measure depression

may include some items that measure anger or pain. Or, the questions may be worded so that

respondents interpret the questions erroneously and report behaviors or attitudes inconsistent

with the construct of interest. This situation may be depicted by the following model for the

true score:

(10)

where the vij are specific factors uncorrelated with the common factor, τi. Unlike the

measurement error variables defined previously as δij, specific factors are stable influences

on yij in the sense that E(vij|i) = vij and Var(vij|i) = 0. Thus, their variance contributes to the

reliable variance rather than to error variance. Unfortunately, as Alwin and Jackson (1979)

show, α does not recognize this distinction and, consequently, will overestimate

measurement error variance and underestimate true score variance. As shown in the

Appendix, the relative bias of  under this model is

(11)

indicating that the bias is negatively proportional to the average variance of the specific

factors denoted by . Thus,  will underestimate scale score reliability under model (10)

and considerably so whenever the specific factor variance is large.

When both specific factors and correlated random errors are operating together, the bias in α
is unpredictable. For example, suppose

(12)

where the terms in the model are defined as above; i.e., the observation is combination of the

true score, a specific factor, a correlated error component and a random error component. In

that case, reliability of the SSM is given by

(13)

while, combining the previous results, α estimates
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(14)

with relative bias given by

(15)

Thus, the direction and magnitude of the bias is a trade-off between the error covariance and

specific factor variance:  can either overestimate or underestimate SSM reliability.

For longitudinal data, alternatives to α will provide unbiased estimators of ρ(S) when the

assumptions of independent errors (assumption a) and unidimensionality (assumption b) are

violated. One of these is the simplex (or quasi-simplex) estimator of reliability (Wiley &

Wiley, 1970). Unlike , the simplex estimator does not rely on internal consistency because

it is a function of the scores Si rather than the items yij. Thus, the systematic errors (δij) and

the vij in (12) will not necessarily bias the simplex estimates of ρ(S). This is not to say that

simplex estimates are always more accurate than Cronbach’s α because the simplex model

assumptions can also be violated.

Analysts using different methods to estimate ρ(S) may face a dilemma when the estimates

vary considerably. Which estimate of ρ(S) should be believed? This question needs to be

addressed for each application because the model assumptions are satisfied to varying

degrees depending on the SSM and the study design. In the next section, we attempt to

answer this question for many practical applications.

Estimating Reliability with Longitudinal Data

In a panel study,2 the SSM (S) and its reliability can be computed at each wave using cross-

sectional survey methods such as . Let Sw denote the SSM and  the corresponding

estimate of α at wave w. In practice, α is estimated separately and independently for each

wave. By contrast, the method of estimating reliability discussed next uses information both

within and across waves to assess reliability at each wave.

For longitudinal data, scale score reliability can also be estimated using the so-called

simplex (or quasi-simplex) model (Heise, 1969; Heise, 1970; Wiley & Wiley, 1970;

Jöreskog, 1979; Alwin, 2007). The simplex method uses a longitudinal SEM to estimate

scale score reliability at each wave using the scale scores themselves (i.e., the Si’s) rather

than the responses to the individual items comprising the scale. This is a key advantage of

the simplex model over Cronbach’s α. Because it operates on the aggregate scale scores,

correlations between the items within the scale do not bias the estimates of reliability.

To use this method, the same scale must be available from at least three waves of a panel

study, and the scores must be computed identically at each wave. The covariation of

2A panel study collects data from the same subjects (i.e., a panel) at different points in time, usually at regular intervals.
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individual scores both within and between the waves provides the basis for an estimate of

the reliability of the measurement process. In this sense, the simplex model is akin to a test-

retest reliability assessment where the correlation between values of the same variable

measured at two or more time points estimates the reliability of those values. An important

difference is that while test-retest reliability assumes no change in true score, true score

variance, or error variance across repeated measurements, the simplex model can

accommodate changes in these parameters across time (i.e., panel waves).

To achieve an identified model, the original simplex model (Wiley & Wiley, 1970) assumes

that error variances are equal across all waves (referred to as the stationary error variance

assumption). It is also possible to obtain an identifiable model by equating the true score

variances across waves and allowing the error variances to vary (referred to as the stationary

true score variance assumption). Unfortunately, allowing both true score and error variances

to vary by wave leads to a non-identified model (i.e., insufficient number of degrees of

freedom to obtain a unique solution to the SEM). In the present work, both types of

assumptions (stationary true score variance and stationary error variance) will be considered

although the stationary error variance assumption seems plausible for most practical

situations.

The original simplex model for three repeated measurements is illustrated in Figure 2. This

model is composed of a set of measurement equations and structural equations. The

measurement equations relate the unobserved true scores to the observed scores as follows:

(16)

for w = 1,2,3 where Sw is the observed score (i.e., the sum of the yij), Tw is the unobserved

true score (i.e., the sum of the J item true scores, τj) and the Ew is measurement error (i.e.,

sum of the J item error terms, εij) at wave w. Consistent with the item-level models, assume

E(Ew|i|i) = 0 and variance, . We further assume Cov(Ew,Ew’,|i) = 0 for any

two waves, w and w’. Following the usual notational conventions, in this model and for the

remainder of the paper, we have dropped the index i denoting the individual or population

unit.

The structural equations define the relationships among true scores. From Figure 2, we can

write the system

(17)

where β12 is the effect of the true score at time 1 on the true score at time 2 and β23 is the

effect of true score at time 2 on true score at time 3. The βw,w+1 (often referred to as stability

coefficients) are the parameters that measure change in true score from wave w to wave w+1.

The terms ξ2 and ξ3 are random disturbance (or shock) terms representing the deviations in

the change in true scores from wave to wave.3 Because E(ξw|i) = ξw, it follows that the true

score variance at time w is
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(18)

Further, by back substitution for τw in (17) we can write

(19)

where  for w=1,2,3. Assumptions of the simplex model include, for all w ≠ w’

E(Ew) = 0, Cov(Ew, Ew’) = 0, Cov(Ew, Ew’) = 0, Cov(Ew, Tw’) = 0, and Cov(ξw, Tw’) = 0. For

identifiabity, the original simplex model assumed stationary error variance, that is,

(20)

for all w and w’ (see Wiley & Wiley, 1970). The assumption of stationary true score

variance can be substituted for (20) as will be discussed subsequently.

The reliability of Sw is given by

(21)

for w=1,2,3 where . Estimates of β12, β23, , , w = 1,2,3 can be obtained

using standard SEM estimation approaches. Then ρw can be estimated by replacing the

parameters in (21) and (19) by their SEM estimates.

It is straightforward to show that, if the SSM items conform to the model in (12), then

(22)

where the components , , ,  are analogous to , , , , respectively, at

each wave w. If we assume that , for all w (i.e., error variances are stationary), the

simplex model is identified and its estimator of ρ(S) is unbiased under model (12).

In some situations the error variances are nonstationary because, as Alwin (2007, p. 107)

states, “measurement error variance is a property both of the measuring device as well as the

population to which it is applied.” As an example, the information collected on children for

the CBCL may be less (or more) subject to measurement error as the children age. To the

extent that measurement is related to comprehension error and older children have a greater

understanding of the concepts, measurement error may decrease over a child’s time in the

panel. On the other hand, older children may be more subject to the influences of parents or

siblings present during the interview, which could increase measurement variance over time.

3Note that a minimum of three waves is necessary for identifiability. With only two waves, as in a test-retest design, the stability
coefficients are confounded with shock terms and it must be assumed that the stability coefficient, β12, is 1; i.e., measures are tau-
equivalent.
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As previously noted, allowing both true score and measurement error variances to change

over time will yield a non-identified model. Thus, if nonstationary measurement error

variances are specified, then score variances ( ) must be held constant or otherwise

constrained to achieve an identified model.4

To illustrate, Table 1 provides estimates of reliability for the Youth Self-Report for three

waves of the NSCAW. Cronbach’s α and the simplex reliability estimates are provided

under both the assumptions of stationary error variances and stationary true score variances.

The sample sizes varied somewhat for each estimate from 1,200 to 1,800 cases. Differences

as small as 0.05 can be interpreted as statistically significant. Note that the simplex estimates

vary considerably within wave: from 0.57 to 0.77 in Wave 1. The simplex estimates tend to

be smaller than α, substantially so in some cases, which may be evidence that inter-item

correlations are inflating the α estimates of reliability. These results also illustrate the degree

to which estimates ρ(S) can vary depending upon the method used.

Although the simplex model is unaffected by inter-item correlated error, it can still be biased

due to the failure of other assumptions made in its derivation. If both measurement error and

true score variances change at each wave, the simplex estimates of reliability will be biased

regardless of which is assumed to be stationary. As an example, suppose that measurement

error variance increases monotonically over time while true score variance remains constant.

In this situation, ρ(Sw) decreases with each wave. However, the simplex model under the

stationary error variance assumption will attribute the increase in total variance across time

to increasing true score variances. This means that reliability will appear to increase over

time—just the opposite of reality.

On the other hand, if stationary true score and nonstationary measurement error variances

are assumed, the opposite effect can occur. For example, if true score variances are actually

decreasing and error variances are constant, ρ(Sw) decreases but the simplex estimate of

ρ(Sw) will show reliability to be increasing at each wave.

In the worst case, both the true score and error variances may change nonmonotonically over

time. Thus, the simplex model with the stationary variances assumption is misspecified and

the estimate of ρ(S) will be biased. However, if the relationship of the variances over time is

known or can be supported theoretically, it can be specified as part of the model in order to

obtain unbiased estimates of ρ(S).

The simplex model can also be contaminated to some extent by correlated errors between

waves because it assumes that the score-level errors are independent across time, or more

precisely, Cov(Ew,Ew’|i) = 0 for any two waves, w and w’. As an example, if the waves are

spaced only a few weeks apart, subjects may remember their answers from the last interview

and repeat them rather than providing independently derived responses. On the other hand, if

the time interval between waves is a few months or more, the risk of recall and,

consequently, between-wave correlated error is much reduced. In the NSCAW, the time

4It is also possible to obtain an identified model assuming the reliability ratio is constant over waves (i.e., stationary reliability). The
case was considered in our work but not reported here to save space. This produced reliability estimates that were constant across
waves and approximately equal to the average reliability obtained by the alternative stationarity assumptions.
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interval between waves is at least 18 months, which should obviate any concern about

memory induced correlations between waves.

The next section introduces a more general model that subsumes the models used to

generate the estimates in Table 1 as special cases. An important additional feature of the

model is that it is identified even if true score and error variances are not stationary; that is,

when both are allowed to vary across waves. We also provide an approach for testing which

set of model restrictions are satisfied in order to choose the best estimates of reliability for a

given SSM and population.

The Generalized Simplex (GS) Model for Estimating Scale Score Reliability

Using the method of split halves (Brown, 1910; Spearman, 1910), a more general model for

estimating scale score reliability can be formulated that relaxes many, but not all, of the

assumptions associated with the α and simplex models. For the split halves method, two

SSMs are constructed for the same wave by dividing the J items into two half-scales

consisting of J/2 items (assuming, for simplicity, J is even). One approach might assign odd-

numbered items to one half and even-numbered items the other half. However, any method

for dividing the items that satisfies the subsequent model assumptions is acceptable. Denote

the SSMs constructed from the two half-scales by Sw1 and Sw2. Under very general

assumptions, the GS model will provide estimates of reliability for each half of a scale for

each wave of data collection. The half-scale reliability estimates for each wave can then be

combined to produce a full-scale estimate of ρ(Sw) using a generalization of the Spearman-

Brown prophecy formula (Carmines & Zeller, 1979) that is applicable when the errors of the

two half-scales are correlated. To simplify the exposition of the model, we assume three

panel waves are available; however, extending the model to more than three waves is

straightforward.

This split-halves sample approach that we advocate is similar in some respects to item

parceling (see, for example, Bandalos, 2008 or Nasser & Wisenbaker, 2006) which also

partitions the SSM into subscales. The key difference is that, with our approach, the split-

half samples are used merely as a device for creating degrees of freedom for estimating an

otherwise unidentifiable model. Our analysis is still focused on the reliability of the full

SSM which is obtained through a Spearman-Brown-like transformation of the half-sample

reliabilities. By contrast, item parceling does not seek to uncover the true reliability of the

full-scale; rather in that literature, interest is focused on the psychometric properties of the

subscales (or testlets) themselves.

The path model representation of the split halves model is shown in Figure 3. Note its

resemblance to the model in Figure 2; the only difference is that the single score Sw has been

replaced by Sw1 and Sw2 corresponding to the split halves. The GS model assumptions

regarding means, variances, and covariances of true scores and errors are the same as the

simplex model assumptions. Between split halves, it assumes the following:

(23)
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and Cov(Ews, Tw’s’) = 0 for all w, w’, s, s’. Note that (23) accounts for any within wave,

between split-half correlated measurement error from the δij-terms in (12). However, for

identifiability, we must assume the covariance between the split halves within a wave, σ12,

is constant over time. Because the composition of the halves is arbitrary, this is equivalent to

assuming that σδδ’, defined for (8) is the same at each wave.

Thus, although the sources of correlated measurement error may change at each wave, the

magnitude of the correlation between the errors does not. In Section 5 we show that this

restriction, which is made for all GS models, tends to slightly attenuate the differences

between the GS models. The zero between wave covariance assumption in (23) is not

required for identifiability; however, this constraint produced better results in our

application. Models without this constraint performed poorly and produced negative error

variances for some SSMs (which is evidence of an over-parameterized model). However, in

some applications, removing this assumption may be warranted. Finally, we assume that the

true score variances are equal across the split halves; that is, ,

say. This assumption is dependent upon the method for forming the two halves. If at random

(as it is in the illustrative example below), then the assumption holds when expectation is

taken over all possible random splits of the J items. An additional assumption is that the

measurement of the construct is invariant over time, that is, the coefficient for the linear

relationship between Swj and Twj is the same for all w. Although the invariance assumption

is not necessary for the GS model, invariance was tested and confirmed for the SSMs

presented in this paper. All the aforementioned assumptions are summarized in the path

diagram in Figure 3.

Let ,  and  denote the estimates corresponding variance components. Then an

estimator of the reliability of the score, Sw, is

(24)

Except for the covariance term in the denominator, this formula is equivalent to the well-

known Spearman-Brown prophecy formula (Carmines & Zeller, 1979).

This model can be viewed as a generalization of both α and the simplex models. To see this,

note that the model underlying Cronbach’s α at any wave, w, can be summarized by the path

diagram in Figure 3 for wave w when the split halve errors are uncorrelated (i.e., a two-item

version of Figure 1). Further, imposing the restriction σ12 =0 will produce estimates of ρ(Sw)

that are consistent with Cronbach’s α at wave w. The GS model is also equivalent to the

simplex model in Figure 2 if constraints on the appropriate variance components (either

stationary true score or measurement error variances) are imposed. Thus, the GS model

provides a general structure for testing the fit of Cronbach’s α as well as the simplex

models. It can also be used to test some of the key assumptions of a number of alternative

simplex-like models. An advantage of the GS model is that it can be used in situations where

the assumptions underlying Cronbach’s α and the simplex models do not hold. In those
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situations, GS model can provide better estimates of ρ(Sw) than either the  or the simplex

models with the stationary variance assumptions.

Application: Measures of Child Well-being

This section considers the various alternative estimators of scale score reliability for a

number of SSMs in the National Survey of Child Adolescent Well-being (NSCAW). The

NSCAW is a panel survey of about 5,100 children who were investigated for child abuse or

neglect in 87 randomly selected U.S. counties (Dowd et al., 2004). An important component

of the data quality evaluation for this survey was the assessment of reliability for all the key

SSMs. Biemer et al. (2006) provided estimates for more than 40 SSMs using both

Cronbach’s α and the simplex model assuming stationary true score variances, stationary

error variances, or both. A representative subset of these scores will be considered here

including: the CBCL, Teacher Report Form (TRF), and the Youth Self-Report (YSR)

(Achenbach, 1991). Each of these SSMs has three versions: a total score, an internalizing

behavior score, and an externalizing behavior score resulting in nine scores assessed.

First, the wide range of estimates of ρ(Sw) that can be produced by varying the method and

the model assumptions will be illustrated. We shall consider an approach for determining

which estimate of ρ(Sw) is preferred. Working within the GS modeling structure, the effects

of three sets of assumptions will also be evaluated. These assumptions are: (a) stationary

error variances, (b) stationary true score variances, and (c) inter-item correlated errors. As

discussed above, the GS model under assumption (a) should produce estimates of ρ(Sw) that

are consistent with the original simplex model proposed by Wiley and Wiley, 1970. The GS

model under assumption (b) should produce estimates consistent with the alternative

simplex model discussed above. The GS model under assumption (c) should produce

estimates that are consistent with Cronbach’s α.

For each wave, w, seven of estimates of ρ(Sw) were computed at each NSCAW wave

corresponding to:

1. simplex model with stationary error variance and nonstationary true score variance

(SSEV),

2. simplex model with stationary true score variance and nonstationary error variance

(SSTV),

3. Cronbach’s α (ALPHA)

4. the unconstrained GS model (GS),

5. GS model with stationary true score variance and nonstationary error variance

(GSSTV),

6. GS model with stationary error variance and nonstationary true score variance

(GSSEV), and

7. GS model with α-like constraints; i.e., both nonstationary true score and error

variances with uncorrelated measurement errors (GSAL).
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Figure 4 presents a histogram of these estimates for four SSMs to represent the range of

results that were obtained for all nine SSMs. As a simple metric for interpreting these

graphs, differences of about 3, 7, and 10 percentage points for waves 1, 2, and 3,

respectively, should be considered statistically significant. One striking feature of the SSMs

in this figure as well as the other SSMs considered is that ALPHA and the GSAL estimates

are always higher than the other estimates. In many cases, the differences are highly

statistically significant. For the GSAL model, the higher estimates are due primarily to the

constraint σ12 =0, i.e., uncorrelated measurement errors. Removing this constraint always

improved model fit while producing estimates that were lower and at the level of the other

estimates. As shown below, empirical testing confirmed that both the GSAL and ALPHA

are positively biased for all SSMs considered in our analysis due to the assumption σ12 =0.

The stationary variance assumptions of the simplex models can also change the estimates of

ρ(Sw) dramatically. As an example, the SSEV model produces estimates that tend to

decrease as w increases. However, the SSTV model produces the opposite pattern. To

understand why, recall that total variance is the sum of true score and error variance.

Therefore, if true score variance is held constant, the model will attribute change in true

score variance over time to changing error variances. Conversely, under the stationary error

variance assumption, the model will attribute change in the error variances over time to

changing true score variances. For these scales, total variance in the SSMs seems to be

decreasing, resulting in changes in reliability estimates when either true score variance or

error variance are constrained to be constant over time. Thus, depending upon which

stationarity assumption is chosen, reliability can appear to either increase or decrease over

time.

The GS models with either stationary true score or stationary error variance constraints (i.e.,

GSSEV and GSSTV) have similar, though less dramatic, stairstep patterns across waves as

the simplex models with these same constraints (i.e., SSEV and SSTV, respectively). This

attenuated effect is likely due to the constant error covariance constraint—viz., Cov(Ew1,

Ew2) = Cov(Ew’1, Ew’2) = σ12 for all w, w’ – imposed on all GS models as a requirement for

model identifiability. The constraint tends to dampen changes in the variances across waves.

The extent to which the stationary covariance assumption holds is not known and cannot be

evaluated with these data. Despite this additional assumption, the three GS models (except

the GSAL) produced very similar estimates by wave in all the cases we examined. In

addition, the GSEV and GSTV produced estimates comparable to the SSEV and SSTV

models, respectively, as expected.

For the next analysis, we tested assumptions (a)-(c) above within the GS model framework.

We began by fitting the most general form of the GS model and then imposed parameter

constraints on this model corresponding to each assumption. Because in each case, the

restricted model is nested within the unrestricted GS model, a test of each assumption can be

obtained by the nested Wald test (Bollen, p. 293). This process also yielded the most

parsimonious GS model which, except for a few cases, was the unrestricted GS model. The

results of the significance testing are reported in Table 2. Note that the assumption of

uncorrelated errors is rejected for all nine SSMs considered. The assumption of stationary

error variance was rejected for seven SSMs and the assumption of stationary true score
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variance was also rejected for seven SSMs. For six of these SSMs, the GS model was the

most parsimonious model for estimating ρ(Sw).

Table 3 presents average standard errors for all seven models across the nine SSMs in the

study. Because the GS estimates are based upon method of random split halves, the variation

due to scale splitting step must also be represented in the standard error. This was

accomplished by fitting each GS model five times for five difference random splits,

producing five sets of estimates for each SSM by wave by GS model combination. The

random split variance component was computed as

(25)

where  is the estimate of ρ(Sw) for the rth random split and  is the average of these

estimates over the five splits. This variance component was added to the estimate of

 obtained from a single pair of split halves. Table 3 shows that Cronbach’s α
(ALPHA) has the smallest standard error by a large margin. The worst standard errors are

produced by the GS model and its constrained versions (GSEV and GSTV), primarily

because of the random split variance component in (25) which accounts for about two thirds,

on average, of the total standard error of the GS estimates.

The significance tests in Table 2 suggest that the GSAL, GSEV, and GSTV model

constraints are often violated by these data and, by implication, the key assumptions

underpinning ALPHA, the SSEV, and the SSTV methods are also violated. However, these

results do not indicate the magnitude of the bias in these estimates due to model

misspecification. To address this question, the estimates of ρ(Sw) from the six constrained

models were compared to those of unconstrained models for each SSM. In this comparison,

the GS model estimates have the least bias because the GS model fit the data best in almost

all cases. In the few instances when the model did not fit, GS model estimates were still very

close to the estimates of the best model. In addition, as an essentially unconstrained model,

it provides the best benchmark available for evaluating the bias in the constrained models

when those constraints are violated.

Table 4 provides the key results from this analysis. In this table, RSEw is the average relative

standard error for the nine SSMs given by

(26)

where  is the estimator of ρ(Sw) using the method corresponding to the row of the

table,  is its standard error, and  is the estimator of ρ(Sw) from the GS

model. Likewise, the relative bias of  is estimated by

(27)
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As measure of the total error of an estimator, we use relative root mean squared error

(RRMSE) defined as the square root of the relative bias squared plus the relative standard

error squared. It is estimated by RRMSE = |RBIAS| + RSE.

As expected from the previous results, ALPHA and GSAL exhibit the greatest biases, which

exceed 20% for all three waves. ALPHA has a smaller RRMSE than GSAL because, as

noted previously, GSAL’s variance is inflated by the split sample component. Regarding the

two simplex estimators, SSEV (i.e., the original simplex model) has slightly smaller

variance and considerably smaller RRMSE than SSTV. On the other hand, there is little to

choose between GS versions of these estimators. Both GSEV and GSTV exhibit very similar

variance and bias properties. The overall best performer in terms of RRMSE (apart from the

unconstrained GS estimator whose biased was assumed to be 0) appears to be the SSEV

estimator.

Conclusions

For longitudinal surveys, a wide choice of estimators of scale score reliability is available.

The illustration in the last section clearly shows that choosing an estimator is a critical

decision in the estimation of reliability. Blind use of Cronbach’s α can and often does lead

to a biased assessment of the reliability of SSMs. In our study, the assumption of inter-item

uncorrelated error, upon which α relies, was rejected for all the SSMs we considered.

Consequently,  was positively biased – often substantially so – compared to estimators that

do not require that assumption. When longitudinal data are available, the simplex model

with either the stationary error or true score variance assumption can be employed and will

permit a more valid assessment of reliability. However, as we have shown in Table 2, the

assumptions underlying the simplex approach also do not hold for many SSMs. In such

cases, more valid estimates of reliability can be obtained using the GS model, which

requires neither the variance stationarity nor uncorrelated inter-item error assumptions to

provide valid estimates of reliability.

One limitation of the GS model is its reliance on split half scores. The standard errors due to

split halves increased by at least two thirds for the SSMs evaluated in this study. For smaller

scale lengths (say, 10 or fewer items), the contribution to variance was even greater. In such

cases, we recommend the SSEV (original simplex) estimator when three or more waves of

panel data are available. In general, the SSEV method performed quite well in this study

and, based upon other results from the literature (see, for example, Alwin, 2007), it is

recommended as a general purpose estimator of ρ(Sw) whenever the GS model cannot be

used.

Placing restrictions on the GS models is often worthwhile when possible, without sacrificing

model fit or increasing model bias. As an example, in the few cases where the stationary

variance assumptions were not rejected by the model selection process, the precision of the

restricted model was somewhat better than the unrestricted model with no increase in bias.

Overall, the RMSE improved as much as 20%. Therefore, we recommend the model fitting

strategy described for Table 2; i.e., begin with the unrestricted GS model and use the nested

Wald statistic to determine whether the model can be further reduced. We further
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recommend that the total variance of the GS estimators, including the split sample

contribution in equation (25), be routinely assessed and reported.

Finally, we hope this paper will encourage further investigations of the methodologies used

in scale score reliability estimation. To the extent that SSMs perform similarly across a

range of study settings and designs, testing the assumptions underlying reliability estimation

and reporting the results can be quite useful to other analysts who are contemplating the

SSM and reliability estimation methods in other studies. It would be informative to

accumulate experiences with various methods for estimating ρ(S) across many studies and

SSMs. As an example, if either assumption (a), (b), or (c) in the previous section is rejected

for an SSM in one study, then that assumption should be questionable for assessing the

reliability of this SSM in other similar studies. At a minimum, it can serve as a forewarning

to other researchers that the assumption is suspect for the SSM and to look for alternative

methods for estimating its reliability.

Appendix

Derivation of Bias in  under Model (10)

First note that  and

 where . Therefore, 

while . Turning to , it can be shown that

 and . Using these results,

after some algebraic calculations, leads to the result in (11). The relative bias in α is given

by .
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Figure 1.
Cronbach’s Alpha Model for a Four-Item Scale Score.
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Figure 2.
Simplex Model for Three Repeated Scores.
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Figure 3.
Generalized Simplex Model for Three Repeated Scores.
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Figure 4.
Estimates of Reliability by Wave for Four Scale Score Measures Under Seven Model

Assumptions.

Biemer et al. Page 23

Psychol Methods. Author manuscript; available in PMC 2014 May 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Biemer et al. Page 24

Table 1
Youth Self Report (YSR) Scale Score Reliability Estimates Using the Simplex Model and
Cronbach’s α

Model Wave 1 Wave 2 Wave 3

Simplex Model

 Stationary Error Variance 0.77 0.71 0.67

 Stationary True Score Variance 0.57 0.71 0.81

Cronbach’s α 0.96 0.95 0.95
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Table 3
Standard Errors (×100) Averaged Over Nine Scale Score Measures

Model Wave 1 Wave 2 Wave 3

SSEV 4.60 4.71 5.54

SSTV 4.99 10.32 18.57

ALPHA 0.54 0.49 0.46

GS 8.54 9.34 10.10

GSSTV 8.82 9.17 9.92

GSSEV 8.70 9.27 10.13

GSAL 6.50 7.20 7.98
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