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Abstract

Reconciling the interests of individuals with the interests of communities is a major challenges in

designing and implementing health policies. In this paper, we present a technique based on a

combination of mechanistic population-scale models from Markov decision process theory and

game theory that facilitates the evaluation of game theoretic decisions at both individual and

community scales. We demonstrate how nonlinear population models can be combined with game

theory to inform the management of infectious diseases. To illustrate our technique, we provide

solutions to several variants of the simple vaccination game including imperfect vaccine efficacy

and differential waning of natural and vaccine immunity. In addition, we show how path-integral

approaches can be applied to the study of models in which strategies are fixed waiting times rather

than exponential random variables. These methods can be applied to a wide variety of decision

problems with population-dynamic feedbacks.
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1 Introduction

There has been a long-standing dichotomy in approaches regarding disease intervention.

Public health interventions to control disease have focused on the best interests of

communities and populations, implicitly assuming that the interests of individuals parallel

those of their communities. By contrast, medical interventions to treat disease has focused

on the well-being of the individual with limited attention to the relationships between

individual and community health. Often health impacts upon the two spheres are

complementary. For example, improvements in individual sanitation are good for a

community because they reduce the risks of disease for everyone in the community.

Similarly, an inexpensive treatment that cures a patient of an infectious disease is good for

both the patient and the community because a cured patient no longer poses a transmission

risk to others.
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One consequence of the dichotomy of perspectives between public health and medicine is

that mathematical and quantitative methods in epidemiology and medicine have developed

in independent directions. Epidemiology models focus on aggregate behaviors to help us

understand the transmission and control of epidemic and endemic infectious disease [Ross

and Hudson, 1917, Kermack and McKendrick, 1927]. In epidemiology models, individuals

are typically treated as entities that obey prescribed laws rather than as humans with free-

will. In contrast, medical models favor decision theory approaches that focus on determining

the best medical treatments from the persepctive of the individual. Such methodologies

assist the patient and the doctor in weighing the risks and benefits for various treatment

modalities. For instance, the Markov decision process theory (MDPT) uses a stochastic

process to describe the possible events in an individual’s future [Sonnenberg and Beck,

1993]. MDPT associates values with events, and calculates the expected value conditional

on each choice. The expected value can then be optimized over the different choices

available to the individual. Although the risks an individual faces may depend on the overall

state of the community, this form of analysis does not account for any externalities posed to

the community by the individual’s choices.

Modern public health and medical practices in wealthy nations have pushed back the tide of

many historically devastating diseases, for example through the development of vaccines as

well as prophylatic and therapeutic drugs. However, as we have solved old problems, we

have unveiled new problems. For some of these new problems, the interests of the individual

now diverge from the interests of the community; medical planning and epidemiological

planning can act in opposition. Such conflicts are known as “market failures” in economics,

and “policy resistance” in public health [Sterman, 2006].

The maintenance of herd immunity to infectious diseases through mass vaccination is an

example of this discrepancy between interests. In the past, the high prevalence of many

vaccine-preventable infectious diseases made the choice of whether or not to vaccinate a

simple one. When the risks from infection were significant, vaccination was a worth while

measure for the community and for an individual. The dramatic success of vaccines has

greatly reduced the risk of infection for many diseases, and individuals are having more

difficulty deciding whether or not to be vaccinating against some diseases despite potential

benefit to their communities.

One approach to the study of individual interests in communities is rational expectation

population game theory. If we understand the epidemiological processes, and assume that

individuals have broad and reliable information about the state of the world and their own

health risks, we can derive functional relationships to resolve the balance of different

competing interests. This approach does not capture the full complexity of the decision

process, but does give a useful reference point. An early attempt to use game theory for

studying vaccination was motivated by concerns over the safety of pertussis vaccines [Fine

and Clarkson, 1986]. This was followed by studies of the economics of compulsory

vaccination programs [Brito et al., 1991] and disease eradication efforts [Geoffard and

Philipson, 1997, Philipson, 2000, Barrett, 2003]. In 2003, Bauch et al. [2003] published a

model in which individual risk and population-scale dynamics were explicitly modeled

[Bauch et al., 2003]. Generalization of that work has lead to the class of models studied

here. A growing number of papers expand on these ideas, and investigate how various

factors can favorably or unfavorably influence vaccination practices and health outcomes

[Francis, 2004, Chen, 2004, Bauch and Earn, 2004, Bauch, 2005, Chen, 2006a,b, Kremer et

al., 2006, Chen, 2009].

Here, we describe in detail the mathematics of a population game approach to address

problems in health-care. Our approach has been used in our previous research [Galvani et
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al., 2007, Reluga et al., 2007], but without the detailed exposition or generality appropriate

to facilitate broader usage. We demonstrate how population-scale dynamic models can be

coupled to individual-scale decision models. This approach allows us to formulate

population games that describe the utility of decisions to the individual and to the population

using closed-form algebraic results. We also review standard conditions for equilibria in

population games. We use simple vaccination problems illustrate the application of these

methods. Where other methods often require approximations or numerical solution, our

method frequently yields exact analytic solutions that can be easily interpreted in the context

of biological and economic parameters. As proof-of-principle, we derive analytic solutions

to two versions of the vaccination game. The first version is a compartmental model in

which individuals’ strategies are randomized daily. This model is closely related to

previously studied models [Bauch and Earn, 2004, Chen, 2006a]. The second version uses

McKendrick-von Foerster-like partial differential equations to describe a vaccination game

where strategies are based on fixed waiting times. Despite differences in the mathematics,

both versions lead to similar results. In basic scenarios, there is a unique Nash equilibrium

for behavior with global invasion potential that converges to the community’s preferred

policy for vaccines that are either very inexpensive or very expensive. When generalizations

of the compartmental model are considered, biological complications, such as limited

vaccine efficacy and differences in immunity waning, can lead to more complex equilibrium

structures.

2 Methods

Our approach has three parts: a model of the value of choices that is analyzed using decision

theory and game theory, a model of changes in an individual state that is analyzed using

stochastic process theory, and a model of the population’s state that is analyzed using

dynamic systems theory.

2.1 General formulation of population games

The theory we present incorporates expected utility theory with additive payoffs and

hyperbolic discounting. There is no universal answer as to how a rational individual should

interpret the distribution of their potential payoffs when choosing their best strategies

[Rockafellar, 2007]. In some situations, a stochastic ordering of outcomes suffices to

identify the best strategies uniquely, but in many situations, stronger assumptions are

needed. Individuals might maximize their worst case payoff, minimize their risk given some

constraints on acceptable payoffs, or be guided by a variety of other optimization goals. Our

choice of expected utility theory is a common [Arrow and Kurz, 1970] and mathematically

convenient assumption.

Under expected utility theory, individuals have a set of strategic actions (π) and aim to

maximize the utility of their actions, where the utility is defined as the sum of all future

payoffs. Suppose we know an individual’s entire future, in the sense that there is a function

x(t, π) that, given a individual’s strategy π, returns an individual’s state at time t. If time is

measured continuously, the utility of the strategy π over the course of a lifetime is

(2.1)

where t0 is the start time, tf is the terminal time, φ(x(tf)) is the value of the final state, and

Φ(x, x′, t, π) is the rate of utility gain per unit time as a function of the state x, the change in
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state x′ at time t, time, and the strategy. The parameter h represents the rate at which future

gains are discounted relative to current gains1.

However, the future of each individual is uncertain. We can use observational data to infer

the likelihoods of certain events occurring at specific points in an individual’s life, but no

particular individual’s future can be predicted with certainty. The path x(t) of a person’s life

can only be known in a probabilistic sense, so the utility of a given strategy π is a random

variable that depends on the likelihood of different paths. According to the postulates of

expected utility theory, an individual accounts for this uncertainty by maximizing their

average or “expected” utility. We can calculate an individual’s expected utility by

determining the probability distribution of all possible paths x(t) and integrating over this

distribution. The expected utility

(2.2)

where xπ denotes the infinitesimal probability, depending on the strategy π, of each

possible state path starting at x0 at time t = t0, and dx0 is the probability of each initial state

x0 at time t0.

To make this approach practical, we must provide a specific description of the state paths an

individual can experience over their life, including the dependency of these paths on

external factors. In the models we present, the probabilities of paths depend on the overall

states of the population, the environment, and the decisions an individual makes. The state

of an individual at time t is represented by a probability distribution p(t) over the

individual’s possible states. The state distribution p changes according to a continuous time

Markov process. A Markov process uses a system of linear differential equations to describe

changes in the probability that an individual will be found in any given state. The transition

rates in this Markov process may depend on many factors including time and the

individual’s strategy, the population’s state (n) and the environment’s state (e). Thus,

(2.3)

where Q is a matrix of transition rates. To take into account the finiteness of an individual’s

life, we allow the possibility of a “dishonest” Markov process [Kingman, 1967]. Usually,

Markov processes are defined such that eQ is a stochastic operator with columns that sum to

1 to preserve probability mass. Dishonest Markov processes are defined in the same way as

Markov processes, except that eQ is a substochastic operator with at least one column sum

less than 1. For a strictly dishonest Markov process, all the column sums of eQ are strictly

less than 1. Every dishonest Markov process can be extended to a regular Markov process

by adding an absorbing state for death, but it will be useful to avoid this complication. For

an honest Markov process, the dominate eigenvalue is λ0(Q) = 0, whereas for a dishonest

Markov process, the dominate eigenvalue is λ0(Q) ≤ 0, and for a strictly dishonest process,

the dominate eigenvalue is λ0(Q) < 0.

1Notation: Throughout this paper, bold-face lower-case letters represent vectors, while bold-face upper case letters represent matrices
or linear operators
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In order to use Eq. (2.3) in evaluating Eq. (2.2), we must also specify a description of the

dynamics of the population and environment (n and e, respectively). The population-scale

and individual-scale dynamics are driven by separate but related processes. A convenient

approach is to postulate that the population-scale dynamics satisfy a system of differential

equations where the rates of change in the states of the population depend on the average

behavior of individuals in the population π̄, such that

(2.4a)

(2.4b)

The vector π̄ representing the effective average behavior of individuals is often referred to as

the resident strategy. We assume almost all individuals in a population use strategy π̄, and

that the populations are so large that the population dynamics are not significantly affected

by the few individuals with invading strategies that differ from the resident strategy.

Using Eq. (2.4) in combination with appropriate initial conditions, we can determine n(t, π ̄)
and e(t, π̄), and thus the transition rates of Eq. (2.3) can be interpreted as functions of the

resident strategy π̄ and an individual’s strategy π. According to Markov decision process

theory [Howard, 1960], the instantaneous utility gains for a finite state Markov process can

be represented in terms of a vector (f) of gains per unit time for residence of each state and a

matrix (F) of instantaneous utility gains associated with each transition, with Fij representing

the instantaneous gain for a transition from state j to state i. Let the vector v(t) represent the

expected present value of the utility of each state at time t > t0. Generalizing the Bellman

equation for a continuous time Markov process to the case of non-autonomous processes,

(2.5)

where ◦ represents the Hadamard product of two matrices2. Eq. (2.5) is a linear

inhomogeneous system. It is interpreted backwards from terminal time tf to initial time t0
rather than forwards from t0 to tf, as the expected utility today is calculated based on the

expected utility tomorrow, not the expected utility yesterday. For a contemporary reference

on the theory of Markov decision processes, see Puterman [2005].

Taking the solution of Eq. (2.3) as a Greens function, Eq. (2.5) can be integrated and yields

the expected utility

(2.6)

2The components of the Hadamard product are the product of the components of F and Q, (F ◦ Q)jk = FjkQjk.
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This can be shown to be equivalent to Eq. (2.2) when the state space is finite by expanding

Eq. (2.2) with respect to small perturbations of t0 and using the history-independence

property of Markov processes to simplify the resulting integration. We write the expected

utility as a function of the resident strategy π̄ and an invading strategy π to emphasize that it

is specifying an aggregate game between competing strategies. Readers familiar with

optimal control theory may alternatively recognize v as the vector of present value shadow

prices from optimization of Eq (2.6) subject to constraints given by Eq. (2.3) (see Appendix

A).

Although population games can be formulated and studied in the form we have so far

presented (for example, [Reluga, 2010]), it is often useful to focus on cases where the

population-scale dynamics have a simple attractor. If all dynamics are autonomous and (n*,

e*) is a stationary solution of the population-scale dynamics and strategies are independent

of time, then the transition rate matrix

(2.7)

is also stationary. As the time horizon of the utility calculation becomes infinitely long (tf →
∞), there is a positive discount rate h > 0 or the Markov process is strictly dishonest, then

the expected utility has closed form

(2.8)

In special cases where the Markov process is honest and there is no discounting (h = 0), Eq.

(2.5) will never converge to a steady state and Eq. (2.8) cannot be calculated, because the

required matrix inversion is singular. In these cases, it is more appropriate to study the

asymptotic growth rate of the expected utility. We can show that if p̂ is the unique limiting

stationary distribution of the Markov process (Q*p ̂ = 0, Σjp̂j = 1, p(t) → p ̂), then

(2.9)

In practice, the observation that

(2.10)

is particularly useful for simplifying theoretical work, as illustrated in the following

examples.

3 Vaccination Games

We now apply these mathematical methods on the analysis of vaccination behavior in some

simple epidemic models. We focus on mathematical solutionsto illustrate the population-

game framework in action as applied to a simple problem of practical importance.
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One of the biggest questions in the formulation of population games is how to model the

strategy space of individual decisions. In general, individuals can choose mixed strategies

with arbitrary time dependence that is conditional on any subset of the system state

information. The complexity of such strategy space models is usually unsolvable and may

mask general properties of the games in questions. We provide examples that allow for

strategies that can be represented in terms of a single parameter. In the first model, we

assume that individuals chose the time they wait before vaccination from an exponential

distribution. We refer to this as a “hazard-strategy” because it is equivalent to individuals

having a constant hazard per unit time of vaccination. In the second model, individuals

choose a fixed time to wait between the loss of immunity and their next vaccination. We

refer to this as a “delay-strategy” model because the resulting mathematics is closely related

to that of delayed differential equations. The population-game framework described above

can be employed for both of these models. Although the solution techniques have technical

differences, the final results are similar.

3.1 Hazard-strategies in a vaccination game

We consider a homogeneous population of size N afflicted by a influenza-like illness for

which there is a costly and risky vaccine available. We describe this system with a

compartment model where individuals in the population can occupy susceptible (S), infected

(I), resistant (R), and vaccinated (V) states. Individuals die and are replaced at rate μ, recover

from infection at rate γ, and lose immunity at rate a. The population-scale dynamics are

described by

(3.1a)

(3.1b)

(3.1c)

(3.1d)

where λ(I) is the force of infection, π ̄ is the population’s resident vaccination rate, and the

population size

(3.1e)

is constant. The force of infection λ(I) is assumed to be an increasing concave function of

the number of infections I. Initially, we assume that infection and vaccination immunity are

complete and wane at equal rates. This model includes special cases of life-long immunity
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with demographic turnover (a = 0, μ > 0) and temporary immunity without demographic

turnover (a > 0, μ = 0).

Although the population’s state may evolve deterministically, each individual’s state

distribution evolves according to the Markov process described by Eq. (2.3). At steady state,

the stationary forward transition rate matrix is

(3.2)

where π is the individual’s chosen strategy of a daily probability whether or not to get

vaccinated. Q* represents an honest Markov process if μ = 0, and a strictly dishonest process

if μ > 0.

The source term μN in Eq. (3.1a) represents birth and immigration of new individuals into

the population at a constant rate, and corresponds to the initial condition

(3.3)

When the states of all individuals are combined into one system, the mean-field equations

described by System (3.1) are confirmed.

We are interested in the typical vaccination rate of the population π̄, and its relation to the

individual’s risk from vaccination per unit time, π. Individuals incur costs from both

infection and vaccination. The vaccination cost to the individual occurs in the transitions

between vaccination and infection states. The infection cost accumulates as individuals

reside in the infected state. As these are the only two costs, and there are no explicit gains,

(3.4)

The expected change in utility per unit time for residence in each vaccination and infection

state is given by the vector

(3.5)

It follows from Eq. (2.8) that the utility of strategy π to an individual in a population at

equilibrium with strategy π ̄ is

(3.6a)
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(3.6b)

where I* is determined by the steady-state condition

(3.7)

Since λ(I) is increasing and concave, I*(π̄) must be a decreasing function of the resident

strategy π̄.

We can now study Eq. (3.6) as a game, looking for equilibrium strategies that are Nash

equilibria and have invasion potential. For a review of the relevant material, see Appendix

B. If an individual is never vaccinated,

(3.8)

In the limit of infinitely fast vaccination,

(3.9)

Inspection of Eq. (3.6) shows that the utility is a Cartesian hyperbola (linear fractional

transform, more generally) as a function of the individual behavior π with a vertical

asymptote for negative argument. In this case, a positive finite value of π can maximize the

utility only when the hyperbola is actually a line with zero slope. Critical strategies can be

determined by setting utilities at the extremes and all intermediate individual strategies equal

to each other.

(3.10)

so at the critical strategy,

(3.11)

In some simple models, in which individuals have perfect knowledge about their state,

changes in transition rates are proportional to changes in behavior, and all behavior costs are

indirect, boundary conditions such as U(0, π*) = U(∞, π*) can be used to identify equilibria

[Reluga, 2009, Appendix B]. However, this condition does not generally suffice for the

identification of equilibria [Reluga et al., 2007].
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Solving Eq. (3.11) for the force of infection,

(3.12)

This condition may not have a solution, depending on the costs of infection and vaccination.

For the critical strategy to be a positive vaccination rate, it is required that cI/cV − (γ + a + μ
+ h) > 0. If the cost of vaccination is so high that even when there is no vaccination (π ̄ = 0)

(3.13)

then the critical strategy is for no one to be vaccinated, π* = 0. If the cost of vaccination cV is

very small relative to the minimal force of infection (π̄ = ∞),

(3.14)

then the critical strategy is for no one to be vaccinated as quickly as possible, π* = ∞. In

each scenario, the respective extreme point is a Nash equilibrium because no alternative

strategy generates greater utility for the individual (see Appendix B).

In the intermediate state between every individual being vaccinated and no one being

vaccinated, I*(π̄) is uniquely determined by Eq. (3.7) provided the force of infection is a

continuously increasing function of the incidence. This implies that there is a unique critical

strategy. The critical strategy satisfies the condition for a Nash equilibrium, because U(π, π*)

is a flat line. The condition for a strict Nash equilibrium is not satisfied, but we can now

show invasion potential by proving that

(3.15)

Both λ and I* are independent of the individual strategy π, so their derivative with respect to

the individual strategy is 0. From our assumptions about the force of infection, we know

 and . Finally,

(3.16)

provided that
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(3.17)

Substituting, we find Eq. (B.7) holds. The critical point is a Nash equilibrium with invasion

potential.

Once the equilibria have been identified, we can evaluate their sensitivity to the parameters.

The larger the cost of infection per unit time cI, the lower the force of infection allowed at

the Nash equilibrium. The larger the cost of vaccination, the higher the force of infection

allowed at the Nash equilibrium. By inspection of Eq. (3.6), we see that as the discount rate

h increases, the effective cost of infection decreases as vaccination decreases. A higher force

of infection is allowed at equilibrium. The effects of the other parameters are less obvious

because the endemic disease prevalence I* is not only a function of the average vaccination

rate π̄, but also an implicit function of the recovery, waning, and mortality parameters γ, a,

and μ.

3.1.1 Exact solutions in the case of standard incidence—To examine the

relationship between parameter values and the Nash equilibrium vaccination rate, we

consider a specific model. We assume that the force of infection is modeled using standard

incidence

(3.18)

and that demographic turnover and discounting are sufficiently slow to be neglected (μ = 0

and h = 0).

Under those conditions, the reproductive number at the disease-free equilibrium is

(3.19)

If  < 1, the disease-free equilibrium is stable. An average vaccination rate of

(3.20)

is sufficient to achieve herd immunity and thus to ensure eradication.

The endemic-disease equilibrium solution when  > 1 is

(3.21)

In the absence of discounting or mortality, we apply Eq. (2.10), and find the asymptotic

expected utility gain per unit time
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(3.22)

Using equilibrium infection prevalence I*,

(3.23)

The shape of U′ is illustrated in Figures 1 and 2.

For a given population behavior π̄, individuals wish to choose their own vaccination rate π to
maximize Eq. (3.23). The best response correspondence3 πbest(π̄) is a set-valued mapping

that returns the set of optimal replies to a population strategy π̄. Thus, the best response

correspondence is

(3.24)

where c = cV/cI expresses the relative cost of vaccination compared to infection. We find

that there is a unique Nash equilibrium

(3.25)

that is an improvement on every alternative strategy the population may adopt, but that

cannot be improved upon when it is adopted by the population. Only when c = 0 does the

equilibrium strategy eradicate disease (π* = π̂). For all positive costs c, the equilibrium

vaccination hazard is less than that needed for eradication (π* < π̂). When the population

adopts π* and β > γ, the disease incidence

(3.26)

and the individual’s expected asymptotic utility gain is

(3.27)

3A correspondence is different from a function in that there may be many different outputs for a given input. Mathematically,
correspondences are often replaced by functions mapping to the domain power set of the correspondences target. However, such
mathematical consideration obscures the important fact that best-responses are not always unique.
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For comparison, at the herd-immunity threshold,

(3.28)

which is strictly greater than the expected asymptotic utility gain at the Nash equilibrium.

Overall our analyses indicate that the recovery rate and the waning rate affect the

vaccination rate at the Nash equilibrium. Faster waning decreases the vaccination rate at the

Nash equilibrium. In general, the longer the duration of natural resistance, the lower the

vaccination rate is at Nash equilibrium. Higher vaccination costs decrease vaccination rate.

More rapid recovery also decreases vaccination rate. An infinitely fast vaccination rate is

never an equilibrium in this special case [Bauch et al., 2003], because all risks to the

individual vanish under the standard incidence assumption (Eq. (3.18)) as the vaccination

rate approaches the eradiction threshold given in Eq. (3.20). Infinitely fast vaccination rates

may be equilibria if there is an external source of risk [Reluga et al., 2006]. The inclusion of

discounting h should slow vaccination, but the inclusion of demographic turnover (μ > 0)

may increase or decrease the vaccination rate, depending on the other parameter values.

3.1.2 Differential waning of immunity—These results can easily be extended to a case

in which vaccine based resistance wanes at rate aV, whereas naturally acquired resistance

wanes at rate aR. The population-scale dynamics satisfy

(3.29a)

(3.29b)

(3.29c)

(3.29d)

Using the corresponding individual-scale model and the initial condition and costs

previously described, Nash equilibrium behavior is given by

(3.30)
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When aV = aR = a, we recover Eq. (3.25). The algebraic calculations needed to reach this

result are analogous to those of equal waning rates.

The response to changes in the waning rate of vaccine-induced immunity is not monotone.

When vaccine waning is very slow, small increases in the waning rate also increase the

critical vaccination rate. However, near the critical cost threshold, faster waning decreases

the vaccination rate (Figure 3). Vaccination is only useful if the cost per time of vaccination

cV aV is less than that of natural immunity .

3.1.3 Imperfect immunity—We can extend this analysis to the more interesting case of

imperfect immunity. Imperfect immunity has been studied previously by Kremer, Snyder,

and Williams (Snyder, personal communication) and by Chen [2006a]. The following

analysis provides an alternative mathematical approach to some of their results. Our analysis

indicates that the parameter region in which multiple Nash equilibria exist is narrow, and

perhaps rarely encountered in practice.

Assuming that vaccination confers partial immunity, that infection confers complete

immunity, and that both vaccination mediated and infection mediated immunity wane at the

same rate, then System (3.1) becomes

(3.31a)

(3.31b)

(3.31c)

(3.31d)

When we construct the corresponding individual-scale model and solve for the utility, we

find that the utility of an individual strategy is

(3.32)

If λ = βI/N, then the steady-state force of infection λ* is either 0 or solves the quadratic

polynomial

(3.33)
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If σβ/γ > 1, even the immediate vaccination of every individual will not eradicate the

disease.

The utility is still a hyperbola in terms of the individual strategy π, so we expect all

strategies to yield the same utilities at Nash equilibria. Local Nash equilibria can be

identified in the standard manner (see Figure 4). No vaccination (π* = 0) is a Nash

equilibrium if

(3.34)

where the relative vaccine cost is c = cV/cI. If everyone is vaccinated as soon as immunity is

lost (π̄ = ∞), the equilibrium force of infection is

(3.35)

Instant vaccination of susceptible individuals (π* = ∞) is a Nash equilibrium if σβ/γ > 1 and

(3.36)

When aR = aV = a, if  = β/γ > 2 and 0 < a < (  − 2) and , then there is

an interval of relative costs c for which both vaccination and no vaccination are Nash

equilibria (Figure 4). This interval can be bounded in terms of Eq. (3.34), Eq. (3.36), and the

condition in which

(3.37)

represents the location of a fold bifurcation in the utility function (Figure 5). Further study

of the utility function shows that both of these equilibria have local invasion potential, and

are separated by a third Nash equilibrium that never has invasion potential. Plots and

numerical experiments suggest that the regions of non-uniqueness are small, and probably

more narrow than the variances in both population heterogeneity and parameter estimates

when waning rates are equal. This suggests that the multiple-equilibrium phenomena

identified by Chen and Kremer et al. may be of limited practical importance, but further

systematic analysis is needed, particularly in immunological contexts [Reluga et al.,

2008,Heffernan and Keeling, 2009].

3.2 Delay strategies

A strategy space composed of constant hazards may not appeal to all researchers.

Individuals probably do not choose waiting times independent of exponential distributions.

An alternative formulation might be based on a decision to delay the next vaccination for a

fixed time after the loss of immunity. The model we described here can easily be adapted to
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study this problem as well. Although the analysis is more difficult, the results are very

similar to those for the constant hazard strategy space.

The switch from hazard to delay strategies is equivalent to a switch from exponential

distributions to delta function distributions for the waiting time prior to vaccination. To

formulate an epidemic model with fixed waiting times, we must switch gears from ordinary

differential equations to integro-differential equations. The susceptible population will now

be structured in terms of the amount of time that the individual has waited after becoming

susceptible. This can be represented mathematically with a McKendrick--von Foerster style

partial differential equation where the “age” dimension is interpreted as the waiting time.

After individuals have been susceptible for a certain period of time, they are vaccinated. The

longer individuals remain susceptible, the less often they must pay vaccination costs but the

greater their accumulated risk of infection. This factor can be introduced as a removal

hazard proportional to the force of infection. The number of newly infected individuals per

unit time equals the total number of susceptible individuals becoming infected over all ages.

Therefore, individuals optimize the trade-off between vaccine costs and infection risks.

Excepting the adjustments described above, the dynamics of the infected, vaccinated, and

resistant states are the same as those described in System 3.1 when the mortality rate μ = 0.

At the population scale, the dynamics satisfy

(3.38a)

(3.38b)

(3.38c)

(3.38d)

with the total population size

(3.38e)

staying constant. Here, the waiting time before vaccination, w̄, is the population’s resident

strategy.

The steady-state analysis of System (3.38) shows that there is always a disease-free

stationary solution with I* = 0, V* = N/(1 + aw̄), and S*(a) = aN/(1 + aw̄). There is also an

endemic disease stationary solution with I* > 0 if
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(3.39)

When λ(I) = βI/N, the critical vaccination delay

(3.40)

Analogous to Eq. (3.7), the endemic disease incidence is the unique positive solution of the

transcendental equation

(3.41)

This solution corresponds closely with (3.7) in the absence of population turnover.

Calculation of an individual’s utility is significantly more complicated in the delay strategy

model than in the hazard-strategy model. We use a recursive decomposition of the path

integral formulation of the expected utility given by Eq. (2.2) to reduce the necessary

calculations to matrix arithmetic.

The instantaneous utility gain of each state, except the infected state, is 0. Upon infection,

individuals lose utility at a rate of cI per unit time. In addition, there is an instantaneous cost

cV paid every time an individual enters the vaccinated class. From these observations, we

can construct recursive formulas for evaluating the expected utility of various initial states.

Let UI, US, UV, and UR be the utilities conditional on initial infected, susceptible,

vaccinated, and resistant states respectively. If an individual is initially in the infected state,

then under the current model, there is a constant hazard γ per unit time of leaving the

infected state and entering the recovered class. The total time t1 that the individual is in the

infected state has distribution γe−γt1. The individual loses utility at rate Φ(I) = −cI for every

day of infection. Thus, expected utility should be the expectation of −cI t1 plus the expected

utility of entering the recovered class at time t1, appropriately discounting the future relative

to the present.

Mathematically, the expected utility is evaluated as follows:

(3.42a)

(3.42b)
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(3.42c)

(3.42d)

(3.42e)

The expected utilities of the other initial states are calculated in a similar fashion.

(3.43a)

(3.43b)

(3.43c)

(3.43d)

(3.43e)

(3.44a)

(3.44b)
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(3.44c)

(3.45a)

(3.45b)

(3.45c)

Thus, the conditional expected utility for each of the four initial conditions can be expressed

as a linear equation in terms of the other conditional expected utilities. In matrix form,

(3.46)

This matrix equation can be solved to determine the conditional expected utilities. The

unconditional expected utility is then determined by weighing each conditional expected

utility and the probability of the corresponding initial condition.

However, in the case of slow discounting (small h), it is useful to study the asymptotic

behavior. Let the asymptotic utility gain rate

(3.47)

Note that U+ is independent of the initial condition x(0).

An example of U+ is plotted in Figure 6. If an individual chooses a very long (w = ∞) or a

very short (w = 0) delay, the asymptotic utility gain

(3.48)

As in the hazard strategy example, ∂U+/∂w vanishes for all individual strategies w when the

force of infection λ satisfies
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(3.49)

Therefore, if there is a non-negative vaccination strategy w* in which the force of infection

satisfies Eq. (3.49) and (3.41) when w̄ = w*, then w* is a Nash equilibrium. When

(3.50)

Eq. (B.7) is negative because d2U+/dw2 = 0 and

(3.51)

because cV (γ + a) < cI by Eq. (3.50). Thus, the critical strategy also has local invasion

potential. If

(3.52)

then the equilibrium shifts to no vaccination. This condition is automatically satisfied when

cV > cI/(γ + a). If

(3.53)

then the equilibrium would be vaccination as soon as the individual loses immunity. But

λ(I*(w̄ = 0)) = 0, so the right hand side diverges and this inequality is never satisfied under

the current model.

Whereas the force of infection is the same in both models for the equilibrium strategy, the

individual utility gain at the critical delay-strategy is

(3.54)

This is consistent with the hazard strategy model.

4 Discussion

We have described a general method for calculating the utilities of strategies to individuals

in population games. By combining deterministic models of population dynamics with
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stochastic models of an individual’s dynamics in an optimal control setting, we have

obtained a powerful reformulation of population games for the study of decision making.

Our method is widely applicable to aggregate games with explicit population dynamics. For

example, our method facilitates the integration of models for social and biological systems,

game theory and public policy. Our method also permits the calculation of utilities from

relatively complex population games. Consequently, our method facilitates increased

complexity of population game models in order to take into account realism that could not

be incorporated previously, including population heterogeneity, such as with regard to risk

aversion or age [Galvani et al., 2007].

By applying our method to two vaccination policies that differ in vaccination timing, we

showed that the utilities of vaccination decisions can be determined using Markov decision

process theory. We demonstrated the application of these utilities for determining the

invisibility of strategies and for calculating Nash equilibria. We also used our method to

characterize the utility landscape surrounding critical strategies, thereby revealing that the

relationship between the waning of vaccine-induced immunity and the level of vaccination

at the Nash equilibrium is not monotone. When vaccine waning is very slow, small increases

in the rate of waning elevate expected vaccination demand. Around the critical cost

threshold, however, more rapid waning decreases vaccination.

Ongoing research includes the analysis of differential games where population dynamics are

not stationary, the analysis of trembling hand equilibria conditions, and extensions to

populations including age, space, and contact network structures. Previous work has

demonstrated the potential for vaccination behavior to generate unstable dynamics [Muller,

1997, Reluga et al., 2006], but these have not yet been studied as games. There are naturally

occurring problems where the attractor of the population-scale dynamics is periodic, leading

to cases where the transition rate matrix Q* is also periodic. In elementary cases, calculation

of the expected utility over long horizons under periodic oscillations can be reduced to the

solution of Eq. (2.5) with the periodic boundary condition:

(4.1)

where tp is the period of oscillation. One particular issue of interest is determining if

approximation methods are appropriate in cases where the population-scale dynamics are

quasiperiodic or chaotic. It is also important to determine alternative methods to specify the

coupling between an individual’s actions and the population dynamics. In cases where

individuals have perfect information, clear motives, and act independently, game-theory

approaches such as that studied here are justifiable. However, human behavior frequently

diverges from these assumptions, and many alternative approaches have yet to be fully

explored [Gigerenzer and Todd, 2000, Kahneman, 2003].

In conclusion, we described a general method for the calculation of the utilities of strategies

to individuals in population games. This method offers a framework for integrating

individual and aggregate behaviors. We exemplified its applicability by employing our

method to determine the invisibility of strategies and to calculate Nash equilibria for

vaccination decisions against seasonal influenza. We showed that the utilities of vaccination

decisions can be determined using Markov decision process theory. Our method can be

widely applied for population games and permits calculation of utilities from relatively

complex systems.
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A A Hamiltonian Formulation of Population Games

Using an optimal-control framework, individuals wish to maximize

subject to the dynamic constraints
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The Hamiltonian

where v, kn, and ke are vectors of Lagrange multipliers. A strategy π* is a Nash equilibrium

if it solves

subject to the constraint equations

A change of variables puts these equations in the present-value form used in Section 2.1.

Note that the optimization is independent of the population-scale adjoint variables kn and ke,

so the last two of these equations can be ignored within the scope of this paper.

B A Review of Equilibria Concepts for Population Games

For introductions to the field of game theory, see Osborne [2004], Rasmusen [2006],

Hofbauer and Sigmund [1998]. The game-theoretic aspect of our analysis focuses on the

properties of the expected utility U(π, π̄) as a function of the individual’s strategy π and the

effective average of the population’s aggregated strategy π̄, referred to as the resident

strategy.

Strategies used in a population game are commonly classified in terms of their ability to

replace and to be replaced by neighboring strategies [Geritz et al., 1998, Christiansen and

Loeschcke, 1980]. Strategies with special properties in terms of replacement are called

equilibria. The challenges of identifying equilibria are closely analogs of the challenges of

identifying the global maximums of a function: there are general rules that define the

properties of equilibria, and there are differentiation rules that greatly facilitate their

identification.

A strategy π* is a global Nash equilibrium if no other alternative strategy has a higher utility

than the strategy itself when invading a population using the strategy π*; i.e.
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(B.1)

A strategy π* is a strict Nash equilibrium if every alternative strategy has less utility than the

strategy π*; i.e.

(B.2)

Equally important is whether a strategy can successfully invade populations with differing

resident strategies. A strategy π* has global invasion potential if it never does worse than

any resident strategy played against itself; i.e.

(B.3)

A strategy π* has strict global invasion potential if equality only holds when the strategy π*

is itself the resident strategy, i.e.

(B.4)

Those Nash equilibria with invasion potential where at least one of the conditions is strict

are evolutionarily stable strategies (ESS’s) of the population game [Thomas, 1985,

Mesterton-Gibbons, 1992].

The definitions above place no restrictions on any set of strategies or on the utility function

being studied. They can be applied in general. However, for nicely behaved utility functions,

there are additional rules that facilitate the efficient identification of equilibria. In the

applications presented here, the strategy space is composed of real numbers, and the utility

function is continuous and differentiable almost everywhere. Therefore, it is convenient to

define local forms of the Nash and invasion conditions that can be tested for using

differential calculus and Taylor series. In a single population with a 1-parameter strategy

space, a strategy π* is a critical strategy of a utility function U(π, π̄) if the following equation

holds

(B.5)

A critical strategy is a strict local Nash equilibrium if

(B.6)

A critical strategy has strict local invasion potential if
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(B.7)

If we define the relative utility function

(B.8)

the local invasion potential condition may be expressed in the simplified form

(B.9)

A local Nash equilibrium with local invasion potential is a local ESS.

Note that Eq. (B.7) differs from the more-common convergent-stability condition [Eshel,

1983]

(B.10)

which implies that small improvements in strategy will lead to the critical point. A local ESS

is convergently stable. However, a critical point need not have local invasion potential to be

convergently stable.

These differential conditions can be generalized to vector strategies. For a discussion of

generalizations to multiple types of actors, see Reluga [2009].
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Figure 1.

Asymptotic expected utility gain per unit time U′ (π ̄, π̄) for an individual using the

population’s average strategy π̄. There is a corner in the utility gain at vaccination rates of

about π ̄ = .25 that is barely sufficient to ensure eradications. This is the social optimum, as

faster or slower rates yield slower gains to the average individual. Parameter values: γ = 1, β
= 6, a = .05, cI = 4, cV = 2.
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Figure 2.

An individual’s asymptotic expected utility loss U′ (π, π̄) as a function of the individual’s

strategy and the population’s average vaccination rate for the same parameters as presented

in Figure 1. The absolute utility loss (left) is minimized for different individual choices,

depending on the population’s average behavior. The relative utility (right), calculated as the

ratio of the absolute utility loss divided by the average utility loss, shows that vaccination

rates around .195 are self-consistent in the sense that no one can unilaterally improve on

their situation by deviating from the average behavior. All contour values are negative;

smaller values represent higher utilities.
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Figure 3.

The equilibrium vaccination rate π* as a function of the waning rates aR and aV. The shaded

region indicates parameter values where π* = 0. Increases in the waning rate of natural

immunity aR increase Nash equilibrium vaccination. However, the response to changes in

the waning rate of vaccine immunity aV may either increase or decrease equilibrium

vaccination. If natural immunity lasts longer than vaccine immunity, the equilibrium is to

refuse vaccination. Parameter values β = 4, γ = 1, c = .1.
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Figure 4.

Dependence of the Nash equilibria vaccination rates π* upon the relative cost of vaccination

(c = cV/cI). The Nash equilibrium is unique when c < .393 or c > .426. If .393 < c < .426,

there are three Nash equilibria. Parameter values γ = 1, β = 6, aR = aV = 0.05, σ = 0.15.
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Figure 5.

Parameter-space diagrams of the bifurcation structure in the Nash equilibria of Eq. (3.32) as

functions of the relative probability of infection σ and the relative cost of vaccine c = cV/cI.

The right plot is a magnification of the intersecting region of the left plot. The curves

represent sets of parameters where bifurcations occur. The plot is divided into 5 regions. If

the cost of vaccine is very high, no vaccination (π* = 0) is the only equilibrium. If the cost of

vaccine is very small and the relative probability of infection under vaccination is small,

there is a unique equilibrium 0 < π* < ∞. If the relative probability of infection under

vaccination is larger, individuals get vaccinated instantly on entering the susceptible

compartment (π* = ∞). For vaccine costs near the threshold for no vaccination, there may

be two locally evolutionarily stable equilibria: No or instant vaccination (π* = 0 and π* = ∞)

if the relative probability of infection is sufficiently high, and no or a finite vaccination rate

if the relative probability of infection is small enough. Parameter values γ = 1, β = 6, aR = aV

= 0.05.
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Figure 6.

An individual’s asymptotic expected absolute utility losses (left) and relative utility losses

(right) calculated from Eq. (3.47) as a function of the individual’s strategy and the

population’s resident strategy. Parameter values are the same as those used in Figures 1 and

2.
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