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Abstract—This paper presents a general approach for the sta-
bility analysis of the time-domain finite-element method (TDFEM)
for electromagnetic simulations. Derived from the discrete system
analysis, the approach determines the stability by analyzing the
root-locus map of a characteristic equation and evaluating the
spectral radius of the finite element system matrix. The approach
is applicable to the TDFEM simulation involving dispersive
media and to various temporal discretization schemes such as the
central difference, forward difference, backward difference, and
Newmark methods. It is shown that the stability of the TDFEM
is determined by the material property and by the temporal and
spatial discretization schemes. The proposed approach is applied
to a variety of TDFEM schemes, which include: 1) time-domain
finite-element modeling of dispersive media; 2) time-domain finite
element-boundary integral method; 3) higher order TDFEM;
and 4) orthogonal TDFEM. Numerical results demonstrate the
validity of the proposed approach for stability analysis.

Index Terms—Finite-element methods (FEM), numerical anal-
ysis, numerical stability, time-domain analysis, transient analysis.

I. INTRODUCTION

I N recent years, considerable attention has been devoted
to time-domain numerical methods to simulate elec-

tromagnetic transients. The best known technique is the
finite-difference time-domain (FDTD) method [1], and its
stability has been investigated extensively [2]–[6]. Progress
has also been made in the development of time-domain fi-
nite-element methods (TDFEMs) [7]. The TDFEM approaches
developed so far can be grouped into two classes. One class of
approaches directly solves Maxwell’s equations, and operates
in a leap-frog fashion similar to the FDTD method. These
approaches are conditionally stable, and their stability can
be analyzed by following the same lines of thought as in the
FDTD [8], [9]. Another class of TDFEM approaches tackles
the second-order vector wave equation, or the curl-curl equa-
tion, obtained by eliminating one of the field variables from
Maxwell’s equations [10]–[18]. These solvers can be formu-
lated to be unconditionally stable [10]–[13] or conditionally
stable [14]–[18]. In the unconditionally stable schemes, the
time step is not constrained by a stability criterion. However, it
is limited by the accuracy requirement and also by the spectral
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content of temporal signatures [11], [12]. These schemes are
very useful for analyzing electromagnetic problems in which
the electrical size of the finite elements varies by several orders
of magnitude over the computational domain. In the condition-
ally stable schemes, although the time step is constrained by a
stability criterion, these solvers usually yield better accuracy
[12]. In addition, the TDFEM schemes can be constructed such
that only the mass matrix is required to be solved at each time
step [15], [16], [18], [19]. This feature permits the formulation
of a purely explicit scheme, which eliminates a matrix solution
at each time step [18], [19]. It also reduces the complexity
of constructing preconditioners for the finite element (FE)
system matrix when iterative solvers are utilized to solve the
matrix equation. The stability of both the conditionally and
unconditionally stable schemes has been addressed in a limited
number of papers [11], [12]

In this paper, a general approach based on the discrete
system analysis is developed for investigating the stability
behavior of the TDFEMs for electromagnetic simulations in-
volving dispersive media. It is shown that by tracing the roots
of a characteristic equation in the complexplane and by
evaluating the spectral radius of the TDFEM matrix system,
the stability condition can be determined. It is also shown
that the proposed stability analysis is applicable to various
temporal discretization schemes such as the central differ-
ence, forward difference, backward difference, and Newmark
method. This approach is further applied to a variety of recently
developed TDFEMs, which include 1) time-domain finite-el-
ement modeling of dispersive media [20], 2) the time-domain
finite-element boundary-integral (FE-BI) method [21], [22],
3) higher order time-domain finite-element method [22], and
4) the orthogonal time-domain finite-element method [19].
Numerical results demonstrate its validity.

II. STABILITY ANALYSIS

The stability analysis is an important issue in the numerical
solution of initial-value problems. It has been studied exten-
sively in the past for a variety of engineering problems [23],
[24]. Here, we consider it for the TDFEM simulation of electro-
magnetic problems.

Consider the vector wave equation

(1)

where characterizes the dispersive effects of the medium,
and stands for the convolution. Assuming vanished tangential
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fields on the surface bounding the volume of interest, and using
Galerkin’s method, we obtain a weak-form solution

(2)

where denotes the vector basis function. Expanding the
electric field as

(3)

with denoting the total number of expansion functions, and
substituting (3) into (2), we obtain an ordinary differential
equation

(4)

in which

(5)

Here, for simplicity, the medium is assumed to be homogeneous
throughout the computational domain. For the inhomogeneous
case, the spatial variation of the permittivity can be taken into
account in matrices and , and the following approach for the
stability analysis remains valid.

Applying the central difference discretization scheme to (4)
and performing the transform [25], we obtain

(6)

which can be expressed as an eigenvalue problem

(7)

where the value of corresponds to the
eigenvalue of matrix . Denoting this eigenvalue as,
obviously satisfies the following equation

(8)

which is termed a characteristic equation here, since it carries
the characteristic information of the stability criterion. Clearly,
the lower bound of is zero due to the property of matrices

and . The upper bound of , denoted as , indicates
a relation between the maximum time step and the spatial
discretization, which has to be satisfied to ensure stability. If

can reach inifinity, the scheme is unconditionally stable
as the time step is irrelevant to the spatial discretization and can
be chosen arbitrarily; otherwise, the scheme is conditionally
stable. To determine , we can trace the roots of the charac-
teristic equation in the complexplane. With increasing from
zero to infinity, the roots of the characteristic equation change
correspondingly. These roots are nothing but the poles of the
linear system being investigated, which can be seen clearly
from (7). Hence, when the roots leave the unit circle in the
complex plane [25], the instability occurs. The value ofat
this point yields the upper bound . To ensure stability, all
eigenvalues of the matrix system should be smaller

than , which indicates that the maximum eigenvalue
, where represents the spectral radius of,

should be smaller than . As a consequence, we deduce the
following stability criterion:

(9)

Clearly, the above criterion implies that the stability of TDFEMs
is determined by the spatial discretization, temporal discretiza-
tion, as well as the material propoerty. Take the nondispersive
medium, in which , as an example. It can be shown
that for greater than 4, the roots of (8) will go beyond the
unit circle. Therefore, we conclude that . Hence, in a
nondispersive medium, the stability condition can be written as

(10)

which agrees with that deduced in [16], [18]. It should be noted
that in a dispersive medium, is dependent since
is dependent. Hence, to determine the maximally allowed
time step, we can start from an initial guess of, find ,
verify whether (9) is satisfied, modify correspondingly, and
then repeat this procedure until the optimum value of is
identified. For the determination of the spectral radius of ma-
trix , any numerical techniques designed for large sparse
generalized eigenvalue problems are suitable for use. The re-
cently developed implicitly restarted Arnoldi method [26], [27]
is a good choice due to its reliability and its efficiency in both
CPU time and memory requirement.

Although, the stability analysis derived above is based on the
central difference scheme in time, it is also applicable to the
backward difference [15], forward difference, Newmark method
[12], [13], three-point recurrence scheme [11] (which is a subset
of the Newmark method), etc. For instance, if the backward dif-
ference is used to discretize (4), (6) will become

(11)

which yields the characteristic equation

(12)

In free space, the roots of (12) can be easily found as

(13)

whose magnitude is . These roots never go beyond
the unit circle in the complex plane because the eigenvalue

is always nonnegative. Hence, the stability of the backward
difference scheme is unconditionally guaranteed, which agrees
with that deduced in [15].

If the forward difference is used to discretize (4), (12)
becomes

(14)

Evidently, in the free space and dynamic case, the roots of the
above equation are always outside the unit circle. Hence, the
forward difference will result in the definite instability as stated
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in [15]. If the Newmark method is used to discretize (4) with
, we obtain

(15)

After performing the transform on (15), we have

(16)

which yields the characteristic equation

(17)

In free space, the roots of (17) can be evaluated as

(18)

Obviously, when , the magnitude of these roots is
locked at one. Hence, the Newmark method with and

is unconditionally stable, which agrees with that de-
duced in [11]–[13] although, here we used a much simpler ap-
proach to arrive at the conclusion. Besides its simplicity, this
approach is general and applicable to the stability analysis in-
volving any kind of .

As shown in (6), (11), and (16), for dispersive media
is involved, which changes the stability behavior of TDFEM
schemes. The introduction of an absorbing boundary condition
in the TDFEM procedures may also have an impact on the sta-
bility. In addition, the use of different kinds of vector basis
functions changes the property of the matrix , and hence,
the stability of the entire numerical scheme. These issues are
addressed in detail in Sections III–VI. Throughout these sec-
tions, the temporal discretization scheme is assumed to be cen-
tral difference, although the proposed approach also applies to
the other discretization schemes.

III. TDFEM M ODELING OF DISPERSIVEMEDIA

For any time-domain based numerical method to accurately
perform wide-band electromagnetic simulations, one has to in-
corporate the effect of medium dispersion in its formulation.
Over the past decade, several approaches have been proposed
for the FDTD method [28]–[31]. Little work has been reported
on the dispersion modeling in the TDFEM. Recently, a general
formulation has been developed for the TDFEM modeling of
electromagnetic fields in a general dispersive medium [20]. In
Sections III-A–C, we take the lossy medium, plasma, and the
Debye medium as examples to analyze the stability of TDFEM
procedures in dispersive media.

A. Lossy Medium

For a lossy medium characterized by conductivity, as-
suming vanished tangential electric or magnetic fields on the
truncating outer boundary, the finite-element discretization will
yield the following ordinary differential equation

(19)

Fig. 1. Root-locus map of a lossy medium.

where , , and denote matrices whose elements are given
by

(20)

In the case that the central difference scheme is used, the per-
mittivity can be derived as

(21)

Substituting into (8), we have

(22)

Without loss of generality, assuming , we can draw
a root-locus map on the complexplane as shown in Fig. 1.
When , there are two roots in (22): one is located at

, and the other at . As increases, the two roots
move along the real axis in opposite directions until they en-
counter each other at . After overlapping, the roots
split; one follows the upper circle in the complexplane, and
the other traces the lower one until they encounter for the second
time at . Next, with the continual increase of, the
roots split again. One goes toward the negative infinity, and the
other goes toward zero. It is evident that the instability occurs
exactly at , where the first root leaves the unit circle.
The value of at this point is identified as , which can be
calculated as . Since in many cases, the instability is
exactly produced at , can be obtained immedi-
ately by replacing in (8) with 1. Fig. 1 also shows that in
a lossy medium, the wave is attenuated, since the radius of the
circle is less than one. However, the stability threshold is intact
compared to the case of free space, although we expect that the
lossy medium delays the occurrence of instability if the stability
criterion is not satisfied.

To demonstrate the validity of the above stability analysis,
the problem of scattering from an empty box of dimension
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(a)

(b)

Fig. 2. Scattering from an empty box filled with lossless or lossy medium.
(a) H generated by using�t = 0:22 ns. (b)H generated by using�t =

0:24 ns.

1.0 0.5 0.75 m (a dielectric volume with ) is
considered. The box is illuminated by a Neumann pulse

(23)

with the pulse parameters defined as , ,
ns, m, and ns. The box

is filled by the lossy medium characterized by s/m.
The computational domain is discretized into 40 tetrahedra,
resulting in 83 unknowns. It is truncated by the Dirichlet type
of boundary condition enforced at the outer boundary. The
zeroth-order Whitney edge elements are utilized to describe the
unknown fields. By an eigenvalue analysis of matrix ,

it is found that the spectral radius is equal to 7.110 .
Hence, from (10), it is determined that the time step should
satisfy ns to guarantee stability. As analyzed, this
constraint on the time step should be valid for both lossy and
lossless cases. These conclusions are validated by numerical
simulations. Fig. 2 shows the component of the magnetic
field calculated by using two different time steps. It is evident
that when the time step is chosen to be 0.22 ns, the numerical
simulation can be kept stable. When the time step is increased
to 0.24 ns, instability occurs, which agrees very well with our
theoretical prediction. Also, we observe that the introduction
of loss does delay the time at which the instability happens.

B. Plasma

For plasma that is characterized by plasma frequency
and damping frequency , discarding the contribution from
sources, the finite-element discretization yields the following
ordinary differential equation:

(24)

where , , and are square matrices given by

(25)

and is a vector whose elements can be evaluated from

(26)

in which stands for a unit step function.
In the case that the central difference is used to discretize (24),

can be readily derived as

(27)

By substituting into (8), and tracing the roots in the
complex plane, the allowed maximum eigenvalue , and
thereby also the constraint on the time step, can be identified.

The example considered here is a metallic sphere coated with
plasma. The metallic sphere has a radius of 0.8 m and the coating
has a thickness of 0.2 m. This coated sphere is illuminated by an

polarized incident Neumann pulse, defined by , ,
ns, m, and ns. The com-

putational region is discretized into 1956 tetrahedra, yielding
2704 unknowns. The plasma frequency and damping fre-
quency are chosen to be 50 Mrad/s. An eigenvalue anal-
ysis reveals that the spectral radius of matrix is equal
to 3.11 10 . Substituting (27) into (8), we find to be
slightly less than 4. Hence, from (9) we deduce the stability con-
dition ns. Fig. 3 shows the calculated electric field
at m using ns and ns,
respectively. It is evident that the numerical result agrees very
well with the theoretical stability analysis.
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Fig. 3. Scattering from a metallic sphere coated with plasma(! = � =
50 Mrad/s).

C. Debye Medium

For a Debye medium that is characterized by relaxation
time , relative dielectric constant at dc and at infinite
frequency, the TDFEM solution yields the following ordinary
differential equation:

(28)

in which matrices , , , and are given by

(29)

and vector can be evaluated from

(30)

By discretizing (28) in the time domain using the central differ-
ence and performing the transform, we obtain the permittivity
as seen in (31) at the bottom of the page.

Assuming , , and ns,we simulated
the same metallic sphere described in the preceding section,
except that now the plasma coating is replaced by a layer of the
Debye medium. By a stability analysis, the allowed maximum
eigenvalue is identified as 8.93, resulting in a maximum
time step 0.169 ns. Obviously, compared to free space, the
Debye medium allows for a larger time step for the TDFEM
numerical simulation. Fig. 4 shows the calculated electric field

Fig. 4. Scattering from a metallic sphere coated with a Debye medium (� =
4:0, � = 1:0, and� = 0:15 ns.

at – m. The first-order absorbing boundary
condition is placed at the dielectric interface to truncate the
computational domain. As can be seen clearly from Fig. 4, the
numerical simulation is stable at ns. However, when

goes up beyond 0.17 ns, the numerical simulation becomes
unstable, which agrees well with the theoretical prediction.

IV. TIME-DOMAIN FE-BI METHOD

The hybrid FE-BI method (see [32] and references therein),
is a powerful numerical technique for solving open-region elec-
tromagnetic scattering problems. Although this approach has
been thoroughly studied within the context of frequency do-
main solvers, its time-domain version is developed only very
recently [21], [22]. This method employs the boundary integral
representation to accurately truncate the computational domain
and the multilevel plane-wave time-domain algorithm to effi-
ciently evaluate the boundary integrals (BIs). Here, we discuss
its stability.

The time-domain FE-BI discretization of an open-region
electromagnetic problem renders the following ordinary differ-
ential equation:

(32)

where

(33)

(31)
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(a)

(b)

Fig. 5. Scattering from a conducting sphere. (a)E calculated by using�t =

0:09 ns. (b)E calculated by using�t = 0:12 ns.

In (33), is formulated as an impedance boundary condition
[22]

(34)

which is evaluated using BIs. The introduction ofyields an
efficient scheme to hybridize finite elements with boundary in-
tegrals. This scheme not only preserves the sparsity of the FE
system matrix but also generates solutions devoid of spurious
modes. These spurious modes are likely to be supported by al-
ternative global boundary condition implementations such as
those based on evaluating only the tangential electric or tangen-
tial magnetic field at the truncating outer boundary [33].

Clearly, the contribution of in (32) is equivalent to the
excitation source, which should be discarded in the stability
analysis. The introduction of the first temporal derivative is

TABLE I
SPECTRAL RADIUS AND MAXIMUM TIME STEP GENERATED BY THE

FIRST-KIND, SECOND-KIND, AND IMPEDANCEBOUNDARY CONDITIONS

TABLE II
SPECTRAL RADIUS AND MAXIMUM TIME STEP FOR THEZEROTH-,FIRST- ,

AND SECOND–ORDER VECTORELEMENTS

equivalent to the introduction of loss. Consequently, the stability
of the time-domain FE-BI procedure should not be affected
according to the analysis in Section III-A, except that the
instability can be delayed to occur when the stability criterion
is not satisfied.

For the purpose of validation, we consider the problem
of scattering from a conducting sphere. The problem is set
up similarly to that for the stability analysis in plasma and
Debye medium, except that now the sphere is not coated. For
comparison, the time-domain FE-BI solution is also formulated
using the first- and second-kind boundary conditions, for which
we evaluate only the tangential electric or magnetic field at
the truncating outer boundary. Table I gives the spectral radius
of the matrix as well as the resulting maximum time
step. The spectral radius of matrix generated by the
first-kind boundary condition is slightly different from that
generated by the other two boundary conditions. This is due
to the explicit enforcement of the boundary condition on the
tangential electric field, and hence, the reduction of unknowns.
Fig. 5 shows the calculated component of the electric field
observed at point – m. Obviously, when the
time step is 0.09 ns, any of these three boundary conditions
can produce stable results. However, when the time step is
increased to 0.12 ns, none of these three boundary conditions
can make the simulation stable. This agrees with the theoretical
analysis shown in Table I. Besides, it can be observed that
using the impedance boundary condition, instability does occur
at a later time compared to the case using the second-kind
boundary condition.

We should note that the hybrid FE-BI schemes based on
the first- and second-kind boundary conditions suffer from the
problem of interior resonances, as discussed in detail in [21]
and [22]. This problem is caused by the improper formulation
of the boundary integral equations. Although, it can also lead
to instability in the time-domain solution, the nature of the
problem is fundamentally different from the one dealt with in
this paper. In the example discussed in this section, the incident
spectrum does not include any interior resonance frequency.
Hence, the hybrid FE-BI schemes based on the first- and
second-kind boundary conditions can also yield accurate and
stable solutions.
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(a)

(a) (b)

Fig. 6. Scattering from an empty box. (a)H generated by using the zeroth-order basis functions. (b)H generated by using the first-order basis functions. (c)
H generated by using the second-order basis functions.

V. HIGHER ORDER TDFEM

In our recently developed higher order TDFEM schemes [22],
higher order basis functions are utilized to accurately model the
unknown fields. It is shown that the efficiency and accuracy can
be enhanced greatly by the use of higher order basis functions.
However, the stability of the resulting TDFEM is affected be-
cause the property of matrix is changed. Hence, a the-
oretical analysis of stability is important for the correct use of
higher order basis functions.

We consider the scattering from an empty box as depicted in
Section III-A. This box is subdivided into 40 tetrahedra, which
results in 83 unknowns using the zeroth-order elements, 366
unknowns using the first-order elements, and 969 unknowns
using the second-order elements. From an eigenvalue analysis,
the spectral radius of matriz is calculated, and the re-
sults are given in Table II together with the maximum time

steps. It can be seen that the property of the FE system matrix
deteriorates rapidly when the higher order basis functions are
used, resulting in a smaller time step to ensure stability. Fig. 6
shows the calculatedcomponent of the magnetic field at point

m generated by using the zeroth-,
first-, and second-order basis functions, respectively. Evidently,
the numerical results agree very well with the theoretical sta-
bility analysis.

Considering the decreased time step, one is likely to question
the efficiency of higher order schemes. To clarify this point,
we reconsider the above problem by discretizing the box
into 40 second-order tetrahedra, 118 first-order tetrahedra,
and 672 zeroth-order tetrahedra, respectively, so that the three
discretizations yield a similar number of unknowns. We then
calculate the maximally allowed time step and find that they
are about the same, as can be seen in Table III. Considering
its higher order accuracy, the higher order TDFEM scheme is
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TABLE III
NO. OF UNKNOWNS AND MAXIMUM TIME STEP FOR THEZEROTH-, FIRST-,

AND SECOND-ORDER VECTORELEMENTS

more efficient than the lower-order schemes, as numerically
demonstrated in [22].

VI. ORTHOGONAL TDFEM

Due to its ability to handle unstructured meshes and its ca-
pacity to impose continuity conditions across material inter-
faces, the TDFEM is a powerful numerical method for analyzing
electromagnetic problems involving complex geometries and
inhomogeneous media. However, the TDFEM does not enjoy
widespread popularity when compared to the FDTD method.
One of the major reasons is that most of the present TDFEMs
require a matrix equation to be solved at each time step. This
problem can be eliminated by constructing a set of orthogonal
vector basis functions that yield a diagonal mass matrix [18].
Recently, a set of three-dimensional (3-D) orthogonal vector
basis functions has been developed for the TDFEM solution of
vector wave equations [19]. Here, the stability of the resulting
TDFEM solution is analyzed. We consider the problem of scat-
tering from an empty box as analyzed in Section III-A. The
box is illuminated by a -polarized Neumann pulse defined by

ns and ns. The computational domain is
discretized into 40 tetrahedra, resulting in 300 unknowns. The
eigenvalue analysis of matrix shows that its spectral ra-
dius is equal to 2.91 10 . Thus, it is found from (9) that the
time step should be less than 0.12 ns to guarantee stability.

Fig. 7 gives the component of the electric field at
m generated by the orthogonal TDFEM

using ns and ns, respectively. It is clear
that the numerical experiments are in agreement with the pro-
posed stability analysis.

VII. CONCLUSION

In this paper, a general approach was developed for the
stability analysis of time-domain finite-element numerical
schemes for electromagnetic simulations. This approach took
the dispersion of material into consideration, and was not
constrained by the temporal discretization scheme. It was
shown that by identifying from the root-locus map of
a characteristic equation and by obtaining the spectral radius
of the finite-element matrix system, the stability condition
can be determined. The successful application to a variety of
recently developed TDFEMs, which include (1) time-domain
finite-element modeling of dispersive media, (2) time-domain
finite element-boundary integral method, (3) higher order
TDFEM, and (4) orthogonal TDFEM, validates the proposed
approach for stability analysis.

Fig. 7. Scattering from an empty box simulated using the orthogonal TDFEM.
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