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A universal approach for the synthesis
of two-dimensional binary compounds
Abhay Shivayogimath 1,2, Joachim Dahl Thomsen1,2, David M.A. Mackenzie 2,3, Mathias Geisler2,4,

Raluca-Maria Stan5, Ann Julie Holt5, Marco Bianchi5, Andrea Crovetto6, Patrick R. Whelan 1,2,

Alexandra Carvalho7, Antonio H. Castro Neto7, Philip Hofmann5, Nicolas Stenger 2,4, Peter Bøggild 1,2 &

Timothy J. Booth 1,2

Only a few of the vast range of potential two-dimensional materials (2D) have been isolated

or synthesised to date. Typically, 2D materials are discovered by mechanically exfoliating

naturally occurring bulk crystals to produce atomically thin layers, after which a material-

specific vapour synthesis method must be developed to grow interesting candidates in a

scalable manner. Here we show a general approach for synthesising thin layers of two-

dimensional binary compounds. We apply the method to obtain high quality, epitaxial MoS2

films, and extend the principle to the synthesis of a wide range of other materials—both well-

known and never-before isolated—including transition metal sulphides, selenides, tellurides,

and nitrides. This approach greatly simplifies the synthesis of currently known materials, and

provides a general framework for synthesising both predicted and unexpected new 2D

compounds.
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M
any of the possible 2D materials are binary compounds
of the formMXn, whereM is typically a transition metal
and X a chalcogen or non-metal from groups IV, V, or

VI1–5. The molybdenum and tungsten disulphides and dis-
elenides remain the most commonly studied 2D binary com-
pounds—other than hexagonal boron nitride (hBN)—due to the
ready availability of naturally occurring bulk crystals amenable to
exfoliation. Chemical vapour deposition (CVD) techniques for
the scalable synthesis of these materials are available6; however,
controlling the stoichiometry and hence the defect density can be
challenging. Such techniques typically employ solid metal
oxide7–10 or metal-organic11 precursors which are chalcogenated
at elevated temperatures. Finding appropriate metal precursors
can be a limiting challenge for extending these methods to other
2D transition metal compounds, and as a result requires single-
process dedicated equipment that is highly optimised for growing
one specific material. A more general method using simpler
precursors would thus be beneficial. Published CVD growth
models for binary compounds on metal catalysts stipulate that
both M and X elements be insoluble in the catalyst to ensure
surface-limited growth12–14, by analogy with CVD graphene
growth on copper15. In fact, the synthesis of monolayer hBN films
on copper—despite the high solubility of boron in copper16—
suggests that only one component need be insoluble.

Here we present a general method for synthesising two-
dimensional compounds on a metal catalyst from solid elemental
precursors (Fig. 1). We arrange a single component solid solution,
as used for hBN growth on copper, by alloying metalM films with
gold, which has limited solubility of the X elements (X= S, Se, Te,
N). In brief, a thin layer (~20 nm) of metal M is sputtered onto a
c-plane sapphire substrate followed by a thick layer (~ 500 nm) of
gold (see Methods). The M-Au layer is then heated to 850 °C to

form an alloy with an Au {111} surface. The relative thicknesses
of the M and Au layers determines the concentration of M in the
final alloy, which here is deliberately limited to ≤5 at%17–24 in
order to maintain single-phase alloying conditions. The Au-M
alloy is subsequently exposed to a vapour-phase precursor of
element X. The limited solubility of X in the gold restricts the
formation of MXn compounds to the surface of the alloy—at the
solid–gas interface—resulting in few-atom thick layers of binary
compounds that are epitaxially aligned to the underlying Au
substrate.

The process enables the epitaxial synthesis of both known and
new 2D materials using a single recipe and simple elemental
precursors, demonstrated here by the synthesis of 20 compounds
including sulphides, selenides, tellurides, and nitrides.

Results
Synthesis and characterisation of MoS2. To benchmark this
approach we first synthesise and characterise MoS2 layers (Fig. 2).
Individual domains display triangular morphology as seen from
scanning electron microscopy (SEM) images of the catalyst surface
after growth (Fig. 2a). The gold catalyst adopts a {111} surface on
the <001> sapphire substrate after annealing (Supplementary
Fig. 1), leading to epitaxial growth of MoS2 across the catalyst
surface. Low-energy electron diffraction (LEED) (Fig. 2c) and angle-
resolved photoemission spectroscopy (ARPES) (Fig. 2d) of as-
grown MoS2 domains on gold confirm uniform epitaxial alignment
across the underlying substrate, as evidenced by the moiré satellite
peaks visible in LEED25 and well resolved bands in ARPES. ARPES
also indicates that the MoS2 domains are primarily monolayers,
based on the absence of a strong anti-bonding band at the Γ point
that is characteristic of multilayer formation26,27. Raman spectro-
scopy with 455 nm excitation of MoS2 crystals transferred to an
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S

Fig. 1 Schematic overview of the synthesis process. A thin layer (~20 nm) of metal M is sputtered onto a c-plane sapphire substrate, and a thick layer

(~500 nm) of Au is sputtered on top. The sample is annealed at 850 °C to produce an Au-M alloy, which is then exposed to a vapour of S, Se, Te, or more

generally an elemental X gas or vapour. The growth of binary MXn compounds proceeds at the surface of the Au-M layer and is surface-limited

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11075-2

2 NATURE COMMUNICATIONS |         (2019) 10:2957 | https://doi.org/10.1038/s41467-019-11075-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


oxidised silicon substrate shows two peaks, the E2g and A1g at
381.40 ± 0.05 and 401.40 ± 0.04 cm−1 respectively (Fig. 2e). While
the positions and intensities of these peaks can in general vary as a
result of strain and doping, their separation of ≈ 20 cm−1 is diag-
nostic of monolayer MoS228.

High resolution transmission electron microscopy (TEM) and
selected area electron diffraction (SAED) images of crystals
transferred to holey carbon support grids confirms the crystal
structure of the MoS2 layers (Fig. 3a, b) and that the layers are

free of atomic defects over the areas imaged. A region where
vacuum is visible through the sample due to knock-on damage is
indicated in Fig. 3a, confirming that the suspended region is a
monolayer.

Figure 4a shows photoluminescence (PL) measurements (see
Methods) of MoS2 domains transferred onto 90 nm SiO2 on Si
substrates (solid line), compared to a monolayer exfoliated MoS2
crystal control sample (dashed line). Identical acquisition
parameters and substrates were used in both cases. The intensity
of the PL response is comparable in both cases, while the PL peak
for transferred crystals is blue-shifted with respect to exfoliated
samples. Electric field-effect measurements were performed on
100 µm × 100 µm unencapsulated devices of continuous MoS2
films transferred onto 300 nm SiO2 on Si substrates with pre-
patterned contacts (see Methods). Four-point sheet conductivity
σS was calculated at varying gate bias (VG) as described in ref. 29,
with the results for a representative device shown in Fig. 4b. The
device shows an on-off ratio of >104 over the gate bias range, and
small maximum hysteresis of about 16 V. The low level of
hysteresis suggests that the overall number of charge traps is low,
including intrinsic charge traps within MoS2 itself30. The field-
effect mobility µ was calculated using the formula31

μ ¼ ðdσS=dVGÞ � 1=Cox, where Cox is the capacitance per unit
area of the back gate. Our measured devices showed a range of µ
between 5 and 30 cm2V−1 s−1 (Supplementary Table 1), which is
comparable to results for unencapsulated exfoliated MoS231.
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Fig. 2 Characterisation of MoS2. a SEM image of an individual MoS2 domain

on Au {111} catalyst. Scale bar 1 µm. b SEM of epitaxially oriented MoS2

domains on gold. Scale bar 1 µm. c LEED pattern and d ARPES of as-grown

MoS2 on Au {111}. The dashed lines in d serve as visual markers of the

valence band of monolayer MoS2 at the K point of the Brillouin zone.

e Raman response with 455 nm excitation of MoS2 transferred onto 90 nm

SiO2/Si substrate. Two peaks are evident, the E2g peak at 381.40 cm−1 and

the A1g at 401.40 cm−1

a

b

Fig. 3 TEM characterisation of MoS2. a High-resolution TEM of suspended

MoS2. A hole in the monolayer introduced by knock-on damage during

imaging is indicated (white arrow), where lattice fringes are absent. The

boxed region has had an iterative nonlinear denoising filter applied to

highlight the MoS2 lattice and reduce shot noise50. Scale bar 2 nm. b SAED

pattern of suspended MoS2 layers with a 100 nm diameter aperture

showing single crystal long range order. Scale bar 1 nm−1
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Synthesis of other binary compounds. Varying M or X for a
range of different elements (M=Mo, W, Cr, Fe, Co, Hf, Nb, V;
X= S, Se, Te) under identical growth conditions results in the
structures visible in the SEM images in Fig. 5. X-ray photoelec-
tron spectroscopy (XPS) data confirming the expected stoichio-
metry and bonding for each of these binary transition metal
dichalcogenides is presented in Supplementary Figs. 2–18, where
further characterisation on selected materials is also presented.
We have also shown the growth of select transitional metal
nitrides, presented in Supplementary Figs. 19–21, along with
calculated band structures (Supplementary Fig. 22) for selected
novel materials not present in the literature.

Discussion
We have shown the synthesis of epitaxially aligned MoS2 layers
whose properties—namely Raman spectroscopic response,
nanoscale crystalline structure, intensity of PL response, and
electric field-effect properties—are comparable to mechanically
exfoliated monolayers from bulk crystals or high-quality films
from more complex CVD processes. This process is selective
towards monolayer synthesis despite the fact that the solubility of

molybdenum in gold is appreciable (~1 at%) at 850 °C17,
demonstrating that the strict insolubility of all component ele-
ments is not required when extending surface-limited growth
models to multi-elemental 2D compounds.

Furthermore, we show XPS and SEM data for a wide range of
other materials produced simply by selecting different pairs of M
and X elemental precursors, and additional Raman, atomic force
microscopy (AFM), PL, and TEM characterisation for the
materials which are stable during transfer to oxidised silicon or
on the catalyst layer. Without further optimisation, a large
selection of materials which display morphologies, stoichiome-
tries, and chemical bonding expected of binary 2D transition
metal dichalcogenides can be grown. While exhaustive char-
acterisation of all of these materials is beyond the scope of this
manuscript—in particular for candidate materials which have not
previously been synthesised or isolated from bulk crystallites
before—the simplicity of this growth strategy enables very rapid
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Fig. 4 Photoluminescence and electrical characterisation of MoS2.

a Photoluminescence spectra for the as-grown MoS2 transferred to SiO2

(solid line) vs. mechanically exfoliated monolayer MoS2 (dashed line).

b Gate-dependent conductance measurements of a representative

unencapsulated MoS2 device. Inset: image of a measured device. Scale

bar 1 mm
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Fig. 5 Library of layered transition metal chalcogenides. SEM images of the

various transition metal chalcogenides grown by the present method. All

presented materials are grown under identical process conditions, varying

only M and X. Further characterisation for the materials is presented in

Supplementary Figs. 2–18. Scale bars are 1 µm except where marked:

*: 100 nm, **: 10 µm
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experimentation in terms of the range of precursor combinations
that can be tested and materials which can be grown. In practice
since multipleM-Au alloy samples can be simultaneously exposed
to the same X precursor, the time needed to fully characterise
such materials individually far exceeds the time needed to pro-
duce them in parallel.

The surface-limited growth of a wide variety of binary 2D
materials presented in this work relies on the use of gold as a
catalyst layer. Gold readily alloys with most transition metals M,
but shows limited solubility for X elements at our growth tem-
peratures. Moreover, gold is unique in that it does not react with
X precursors at these temperatures. Gold is catalytically active,
which aids in the formation of crystalline atomically thin mate-
rials, and the {111} surface formed on c-plane sapphire also
templates the epitaxial alignment of the grown materials. The
method presented here is distinct from vapour–liquid–solid
(VLS) and vapour–solid–solid (VSS) growth models32 of III–V
nanowires since we actively avoid supersaturation of component
metals in gold—a key hallmark and necessary prerequisite for
VLS/VSS growth mechanisms—by limiting the amount of metal
available to <5 at%. This ensures that the resulting alloy behaves
as a single-phase, simple solid solution at the growth temperature.
The role of the gold here is to facilitate phase separation of M and
X precursors such that they react only at the vapour–solid
interface. Once this interface has been passivated by the 2D MXn

layer, the growth terminates, similar to the case of graphene on
copper.

The use of gold as a catalyst for synthesising 2D TMD layers
has been previously reported in literature12,13,33–35; however, a
key advantage of the present scheme is that solid elemental metal
films are used as precursors rather than metal-organic vapours or
volatile metal compounds, which makes our process significantly
simpler to implement for both known and new TMDs. We also
note that similar methods for growing atomically thin carbides
and sulphides have been previously reported36,37, but only for
systems where both M and X components have limited solubility
(<0.1 at%) in the catalyst. These represent a subset of the general
approach presented here, i.e. one where the solubility of M in the
catalyst approaches zero. In such cases, growth is dominated by
surface-mediated diffusion of both M and X. Here instead the
growth is dominated by precipitation of component M from
the catalyst bulk upon reacting with X at the solid–gas interface at
the surface of the catalyst. The crucial point is that surface-limited
growth does not require the metal precursor to be insoluble in the
catalyst layer. This fact allows our approach to be compatible with
all precursor metals, in contrast to previous reports.

In the presented work, growth targeted at complete MoS2
monolayer coverage—achieved here by increasing the growth
temperature—can result in adlayers. In practice, adlayer growth
can be reduced by tuning the growth temperature and time,
reducing the flux of X, or limiting the alloy M content of the gold
catalyst layer. Controlling the M content can be particularly
important in determining the layer coverage, maintaining single-
phase alloying conditions, and in preventing precipitation of
excess metal upon cooling. Such precipitation can interfere with
2D growth and lead to 3D structures on the surface, as seen for
Co21 or Fe20. In general we expect that optimisation of additional
deposition and growth parameters for individual M–X combi-
nations will be necessary, as has been the case for growth stra-
tegies for other 2D materials.

The present approach holds a number of advantages over state-
of-the-art salt-assisted38 or metal-organic chemical vapour
deposition (MOCVD) of 2D materials11. Notably, solid elemental
precursors (elemental metal thin films; vapour phase S, Se, or Te)
or simple compounds (NH3) are the only feedstocks required to
grow the presented materials, which are in general more readily

available and easier and safer to handle than metal-organic pre-
cursors and lead to less contaminants (such as carbon) being
incorporated into the films. Critically, this approach provides a
universal method for epitaxial synthesis of 2D materials without
the need for salt additives38, which may have a detrimental
impact on material performance through loss of epitaxy and
alkali metal doping39. While we have employed a tube furnace
operating under low pressure, the growth scheme presented does
not rely on a flow but simply the presence of X precursor and as
such can be performed in a sealed chamber. Such a scheme might
be particularly beneficial to reduce the amount of oxygen and
water in the growth system—the alloys of certain transition
metals (e.g. Cr, Ta, Nb, Hf, V) are highly sensitive to oxidising
impurities in the growth chamber40,41, which can interfere with
growth by passivating the catalyst surface with metal oxides. This
issue can be addressed by operating in a highly reducing envir-
onment or under high vacuum.

Some of the materials grown are unstable under ambient
conditions—no special steps were taken to limit the exposure of
samples to ambient atmosphere before characterisation. As such,
transfer of many of these materials to, e.g., oxidised silicon sub-
strates or TEM grids is challenging, as they rapidly degrade on
contact with aqueous or oxygen-containing solutions, which has
hampered extended characterisation in many cases. Recent pro-
gress in the solution-phase exfoliation of air and water-sensitive
2D crystals42–44 suggests that similar strategies might be suc-
cessfully employed here.

Conclusion
In summary, we have demonstrated a simple and universal
strategy for approaching the growth of few-atom thick binary
compounds, including transition metal mono- and dichalcogen-
ides and nitride MXenes, based on the insight that only one
component of a binary compound need be insoluble to achieve
surface-limited growth. The strategy employs only a volatile X
precursor, while all the presented materials are grown under
identical conditions. Notably, this method enables the growth of
epitaxially oriented MXn layers on Au. New 2D materials can be
made through the free choice of M and X, and different com-
pounds can be obtained on the same growth substrate simply by
switching the precursor X gas. As such, this scalable growth
technique simplifies the production of existing binary 2D mate-
rials with a quality comparable to exfoliated crystals, and at the
same time greatly increases the range of such materials available.
We do not doubt that growth conditions for materials can be
individually optimised, and that with further research, growth of
in-plane and out-of-plane heterostructures could also be
accessible.

Methods
Preparation of gold-metal M substrates. Substrates were prepared by physical
vapour deposition of a thin layer (~20 nm) of metal M followed by a thick layer
(between 300 nm–1 µm, typically ~500 nm) of gold (Lesker, 99,999%) on a <001>
sapphire substrate. Oxidation of the metal M is avoided by immediate encapsu-
lation with gold before exposure to ambient conditions.

Synthesis of 2D transition metal chalcogenides and nitrides. Transition metal
chalcogenides were synthesised in a hot-wall quartz tube reactor under low-
pressure conditions. The chamber was flushed three times with argon (Ar), and the
samples were subsequently heated to 850 °C under 100 sccm Ar. The samples were
annealed at this temperature for 30–60 min, and growth was subsequently carried
out for 10–15 min by exposing the samples to volatised chalcogen X vapours. The
vapours were generated by heating solid chalcogen precursors situated upstream
from the samples: ~110 °C for sulphur (sulphur flakes; Sigma Aldrich), ~220 °C for
selenium (selenium pellets; Sigma Aldrich), and ~420 °C for tellurium (tellurium
pieces; Sigma Aldrich). After growth, the samples were naturally cooled to room
temperature under 100 sccm Ar flow. Synthesis of continuous MoS2 films for
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electrical device measurements was achieved by increasing the growth temperature
to 950 °C.

Identical processing conditions were used to synthesise transition metal nitrides
in a cold-wall reactor (AIXTRON Black Magic), except that the entire process was
done under 100 sccm H2 flow instead of argon in order to mitigate surface
oxidation of the alloys. The growth of nitrides was performed by introducing
5 sccm NH3 into the chamber for 5 min The samples were then naturally cooled
down to room temperature under 100 sccm H2.

Transfer of 2D materials. Samples were transferred from the gold substrate by
etching transfer. A solution of 10% wt. PMMA 950K in anisole (Sigma Aldrich)
was spincoated onto the samples at 1500 rpm for 1 min, after which the samples
were baked at 160 °C for 15 min. The polymer film was then manually removed at
the edges of the sample. The samples were then put in a KI/I2 gold etchant solution
(standard gold etchant; Sigma Aldrich). After the gold was completely etched, the
films were washed in DI water and transferred onto oxidised silicon substrates,
where they were baked at 160 °C for 10 min. PMMA was subsequently removed in
acetone. Transfer of 2D materials onto TEM grids (Quantifoil GmbH) was done by
wedging transfer45,46 from transferred films on oxidised silicon.

Crystal and band structure characterisation. SEM images were taken in a Zeiss
Supra 40VP operated in in-lens detection mode at 5 keV. TEM characterisation of
transferred MoS2 was done in an FEI Tecnai T20 G2 operated at 200 kV. ARPES
and LEED measurements were conducted at the SGM-3 beamline endstation at
ASTRID2 in Aarhus, Denmark. ARPES measurements for MoS2 were acquired at
T= 30 K and hv= 49 eV, using an energy resolution <25 meV and angular
resolution <0.2°47. LEED images were acquired at T= 30 K and EK= 113 eV.

Raman and PL measurements. Raman spectroscopy was conducted in a Thermo
Fisher DXR microscope equipped with a 455 nm laser. Measurements were made
using an incident power of 5 mW and a 50× objective, and 5 acquisitions with 10 s
exposure time were collected for each Raman spectrum. Photoluminescence spectra
were obtained using a custom spectroscopy setup built from a Nikon Eclipse Ti-U
inverted microscope. The excitation source was a 407 nm diode laser from Inte-
grated Optics. The light was focused to a diffraction limited spot on the sample
with a TU Plan Fluor objective from Nikon (×100, 0.9 NA) resulting in an incident
power of 30 µW. The emitted fluorescent light was collected with the same
objective, and the spectra were recorded using a Shamrock 303i Spectrometer
equipped with a 450 nm longpass filter (FELH0450 from Thorlabs) and an elec-
tronically cooled Newton 970 EMCCD. A total of five acquisitions with 1 s
exposure time each were collected for each PL spectrum.

Fabrication of electrical devices. Continuous MoS2 films were transferred from
the catalyst surface using the above procedure onto 300 nm SiO2/Si substrates with
predefined electrical contacts48. Typical channel length was 100×100 µm2. Devices
were electrically characterised in a Linkam LTS600P probe station after desorbing
water from the surface49 via baking at 225 °C for 30 min in dry nitrogen. Sub-
sequent measurements were performed under dry nitrogen at room temperature.

Data Availability
The datasets generated during and/or analysed during the current study are available

from the corresponding author on reasonable request.
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