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An effective logic synthesis procedure based on parallel and serial decomposition of a Boolean function is presented in this
paper. The decomposition, carried out as the very first step of the .synthesis process, is based on an original representation
of the function by a set of r-partitions over the set of minterms. Two different decomposition strategies, namely serial and
parallel, are exploited by striking a balance between the two ideas. The presented procedure can be applied to completely
or incompletely specified, single- or multiple-output functions and is suitable for different types of FPGAs including
XILINX, ACTEL and ALGOTRONIX devices. The results of the benchmark experiments presented in the paper show that,
in several cases, our method produces circuits of significantly reduced complexity compared to the solutions reported in the
literature.
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1. INTRODUCTION

he dominant direction of growth in electronics
industry nowadays is in the area of highly functional

and universal programmable devices, in particular, user
programmable circuits like PLDs and FPGAs. Several
CAD systems developed in the 1980s and aimed at
programmable logic have been very effective in signifi-
cantly reducing the number of circuits required for
implementing a given logic function using PLDs, but not
so effective for FPGA-based implementations. This has
been a primary reason for recent interest in FPGA based
logic synthesis.

There are different types of FPGA structures with
different number of inputs and outputs and the design
strategies for those cells differ from one another. Most
design methods are based on Multilevel Boolean Net-
works [4], functional decomposition [2], [6], [8] or
Binary Decision Diagrams (BDDs) [9]. Recently pub-
lished papers try to improve functional decomposition
procedures to make them applicable to Look Up Table
(LUT) structures [8], [27]. Their promising results seem
to indicate that the concept of functional decomposition
should be investigated more generally and in more detail.

The only disadvantage of the functional decomposition is
its restriction to only one type of FPGA architecture, i.e.
LUT structures.
The intention of this paper is to develop a general

method of decomposition for different types of FPGAs,
for which until now there is no common design proce-
dure.

Therefore the proposed design technique relies exclu-
sively on the functional capabilities of FPGA logic cells.
In other words, the logic cell is treated as a universal cell
capable of implementing any Boolean function with
fixed number of inputs and outputs. Such an assumption
raises the possibility of developing a method applicable
to a variety of FPGA structures. This assumption restricts
the logic synthesis strategies mainly to functional de-
composition methods i.e. to the process of reexpressing a
function of n variables as a function of functions of fewer
variables. For example, a function F(X) is decomposable
if it can be expressed as F H(A,G(B)), where A and B
are proper subsets of the set of input variables X, G and
H are components of F, and H has fewer input variables
than E
Numerous decomposition algorithms have been devel-

oped. Ashenhurst, in his fundamental paper [2], stated
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the disjunctive decomposition theorem based on the
notion of decomposition charts. Curtis extended the
Ashenhurst’ s results to multiple decomposition when F if
expressed as F H(A, GI(B) Gr:(B)) [6]. The use of
decomposition charts for functional decomposition of
logic networks is applicable only to restricted classes of
functions. Therefore, a number of decomposition im-
provements were suggested. In the Roth-Karp scheme, a
more compact representation of a function in the form of
a cover of the on-set and a cover of the off-set has been
used [23]. Later, in the early 70’s, an attempt was made
to apply orthogonal transform techniques to the design of
digital circuits. The problem of constructing optimal
decomposition schemes using spectral techniques was
also considered 13]. Recently, the spectral approach has
been improved and employed in the so called "group-
ability" method intended for FPGAs [8].

In the early 80’s, functional decomposition methods
lost their importance because of the rapid development
of synthesis techniques for multilevel logic. Algebraic
division of sum-of-products expressions represented by
the sets of cubes has been a basic operation in the
procedures of substitution and kernel extraction used for
decomposition of Boolean functions [4].

Since the late 80’s logic decomposition has been again
attracting some attention as a technique used for design
of PLAs. Devadas et al. proposed a Boolean decompo-
sition of a PLA into two cascaded PLAs [7]. This
procedure is however conceptually more similar to

multiple-valued symbolic minimization than to the clas-
sical decomposition. Moreover, the method is confined to
PLA synthesis and cannot be considered as a general
functional decomposition approach.

Logic decomposition can play an important role in the
design of FPGA-based circuits because their structure
imposes constraints on the number of inputs only and the
two-level minimization is not needed. However, the
multilevel synthesis became so deeply rooted that earlier
synthesis methods for FPGAs were based on the tradi-
tional, multilevel minimization approach.

This approach was used in MIS-PGA [20], Hydra 10]
and Chortle [11]. In the ASYL system, multilevel syn-
thesis was improved by using the idea of lexicographical
order [25]. Functional decomposition has been some-
times used in FPGA design, but only as an auxiliary
process, as in MIS-PGA and Hydra systems. So far, there
is only one FPGA-based technology mapper, namely
TRADE, that fully exploits the idea of functional decom-
position [27]. Its promising results seem to indicate that
the concept of functional decomposition should be in-
vestigated more generally and in more detail.

Following this trend, we propose an original decom-
position method which in contrast improves functional

decomposition through interleaving two different strate-
gies of decomposition and by applying an original
calculus based on the representation of a function by a
family of partitions over the set of cubes. Our decompo-
sition procedure is universal, i.e., it can be applied to
completely or incompletely specified, single- or mul-
tiple-output functions. Thus, it favorably compares with
the earlier methods, often limited to either single-output
or completely specified functions.
The paper is organized as follows. In Section 2, we

introduce the basic notions and discuss the partition-
based representation of a Boolean function. In Section 3,
the theoretical fundamentals of the decomposition meth-
ods are given. Section 4 shows how the proposed
decomposition algorithm is used for synthesis of differ-
ent types of FPGAs. The presented results of the bench-
mark design experiments demonstrate that, in several
cases, our method produces circuits of significantly
reduced complexity compared to the earlier reported
solutions.

2. BASIC NOTIONS

An incompletely specified Boolean function F of n input
variables and m output variables is defined as a mapping
F: {0,1 }n

__
{0,1,- }m. The value "-" (don’t care) at one

of the outputs means that a 0 or a will be accepted as
the response of the circuit realizing this component of the
function.
As there is a natural correspondence between an input

vector, a vertex in the n-cube and a minterrn, we refer to
elements of the domain { 0,1 }n of F as minterms. The list
of minterrns with the corresponding values of the func-
tion is called the truth table of F. For an incompletely
specified function, the truth table usually does not
include minterms for which all outputs take "don’t care
values".

Let M be the set of minterms in the truth table, i.e.
minterms for which at least one component of F is
specified.

Let X be the set of input variables and Y the set of
output variables of F. Let B C X, and m M. Denote by
mB an element of {0,1 }B (IBI denotes the cardinality of
B) obtained by deleting from m the values of input
variables not contained in B. For example, for X
{X1,X2,X3,Xn,X5} B {Xl,X2,X4}, and m 10101, we have

m 100.
In general, any pair of minterms may have identical

values for some number of input variables. A convenient
way to reflect the similarity of two minterms is to use the
so called indiscernibility relation [22], [16]. This rela-
tion, denoted by IND, is defined as follows.
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Let B C X and m’, m" M.

Then

(m’, m") IND(B) iffmB’ mB".
In other words, (m’, m") IND(B) if the values of the
arguments (input variables) from B are identical for both
m’ and m". Minterms m’ and m" are said to be indiscern-
ible by arguments of B. The indiscernibility relation is an
equivalence relation on M and

IND(B) fq IND(x).
xB

Thus, the relation IND partitions M into equivalence
classes M/IND(B). We denote partition M/IND(B) by
P(B) and call such a partition an input partition induced
by B. Thus

P(B)= I-I P(x)
xUB

where ] denotes the product of partitions.
To define another relation on the set of minterms, we

introduce the concept of consistent values of function E
We say that two values of F (output vectors) z’,z"
(0,1,-) are consistent, which is denoted z’--z ’’, if for each
output variable their respective components correspond-
ing to that variable, if both specified, are equal. For
example, 10-1 is consistent with l- 11 (10-1 l- l) but
10-1 is not consistent with 00-1.
The output consistency relation, CON, is defined on

She set of minterms as follows.
’m" m"Let m, M. (m’, CON iff F(m’) F(m").

We say that a set of minterms M’ C_ M constitutes a
consistent class if every pair of minterms in M’ is
output-consistent. An output-consistent class that is not a
subset of any other output-consistent class is called a
Maximal Consistent Class. For a given function, the set
of all MCCs is unique.

Clearly, MCCs are not disjoint and therefore the
output consistency relation is not an equivalence relation
on M. Hence, it "partitions" M into non-disjoint subsets.
Nevertheless, to describe the output consistency relation,
we use the same notation as for the indiscemibility
relation, i.e. PF is an output "partition" (index F is
intended to distinguish between the input (IND) and
output (CON) relation). A "partition" with non-disjoint
blocks and such that no block is a subset of some other
block is referred to as a rough partition (r-partition). The
concept of an r-partition is a simple extension of that of
an ordinary partition and typical operations on r-parti-
tions are the same as used in the ordinary partition
algebra [12]. In particular, the relation less than or equal
to holds between two r-partitions 1-I and H2 (1-I <- l-I2)

iff for every block of I-I 1, Bi(1-I1), there exists a block of
1-I2, Bj(H2), such that Bi(l-I1)

_
Bj(I-I2).

Example 1

Consider the incompletely specified Boolean function F
defined in Table 1.
We have:

M (1 10),
X-- (x1,x2,x3,x4,x5,x6}
Y { Yl,Yz,Y3,Y4 }.

The IND relations for {xl} and {x2,x3} are:

P(xl) { {1,6,7,10}, {2,3,4,5,8,9} },
P(x).,x3) { {1,3,4}, {2,9}, {5,7,10}, {6,8} }.

The output-consistency relation CON is given by the
following r-partition:

PF { {1,6}, (3}, {2,4}, {5,6}, {6,9}, {4,8,9}, {V,10} }.
In the further chapters the blocks of partitions are sep-
arated by semicolons only and not by curly parenthesis,
for example

PF (1,6 3 ;2,4 ;5,6 6,9 4,8,9; 7,10).

3. LOGIC DECOMPOSITION

Along with the widely known and frequently used serial
decomposition, this paper proposes to interleave a new
strategy of decomposition called parallel decomposition.
Both the strategies are illustrated in Fig.1.
The parallel decomposition leads to a structure in

which two "independent" components operate in parallel
(Fig. b), whereas the serial decomposition results in

TABLE
Truth Table of Example

x! x2 x3 x4 x5 x6 Y Y2 Y3 Y4

0 0 0 0 0 0 0
2 0 0 0 0 0
3 0 0

4 0 0 0 0
5 0 0
6 0 0 0 0 0

7 0 0 0 0
8 0 0

9 0 0 0 0

10 0 0 0
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serially connected components (Fig. c). In this paper,
we focus on the more difficult problem of serial decom-
position. In a short subsection on the parallel decompo-
sition, we merely formulate the problem and show an
example illustrating its solution.

3.1. Parallel Decomposition

Consider a multiple-output Boolean function E Assume
that F has to be decomposed into two components, G and
H, with disjoint sets of output variables, YG and YH" This
task occurs, for example, when we want to implement a
large function using PLDs with a limited number of
outputs. It must be observed that such a parallel decom-
position can also alleviate the problem of excessive
number of inputs of F. This is because, for typical
functions, most outputs do not depend on all input
variables. Therefore, the set of input variables on which
the outputs in Yg depend, Xg, may be smaller than X, i.e.,
pXgp--< pXp. Similarly, for the set of input variables
on which the outputs in Yh depend, Xh, we have PXPh.
<--pXp. As a result, components G and H have not
only fewer outputs than F, but also fewer inputs. The
exact formulation of the parallel decomposition problem
depends on the constraints imposed by the implementa-
tion style. One possibility is to find the sets Yg and Yh,
such that the combined cardinality of Xg and Xh is
minimal. An efficient procedure for this type of parallel
decomposition has been presented in 14], 17].

Partitioning of the set of outputs into only two disjoint
subsets is not an important limitation of the method
because the procedure can be applied again for compo-
nents (3 and H. Iris essential, however, to require that no
logic minimization be performed before the parallel
decomposition. This is because two-level procedures
often produce a representation in which outputs explic-
itly depend on more inputs than in the original functional

X

FIGURE Parallel and serial decomposition of function F.

description, which makes the decomposition more diffi-
cult.

Example 2

Consider the multiple-output Boolean function F given
in Table 2. The minimal dependence sets for single-
output components of F, i.e., the minimal sets of input
variables the outputs depend on, are:

Yl {Xl,X2,X6},
Y2: {X3’X4}’
Y3 { X I,X2,X4,X5,X9 }, .{ X I,X2,X4,X6,X9 }
Y4: { Xl,X2,X3,X4,X7 },
Ys: {XI’X2’X4}’
Y6 { X1,X2,X6,X9 },

An optimal two-block decomposition, minimizing the
cardinality of the sets of input variables, is Yg {y, Y4,

ys} and Yh {Yl, Y3, Y6}, with Xg {x, x, x3, x4, XT}
and Xh= {X 1, X, X4, X6, X9}. The truth tables of the
components G and H are shown in Table 3.

In many situations, the parallel decomposition can be
used as a subsidiary step to the more general, serial

decomposition procedure.

3.2. Serial Decomposition

Let F(X) denote a Boolean function F with the set of
input variables X. Let X A t3 B and C C A.
The problem of serial decomposition of F(X) is

illustrated in Fig. c. We try to find functions G and H,
such that G depends on variables in B t3 C, whereas H
depends on variables in A and variables in Z, where Z is
the set of output variables of G. For each minterm, the
value of H is consistent with the value of E
A more formal definition of serial decomposition is

presented below.
We say that there exists a serial decomposition of F if

there exist functions G and H

G: {0,1}[BLICI {O,1}IZ[

H: (0,1} Auzl {0,1,__}1YI
such that, for each m M, H(mA, G(mBuc)) is consis-
tent with F(m) and for each specified (0 or 1) variable in
F(m) the corresponding variable in H(mA, G(mauc)) is
also specified. If set C is an empty set, the decomposition
is called a disjoint serial decomposition otherwise it is
called a non-disjoint serial decomposition.
The following theorem states the necessary and suffi-

cient condition for the existence of a serial decomposi-
tion.
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X X X X4 X

TABLE 2
Truth Table of Example 2

X6 X7 X8 X9 Y Y2 Y3 Y4 Y5 Y6

0 0 0
2 0 0 0
3 0
4 0
5 0 0

6 0 0

7 0 0
8 0 0
9 0 0

10 0 0
11 0 0 0
12 0 0 0

0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0

0 0 0
0 0

0 0 0

0 0 0 0 0
0 0 0
0 0
0 0
0 0 0 0

0 0 0
0 0 0

0 0
0

0 0

0 0 0
0 0 0

Theorem 1: There exists a serial decomposition of F iff
there exists a partition l-IG, such that

(a) IIG >- P(B U C), and
(b) P(A) 1-Io <- PF-

Proof: () For function G, define partition IIo as
follows: m’ and m" are in one block of H iff G
(moc) G(moc). It must be observed that, since G is
completely specified, the blocks of II are disjoint, and

1-I is a uniquely defined partition (not r-partition). We
will show that IIG satisfies conditions (a) and (b) stated
in the Theorem.
By definition of the IND relation, for any two min-

terms m’ and m" included in one block of P(B U C), we
have muc muc Thus IIG -> P(B U C), which means
that IIo satisfies condition (a).

Define now an r-partition HH that corresponds to the
CON relation for function H, i.e., each block of HH is a
maximal subset of minterms which are pairwise output-
consistent (m’ and m" are output-consistent if H(m),G
(muc)) H(m,G(muc)). By definition of the serial
decomposition, we have

l’IH --< PF" (1)

Consider two minterms, m’ and m", included in one
block of P(A)* [Io. By definition of the IND relation,

mk= m, and by definition of IIo, G(muc)
G(muc). Thus, by definition of IIH, m’ and m" are in one
block of [Is which implies

1-I H P(A) * 1-I.
Combining (1) and (2), we obtain

(2)

P(A)" IIG <- PF,

which means that II6 satisfies condition (b).
() Given partition II that satisfies (a) and (b), define
function G with log2 pl-Ipq output variables for which
G(mc)= G(moc) iff m’ and m" are in the same block
of II.

This construction ofG is always possible because II ->
P(B U C), i.e., (m3uc) (muc) implies that m’ and m"
are in the same block of H. Clearly, this construction is
not unique, i.e., many different functions G can be found
for a given partition H.

TABLE 3a
Results of Parallel Decomposition of Table 2

XI X2 X3 X4 X7 Y2 Y4 Y5

0 0 0 0 0 0 0

0 0 0 0 0
0 0 0

0

0 0 0 0 0
o 0 0 0

0 0 0 o
o 0 o
o

TABLE 3b
Results of Parallel Decomposition of Table 2

o 0 0 0 o 0
0 0 o 0 0 0

0 o 0 o
0 o o

0 0 0 o o
0 o o 0 o o

0 o
o 0
o o o

XI X2 X4 X6 X9 Y Y3 Y6
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Let M’ be a subset of minterms in one block of PF.
Denote by F(M’) an output vector consistent with F(m)
for each m M’ and having a "-" component whenever
possible.

Define function H as follows: for each m
M, H(mA,z) F(M") where M" is that block of P(A)
rl which includes M, such that thA mA and
G(mBuc) z.

This construction of H is possible because:
P(A) II _< PF, which implies that M" is
included in a single block of PF, rha ma
implies that m and m are in the same block of
P(A); recalling the definition of G this, in turn,
implies that (rha,z) and (mA,z) are in the same
block of P(A) II.

By definition of H, we have either H(mA,G(mBuc))
F(m) or some variables not specified in F(m) are speci-
fied in H(mA,G(muc)). This shows that F can be
serially decomposed into G and H, which completes the
proof.
As shown in the proof, partition II in Theorem

represents function G. In particular, the number of blocks
in H, pII p, determines the number of output variables
of G, log pII p.

Example 3

Consider the function F of 5 input variables and 3 output
variables shown in Table 4.

For A {Xl,X3,X4}, B {x2,x5 }, C ), we have

P(A) (1,7 8,13 ;2,3 ;9,14,15 4,5 10; 6 11,12)
P(B) (1,3,15 ;2,13,14 4,6,7,8,9,10,12 ;5,11)

and

TABLE 4
Truth Table of Example 3 and 4

X X2 X3 X4 X5 Y Y2 Y3

0 0 0 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0

5 0 0 0 0
6 0 0 0

7 0 0 0 0 0 0
8 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0
11 0
12 0
13 0 0 0 0 0
14 0 0 0
15 0 0 0 0 0

PF (1,8,9,14 ;2,6,8,12,14 ;3,6,12,14 ;3,10,14,15
4,8,11,12 ;5,7,8,13)

Consider

Ha (1,3,5,11,15 2,4,6,7,8,9,10,12,13,14).

As

P(A). II=(1 ;2 3 ;4 ;5 ;6 ;7 8,13 ;9,14
10;11 12 15),

we have

P(A). rlo _< PF"
Thus, according to Theorem 1, function F is decompos-
able as F H(x,x3,x4,G(x2,x)), where G is a single-
output function.
The main task is to find the subset of inputs B U C for

component G which, when serially connected with com-
ponent H will implement function F.

Consider the subset of input variables, B U C, and the
corresponding partition P(B U C). The relation of
compatibility of partition blocks is used to verify
whether or not partition P(B U C) defines a viable
decomposition.
Two blocks Bi,Bj P(B U C) are compatible if

partition Pij(B U C) obtained from P(B U C) by merging
blocks B and Bj into a single block satisfies condition (b)
in Theorem 1, i.e., iff

P(A) Pij(B U C) -< PF"
A subset of partition blocks in P(B U C) is a compatible
class if all blocks in this subset are pairwise compatible.
A compatible class is called a Maximal Compatible Class
(MCC) if it is not a subset of any other compatible class.
To obtain II that satisfies conditions of Theorem 1,

we first find all MCCs for P(B U C) and then find a
minimum cover of the set of all blocks of P(B U C) by
MCCs. Partition II is subsequently formed by merging
blocks in each MCC in the minimal cover and making
the resulting blocks disjoint.

Partition II represents function G corresponding to
the assumed set B U C. In particular, the number of
blocks in II, plIp, determines the number of
outputs of G, m (m log2 pII p).
Once a suitable set B U C and the corresponding

partition II are found, the truth tables of functions G
and H can be easily derived from P(A), 1-I, and PF.

Example 4

For the function of Example 3, let A {x3,x4}, B
{x,x2,xs}, and C . Then,

P(A) (1,7,8,13 ;2,3,9,14,15 4,5,10 6,11,12)
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and

P(B tO C)
(1,3 2 4,6,7 ;5 8,9,10,12 11 13,14 15).

Let us check if B ( 1,3 } and Be { 2 } are compatible.
We have

P12(B I,.J C)
(1,2,3 4,6,7 ;5 8,9,10,12 11 13,14 15).

As
P(A) P12 (B U C)
(1 ;2,3 ;4 ;5 ;6 ;7 ;8 ;9; 10; 11 ;12; 13; 14;15)

does not satisfy

P(A) P12(B tO C) -< PF (for PF, see Example 4),

B and B2 are not compatible.
For B { 1,3} and B4 {5}, we obtain

P14(B U C)"-
(1,3,5 ;2 4,6,7 8,9,10,12 11;13,14 15)

and

P(A) * P14(B U C)
(1 ;2;3 ;4 ;5 ;6;7 ;8 ;9; 10; 11 ;12; 13;14;15)
--<PF.

Thus, B and B4 are compatible. In a similar way we
check the compatibility of each pair of blocks in
P(B to C) and then find Maximal Compatible Classes:

MCC1 {B4,B6,B7,B8},
MCC2 {B1,B4,B6,B8},
MCC3 {B2,B4,B6,B7},
MCC4 {B3,BT,B8.},
MCC5 {B2,B3,B7},
MCC6 {Bs,B7}.

For the above obtained MCCs, one of the minimal

number of rows in the truth table. Hence, we look for
variables which are most likely to reduce the number of
rows in the truth table as a result of decomposition. Let
us consider an input variable purposely avoiding all
inter-relationships among the input variables. The only
available parameter to evaluate its "activity" is the
number of ’l’s or ’O’s it has in the truth table. If the
variable has only ’1’ s or ’0’ s it is the "best candidate" for
decomposition, as it is practically redundant. On the
other hand, with the decrease in the difference between
the number of ’O’s and ’l’s, the chances for a reduction
in the number of rows decreases. And hence, the variable
having the largest difference in the number of ’O’s and
’l’s ought to be the best candidate for decomposition.
However, as our experience shows, with this greedy
selection strategy, decomposition becomes increasingly
difficult with each successive design step. So, the input
variables are ordered from the ’candidate with the least
chance’ to the ’candidate with the best chance’.
The method is architecture independent and can be

applied to any type of Logic Block (LB) with a random
number of inputs and as well as a random number of
outputs. The method looks at the Logic Block as a device
capable of implementing any function with a fixed
number of inputs and outputs.

Consider a function F: {0,1,- }n (0,1,- }m. Let us
try to implement the function using a hypothetical logic
block with Cin inputs and Cout outputs, where Cin and

Cout are integers and Cin > Cout.

Unlike the traditional approach of first performing
logic minimization and then mapping the design using
decomposition and other methods, it is proposed to start
with the mapping process straight away using different
decomposition strategies discussed in the earlier chap-
ters. The effectiveness of such an approach has been
proved by Luba et al. [15], [17], [18].
The first step is to test the sensibility of performing

covers is { {Bx,B4,B6,B8}, {B2,B3,B7}, {Bs,B7} }, and the disjoint serial decomposition. As the given LB has Cin
corresponding IIo is inputs and Cou outputs, the ideal serial decomposition is

Ha (1,3,5,11,15 ;2,4,6,7 8,9,10,12,13,14).

Thus

F H(x3,xa,G(x1,x2,xs)),
where G is a 2-output function.

4. DECOMPOSITION ALGORITHM

One important aspect of serial decomposition is the task
of selecting ’best candidate’ variables for the G function.
Decomposition is essentially a process of substituting
two or more input variables with a lesser number of new
variables. This substitution results in the reduction of the

such a decomposition, where the number of G block
inputs Gin is equal to the number ofLB inputs Cin and the
number ofG block outputs Gou is equal to the number of
LB outputs Cour If a serial decomposition is attempted
with Gin and Gou as the number of G block inputs and
outputs respectively, the resulting H block will have n-
(Gin-Gout) inputs. If this number of inputs is not greater
than m, then it is proposed to split the truth table into two
parts using parallel decomposition. In other words, if the
number of inputs to the resulting H block is not expected
to be greater than the number of its outputs, the next step
is to split the truth table into two parts using parallel
decomposition. Each part then is decomposed separately
using the same method being discussed.
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Based on the above "balancing idea" a decomposition
algorithm can be developed and a simplified version of it
is presented in Fig. 2.

For clarity of presentation it is assumed that the
decomposed truth table has more inputs than outputs
(n > m) and that Cin and Cout are assumed to be 2 and
respectively.

In the algorithm, after every disjoint serial decompo-
sition the new truth table H with n’ inputs and m’ outputs
is taken for further consideration. If necessary parallel
decomposition is performed before continuing the itera-
tion with disjoint serial decomposition. For the case
under consideration if the eventual H truth table has 3
inputs and. output and there is no disjoint serial
decomposition, then non-disjoint serial decomposition is
performed to complete the process. Several examples are
presented which illustrate in detail the working of the
algorithm under different circumstances.

Example 5

Consider a function F: {0,1,- } __.) {0,1,- } as defined
in table 5, where n and m are equal to 3 and 2
respectively. Let us decompose it for cells (LBs) with

S’TRT-
q-,

!
Iregulationot disioint serial |
Gin and Gout decmpsitin /

y

n

Y

ldecomposition /m’>3 y /

parallel
decomposition

Gin:=2
non-disjoint serial
decomposition

" end )

TABLE 5
Truth Table of Example 5

Xo x x2 Yo Y
0 0 0

0

2 0
3 0 0 0
4 0
5 0 0 0
6 0 0 0

7 0 0

2-inputs and 1-output, i.e. Cin 2 and Cou 1.
The G block parameters are assigned the values of the

assumed cell parameters, i.e. Gin 2 and Gou 1. Now
the algorithm performs the "sensibility" test for disjoint
serial decomposition. If such a serial decomposition
exists, then the anticipated H block will have (n-
(Gin-Gout)) two inputs and two outputs. As the number of
H block inputs is not expected to be greater than the
number of its outputs, the algorithm chooses parallel
decomposition. Parallel decomposition partitions the set
of outputs into two disjoint subsets and finds their
minimal input support sets. The minimal support sets for
the two components of F are:

Y0: {x0,x)
Y: {x0,xx2).

Now, the algorithm decomposes the two functions sepa-
rately using the same iteration procedure. As the function

Yo depends only on two inputs, it can be directly
implemented using a single given cell. The function y is
decomposed separately and its solution is given in Fig. 3.

If it is found that a serial decomposition with Gin and

Gou will produce a H truth table with more number of
inputs than outputs, the algorithm attempts to find such a
decomposition. The Gin number of variables are selected
on the basis of the established input variable ordering.
All possible combinations are checked until a successful
solution is found such that:

x x2 xo

FIGURE 2 The algorithm of decomposition. FIGURE 3 Function of Example 5.
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F H(A, G(Xil XiGin))

where Xil XiGint B.

The G function is implemented by a LB and the H
function is considered for further decomposition in the
same way all over again, this time with the truth table H
(with n’ inputs and m’ outputs) as the starting point
instead of the truth table E This way, by interleaving
parallel and serial decomposition strategies, required
solution can be found in many cases.

Example 6

Consider the function F as defined in table 6. Let us try
to implement the function using Logic Blocks with two
inputs and one output.
The algorithm sets the value of Gin and Gou as 2 and
respectively and looks for the existence of a disjoint

serial decomposition. Such a decomposition exists for
the inputs x0 and x2, i.e. F H(x,x3,fo) where fo
G(xo,x2). The function G can be implemented by the
given LB and the function H with three inputs is
considered for further decomposition. Again, such a
decomposition exists for the inputs X and x3, i.e H
H’ (fo,f) where f G(x,x3). The implementation is
shown in fig. 4.

However, it is more interesting to analyse a situation
when the number of inputs to the truth table under
consideration is greater than fin, parallel decomposition
is not recommended on the basis of the "sensibility" test
described earlier and the iteration is not able to produce
any further result.

In such a situation the algorithm regulates the param-
eters Gin and Gou as G’in and G’ou respectively and
continues with serial decomposition to look for the
existence of any possible G’ function such that:

F’= H(A, G’(xii XiG,in)),

where F’ is the function under consideration and
Xil,...,XiG,in i B.

If a successful decomposition is found and the number
of inputs to the H truth table continues to be more than

Cin (number of inputs to the given logic block), the
iteration is continued with the H truth table as the new
starting point after resetting the number of G block
inputs to Cin and the number of G block outputs to Cour
The G’ function is decomposed separately, using the

same iteration method, so that:

G’ H(A,G(Xil,...,XiGin)).

One important aspect of the algorithm not discussed so
far is the procedure for regulating the G block input/
output parameters Gin and Gout. If Cin and Cou are the
number of inputs and outputs of the Logic Block for
which the synthesis is done, initially Gin and Gou assume
the values Cin and Cou respectively. Now, let us consider
the situation when there is no further serial decomposi-
tion and the algorithm does not recommend parallel
decomposition. Under such a situation, it is proposed to
increament the value of Gin by one i.e., G’in Gin + 1.
However, before increasing the number of G block
inputs, it is made sure that for the given number of inputs
Gin, there is no serial decomposition for Gou Cout,
Cou + 1,..Gin -1. For a LB with Cin-Cou > 1, the
possibility of the existence of a decomposition is verified
for Gin Cin Cin-1,..Gou + 1.

For example, if the selected FPGALB has 2 inputs and
output then the consecutive G block parameters Gin and

Gou shall be 2,1; 3,1; 3,2; 4,1; 4,2; 4,3; 5,1 etc. On the
other hand, if the selected FPGA LB has 4 inputs and
output then the consecutive G block parameters Gin and

Gou shall be 4,1; 3,1; 2,1; 4,2; 3,2; 4,3; 5,1 etc.

TABLE 6
Truth Table of Example 6

Xo xl x2 x3 y

0 0 0 0
0 0 0

2 0 0
3 0 0
4 0 0 0 0
5 0 0
6
7 0 0 0
8 0 0
9 0 0
10 0 0
11 0 0

Example 7

Consider the function in Table 7. The initial attempts to
decompose the function with the values of Gin and Gou
set as 2,1 and 3,1 do not yield any result. Hence Gin and

Gou are regulated to 3 and 2 respectively and the

X0 X2 Xl X3
fo 0 x2

fl Xl + 3
Y=fO E) fl

FIGURE 4 Function of Example 6.
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iteration is continued. Such a decomposition exists for
the inputs x, x2 and x3, i.e F H(xo,G’(Xl,X2,X3). The
function H with three inputs (gl,g2 and xo) is decom-
posed further after resetting the values of Gin and Gou to
2 and respectively. Again, such a decomposition exists
for the inputs ge and xo, i.e H H’(g,fo) and the iteration
is continued until a complete solution is obtained. The
resulting solution is presented in Fig. 5a.

Functions fo, f and fe are

f0 g’2 * X0; fl g’l * RO; f2 f0 ( f.
The three-input two-output function G’ is decomposed

separately using the same algorithm and its implementa-
tion is presented in Fig. 5b where f3, f4, f5 and f6 are

f3 x1 ( x3 f4 x1 " x2
f5 f3"R2 f6 x.4 + x3

5. EXPERIMENTAL RESULTS

The described method has been implemented in a proto-
type decomposition program. The input to the program is
a truth table and the output is a network of n-input
m-output cells, each realising an n-variable function ofm
outputs. However the numbers n, m can be fixed arbi-
trarily, in the present version we assumed 2 -< n -< 5 and

-< m <_ 2 as it covers all the existing applications.
Results of such a decomposition for some known bench-
marks are presented in Table 8 and compared with the
results obtained by Woo [21].

Because of the variable number of cell inputs, the
applications are more wide than in other FPGA-based
tools. This is because the logic cell is treated as a
universal cell capable of implementing any n-input
m-output Boolean function. For example, in the XILINX
3000 family, an FPGA consists of up to 320 Configurable
Logic Blocks (CLBs). Each CLB can be programmed to

TABLE 7
Truth Table of Example 7

X0 XI X2 X Y
0 0 0 0 0 0

0 0 0
2 0 0 0 0
3 0 0

4 0 0 0
5 0 0

6 0 0 0
7 0 0
8 0 0
9 0 0
10 0

11 0
12 0 0 0

Xl x2 x3 Xo b)

Xl x2 x3
g’

x x2 x3

FIGURE 5 Function of Example 7.

implement any single-output function of up to 5 input
variables or any two-output function of up to 5 variables,
with each output depending on at most 4 input variables.
Similarly, the ACTEL cell which consists of three
interconnected 2-to-1 multiplexers can be treated as a
cell capable of implementing any Boolean function of
two variables v and v2. The internal structure of the cell
is irrelevant for our analysis. This leads us to conclude
that the analysis is valid for other types of FPGAs, like
those of Algotronix and Quick Logic. An Algotronix
FPGA consists of logic cells, each of which includes
several multiplexers driving a Function Unit [5]. The
Function Unit is capable of implementing any logic
function of its x and x2 inputs and hence it is a
’universal logic cell’ implementing any Boolean function
of two variables. Also, the structure of Quick Logic
FPGA [5] is very similar to that of ACTEL and in the
same way its cell is capable of implementing any
Boolean function of two variables v and v2.

Table 9 shows the results of decomposition of the
benchmark circuits into five-input two-output cells,
which is in fact the decomposition aimed at the Xilinx
Logic Blocks. The comparison of out results with the
other published results shows that the proposed method
does not suffer because of its universality but, in fact,
provides better solutions in many cases.

Table 10 contains the number of cells obtained by
programs dedicated to multiplexer-based FPGA cells
also and, hence, utilizing the unique characters of their
structures. It is worth noting that, in spite of the universal
character of our method, the results obtained are not
worse than the results of the other programs dedicated
exclusively to multiplexer-based circuits. Better results
of the ASYL program, dedicated to ACTEL FPGAs, are
understandable, as our program does not make use of the
fact that ACTEL cells are built of multiplexers.

6. SUMMARY

A general method to decompose incompletely specified
multiple-output Boolean functions has been presented.
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Name

two input
one output

cells

TABLE 8
Results for Different Types of Cells

three input
one output

cells

four input
one output

cells

five input
one output

cells

our Woo our Woo our Woo our Woo
rd84 28 107 13 49 10 43 8 42
rd73 22 9 7 6
rd53 13 6 5 5
z4 15 6 6 5

5xpl 44 53 25 35 18 24 13 27
sao2 56 69 38 44 31 34 22 41
f51m 45 24 18 13
adr4 19 9 7 6

sqn 90 40 20 9
con 17 9 9 4

9sym 27 97 11 62 9 51 7 52

The general method is based on supplementing the
better known decomposition strategy called serial de-
composition with parallel decomposition and on an
original representation of Boolean functions by a set of
r-partitions and the corresponding calculus.

Based on the presented decomposition algorithms, a
prototype version of a logic synthesis system has been
developed. Our results demonstrate that logic synthesis
based on functional decomposition is usually more
efficient than the conventional approach in which tech-
nology-independent minimization is followed by tech-
nology mapping. This observation, first formulated in our
earlier paper [17] and supported by the results of other
studies [8], [27], is especially true for designs involving
PLD or FPGA components.
The presented decomposition procedures are very

general. The user is given the possibility of working on
minterms or cubes and can arbitrarily specify the maxi-
mum number of inputs and maximum number of outputs
for all the components of a function to be decomposed.

Alternatively, the designer is given the option of inter-
actively controlling the decomposition process by select-
ing, for each iteration of the decomposition, the compo-
nent of the partially decomposed function to be dealt
with and the type of decomposition (parallel or serial).
This way, the decomposition procedure, allows the
designer to examine several alternative solutions. In
particular, it makes it possible to compare different
implementation styles, e.g. among various FPGA struc-
tures, and select the one which is most suitable for a
given project. As the conceptual layer of the method and
its core are general, it is possible to apply the method to
decompose multiple-valued functions also. This has lead
to the development of a PLA-based Synthesis System
vhich finds its application specially in designs using
PLAs with decoders [19]. The presented algorithms can
therefore form a basis for development of a general
decomposition-based synthesis tool which would accept
a set of design constraints and decompose a given
function so that to meet those constraints.

Name Our method

TABLE 9
Results for Cells with 5 Inputs and 2 Outputs

Sasao [24] mis-pga (new) HYDRA ASYL Chortle xnfmap
rd84 5 11 10 27 17 35 50
rd73 4 6 6 13 30 16 24
misexl 7 22 11 8 13 11 12
z4 3 5 5 4 4 3 3

5xpl 8 18 18 21 24 24 20
sao2 11 28 36 36 27 37

9sym 4 7 7 33 8 51 54
f52m 6
adr4 4

sqn 6
conl 4
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Name

TABLE 10
Results for Cells with 2 Inputs and Output

Our ASYL MIS-PGA
Method [25] 10]

XBOOLE
[3]

rd84 28 30 36
z4 15 9 18

rd53 13 10
rd73 22 20 25

9sym 27 17
sao2 56 45 49

5xpl 44 37 51

f51m 45 35 39
bw 75 54 60
adr4 19

sqn 90
root 106
add 7
conl 17

28
42
105
109
67

129
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