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Abstract 

We prove a sujjicient condition for  the stability of dy- 
namic packet routing algorithms. Our approach reduces 
the problem of steady state analysis to the easier and bet- 
ter understood question of static routing. We show that cer- 
tain high probability and worst case bounds on the quasi- 
static (finite past) performance of a routing algorithm imply 
bounds on the performance of the dynamic version of that 
algorithm. Our technique is particularly useful in analyz- 
ing routing on networks with bounded buffers where compli- 
cated dependencies make standard queuing techniques in- 
applicable. 

We present several applications of our approach. In all 
cases we start from a known static algorithm, and mod& it 
to fit our framework. In particular we give the first dynamic 
algorithm for  routing on a butte$y with bounded buffers. 
Both the injection rate for  which the algorithm is stable, and 
the expected time a packet spends in the system are optimal 
up to constant factors. Our approach is also applicable to 
the recently introduced adversarial input model. 

1. Introduction 

The rigorous analysis of the dynamic performance of 
routing algorithms is one of the most challenging current 
goals in the study of communication networks. So far, most 
theoretical work on this area has focused on static routing: 
A set of packets is injected into the system at time 0, and 
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the routing algorithm is measured by the time it takes to de- 
liver all the packets to their destinations, assuming that no 
new packets are injected in the meantime (see Leighton [8] 
for an extensive survey). In practice however, networks are 
rarely used in this “batch” mode. Most real-life networks 
operate in a dynamic mode whereby new packets are con- 
tinuously injected into the system. Each processor usually 
controls only the rate at which it injects its own packets and 
has only a limited knowledge of the global state. 

This situation is better modeled by a stochastic paradigm 
whereby the packets are continuously injected according to 
some inter-arrival distribution, and the routing algorithm is 
evaluated according to its long term behavior. In particu- 
lar, quantities of interest are the maximum arrival rate for 
which the system is stable (that is, the arrival rate that en- 
sures that the expected number of packets waiting in queues 
does not grow with time), and the expected time a packet 
spends in the system in the steady state. The performance of 
a dynamic algorithm is a function of the inter-arrival distri- 
bution. The goal is to develop algorithms that perform close 
to optimal for any inter-arrival distribution. 

Several recent articles have addressed the dynamic rout- 
ing problem, in the context of packet routing on arrays [7, 
10, 5, 21, on the hypercube and the butterfly [13] and gen- 
eral networks [12]. Except for [2], the analyses in these 
works assumes a Poisson arrival distribution and requires 
unbounded queues in the routing switches (though some 
works give a high probability bound on the size of the queue 
used [7, 51). Unbounded queues allow the application of 
some tools from queuing theory (see [3,4]) and help reduce 
the correlation between events in the system, thus simplify- 
ing the analysis at the cost of a less realistic model. 

Here we focus on analyzing dynamic packet routing in 
networks with bounded buffers at the switching nodes, a set- 
ting that most accurately models real networks. Our goal is 
to build on the vast amount of work that has been done for 
static routing in order to obtain results for the dynamic situ- 
ation. Rather than produce a new analysis for each routing 
network and algorithm we develop a general technique that 
“reduces” the problem of dynamic routing to the better un- 
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derstood probleim of static routing. 
In section 2 we prove a general theorem that shows that 

any communication scheme (a routing algorithm and a net- 
work) that satisfies a given set of conditions, defined only 
with respect to afinite history is stable up to a certain inter- 
arrival rate. Furthermore we bound the expected routing 
time. At first glance these conditions seems very restrictive 
and hard to satisfy, but in fact, as we show later, many of the 
previous results on static routing can be easily modified to fit 
into our framework. The theorem applies to any inter-arrival 
distribution: the stability results and the expected routing 
time of a packet inside the network depend only on the ex- 
pectation of the inter-arrival distribution. The relationship 
between the inter-arrival distribution and the waiting time 
in the input queues is more complicated and is formulated 
in the theorem. 

In sections 3, 4, and 5 we present three applications of 
our general theorem to packet routing on the butterfly net- 
work. We assume that packets arrives according to an arbi- 
trary inter-arrival distribution and have random destinations. 
In section 6 we present similar results for an alternative input 
model, the adversarial model [ 11, whereby probabilistic as- 
sumptions are replaced by a deterministic condition on edge 
congestion. 

Section 3 presents the first dynamic packet routing algo- 
rithm for a buttlxfly network with bounded buffers under 
constant injection rate. Our algorithm is stable for any inter- 
arrival distribution with expectation greater than some abso- 
lute constant. The expected routing time in an n-input but- 
terfly is O(1og n) and in the case of geometric inter-arrival 
time the expected time a packet spends in the input queue 
is also O(1og n)  Thus, the performance of the algorithm is 
within constant l-actors from optimal in all parameters. Our 
dynamic algorithm is based on the static routing results of 
Ranade [ 111 and Maggs and Sitaraman [9]. 

The above algorithm is not a “pure” queueing protocol 
(in such a protocol packets always move forward unless 
progress is impeded by an already-full queue) since simi- 
lar to the algorithms devised in [ 11, 91 it generates and uses 
extra messages and mechanisms to coordinate the routing. 
Maggs and Sitaraman studied the question of a “pure” queu- 
ing protocol routing with bounded buffers. They gave an al- 
gorithm that routes n packets on an n log n node bounded 
buffers butterfly in O(1og n)  steps. Based on their technique 
we develop in section 4 a simple greedy algorithm for dy- 
namic routing. It is stable for any inter-arrival distribution 
with expectation R(1og n),  the routing time is O(1og n) ,  and 
in the case of a geometric inter-arrival distribution the ex- 
pected wait in the queues is also O(1og n). 

In section 5 we apply our approach to a dynamic version 
of the simple ob1 ivious routing algorithm on the butterfly de- 
scribed in [ 14, 81. This algorithm routes n log n packets (all 
logarithms in thi!j paper are base 2) on an n log n butterfly in 

expected O(1og n) steps, and with high probability no buffer 
has more than O(1og n) packets. Our dynamic version of 
this algorithm uses a butterfly with buffers of size O(log n) 
and is stable for any inter-arrival distribution with expecta- 
tion greater than some absolute constant. The expected rout- 
ing time is O(1og n)  and the expected time a packet waits in 
a queue in the case of geometric inter-arrival distribution is 
also O(1og n). Note that for dynamic routing, which is an in- 
finite process, it does not suffice to have a high probability 
bound on the size of the buffer memory needed at a given 
time: we must prove that the algorithm is stable for some 
fixed buffer size. 

In an attempt to avoid probabilistic assumptions on the 
input, Borodin et al. [ 11 defined the adversarial input model. 
Instead of probabilistic assumptions, for any time interval 
there is an absolute bound on the number of generated pack- 
ets that must traverse any particular edg,e. Surprisingly, our 
general technique can be applied here as well. In section 6 
we briefly sketch how the results of sections 3-5 can be ex- 
tended to this model. 

These examples demonstrate several ways of applying 
our scheme. The analysis required is similar to the analy- 
sis used in the proof of the corresponding static case with 
several small modifications. Most notably, as often done 
in practice, we sometimes augment the original static al- 
gorithm with a simple “flow control” mechanism, such as 
acknowledgments. Our general theorem can be applied to 
other topologies and algorithms provided that an appropri- 
ate static case analysis can be construcled. Furthermore, a 
variant of the general theorem can be applied to the analysis 
of routing algorithms that sometimes drop packets. Such al- 
gorithms are often used in practice but have not been so well 
studied in the theory literature. 

2. The stability criterion 

Our model is as follows: we are given a routing algorithm 
A acting on a network r(n) with n inputs and n outputs. 
Each input receives new packets with a inter-arrival distri- 
bution F. We distinguish between usual and unusual dis- 
tributions. We first describe the situation for usual distribu- 
tions. By this we mean that the probabillity that the number 
of arrivals in any time period significantly exceeds its expec- 
tation falls off exponentially. A more precise definition is 
left until later. In the usual case the packets are placed into 
an unbounded FIFO queue at the input node. Packets have 
an output destination chosen independently and uniformly at 
random. When a packet reaches the top of its queue, we call 
it active. At some point after becoming active, the packet is 
removed from its queue and eventually routed to its destina- 
tion. For convenience we assume that ai packet chooses its 
random destination upon becoming active. 

In an arbitrary distribution we modify ourrouting scheme 
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as follows. We maintain at each node U two queues, Q1 and 
Q2. On arrival, packets are placed in Q1; the front packet in 
Q1 leaves it to Q2 according to a geometric service time at a 
rate greater than the arrival rate of F ;  then Q2 feeds the net- 
work as above. The precise details are discussed in Theorem 
2.1 below. 

We are interested in determining under which conditions 
the queuing system is ergodic (or stable), that is, under 
which conditions the expected length of the input queues 
is bounded as t --+ 00. To this purpose we have to study 
the inter-departure time, which is the interval from when 
a packet becomes active until it leaves the queue, and the 
packet next in line (if any) becomes active. Besides stability, 
we are also interested in the expected time a packet spends 
in the queue, and the expected time it spends in the network. 

Since the inter-arrival times are independent, if the inter- 
departure times are also independent, then each queue can 
simply be viewed as a G/G/I system and the stability condi- 
tion would trivially be that the inter-departure rate exceeds 
the inter-arrival rate. However the usual situation is that 
there are complex interactions among packets during rout- 
ing and thus the inter-departure times are highly dependent 
and hard to analyze. 

The goal of this section is to define a set of relatively sim- 
ple sufficient conditions such that if the routing algorithm 
satisfies them, then the system is stable up to a certain inter- 
arrival rate and we can bound the expected time a packet 
spends in the queue and in the network. This is captured in 
the following 

Theorem 2.1 Assume that the randomized routing algo- 
rithm A acting on the network r(n) is characterized by four 
parameters a, b, m, and T, where a and b are positive con- 
stants, and m and T are positive integers that might depend 
on n and satisjj l / na  < m/T < 1 and T < nb. Assume 
that the algorithm satisJies the following conditions: 

1. Every packet is delivered at most na steps after becoming 
active. 

2. For every time r 2 0 there exists an event E, with the 
following properties: 

4, implies that any packet that at time r was 
among the first m packets in its queue, is delivered 
before time r +- T.  

For any f i e d  time 7,’ 

where ?tHt describes the state of the system at time t. 

(e )  E, is afunction only of HT+nb. (Thus Pr(E,+2nb I 
.) 2a+26+3 ET) I (m/T)7/n 

Then if there exists a positive constant E such that the inter- 
arrival distribution F has an inter-arrival rate smaller than 
(1 - e)m/T, then 

1. The system is stable. 

2. The expected time elapsed since a packet becomes active 
until it is delivered is O(T) .  

3. The time a packet spends in the input queue is bounded 
by O ( T )  + f (T/m), where f is afunction that depends 
only on F and not on the routing process. (For ‘‘usual’’ 
distributions such as geometric f (T/m) = O(T/m)) .  

Proof: Assume first that the inter-arrival time is geometric, 
that is, at each step, each input receives a new packet with 
some fixed probability p < (1 - c)m/T. (We will show 
later how to extend the proof to a general inter-arrival dis- 
tribution). 

Fix an input u and let Q(t)  denote the length of the queue 
at node U at time t .  Let 

.(t,L) = Pr(Q(t) 2 L ) .  

We show that the system is stable by proving a uniform 
bound, independent o f t ,  on r ( t ,  L ) .  Let 

(Hence U > m.) We will establish the bound using the fol- 
lowing two inequalities: 

For L 2 U 

F o r m _ < L < U  

‘This requirement is much stronger than necessary in the proof and was 
chosen for convenience. 
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and that f o r m  5 L < U ,  Case 2: &(to)  5 L/2. Then 

Combining the two bounds we get 
L m L  
2 ( T 2  5 - +  1 +  - (1 -€) I - - -  < L. 

Thus, in order to prove the recurrence (1) it suffices to show 
E(Q(t)) = 4 t , L )  that for L 2 U 

+ -Pr(&) 

Pr(3b) 5 e--YL (3) L21 

and that UGe-7' 2U2 
5 + 1 - e-pru fD 

Pr(3c A (Q(t)  2 L ) )  5 O(nb)e-YL (4) 

Equation (3) follows immediately from ,standard bounds on 
= O(m)  the binomial distribution 

Since this holds for any inter-arrival rate bounded by ( 1  - 
e)m/T,  by Little's Theorem the expected time a packet 
spends in the queue is O(T) .  

We now turn to proving the recurrence (1). Since the in- 
equality is trivially true for t < L, assume that t > L. Let 
t o  = t - 4. Let I denote the number of packets arriving 
at input U between t o  and t ,  and let J denote the number of 
packets leaving the queue at U during this interval. Let sz 
denote the interdeparture time of the i ' th packet to become 
active at v after time t o ,  that is, the interval from when this 
packet reaches tlhe front of queue until it departs. (If there 
was an active packet at time t o  then s1 denotes how long it 
took that packet to depart.) Let 

m L  
T 2  

M = (1 -/3)--. 

Pr(Fb) = Pr I 2 (1 + 0 ) p T  5 e - p 2 p L I 6 .  ( L, 
To prove equation (4) note that if at any time during [ to ,  t] 

the queue at U contains less than m packets, then Q(t)  2 L 
only if I > L - m and the probability of the latter can be 
bound as above. So let's assume that for all T E [ to ,  t ] ,  we 
have Q(T)  > m. 

Let now z denote the number of occurrences of E, during 
[ t o ,  t ] .  By the hypothesis of the theorem :SI +s2+. . .+SM F 
Mn". We partition the interval [ to ,  to  i- M n a ]  into 2nb sets, z,%, . . . ,I,,& where z = { t o  + i -. 1 + 2knb : 0 5 
IC 5 [(Mn" - i + 1 ) / ( 2 n b ) J } .  Let z, denote the numberof 
occurrences of E, for T E '&. Note that if packet z becomes 
active at time T then if l&, we have s,+s,+1 +. . . + s % + ~  5 
T ;  if I, we can use the bound s, 5 n". Thus we have the 
following series of implications: 

We claim that if Q(t)  > L, then at least one of the following L 
three events holds: 2 

T L ( M  - z ) -  + naz > - 
2 m 

S1 + S2  + . . ' + S M  >* - 

3" G Q ( t 0 )  2 (1 + P)L. (Large initial queue.) * 

z > -  
2n" 

3i : z; > - 
3c f SI + s2 -k * 1 + S M  > L/2. (Slow processing.) 

PL 
4na+ Indeed assume -)Fa, 7 3 b ,  and -7FC and consider two cases: 

contained more than M packets, and ~3~ implies that M 
packets left the queue by time t = t o  + L/2. Thus J 2 M ,  

3 

Case ': =* L/2.  This that at time the queue It follows from hypothesis 2.b. ofthe theorem that 

Prbi > U )  
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This completes the proof of recurrence ( 1 )  and we turn to 
recurrence (2). If t < L / ( 2 p )  then 

Pr(Q(t) 2 L )  
5 Pr(L packets arrive in [0, L / ( 2 p ) ] )  5 e O L ,  

for a constant 4. Hence assume that t > L / ( 2 p ) .  Define as 
usual z+ to be max(0, 2 ) .  Now let t o  = ( t  - 2 U / ( ~ p ) ) + .  
Define the following three events: 

Fa E Q ( t o )  2 U 

3 6  = The event E, does not occur for any T E [ t o ,  t ] .  

3c The queue at 'U received at most (1 - 5 )  ?% new pack- 
ets in any interval [t - 8 ,  t ]  with 8 > &. 

We bound Pr(Q(t)  2 L )  via the inequality 

( 5 )  
Pr(Q(t) 2 L )  L Pr (Fa )  + Pr(7Fb)  + Pr(-Fc)  

+Pr(Q( t )  L L I - ' F a > F b j F c ) .  

By definition 

P r (Fa )  =  to, U )  = n(t  - 2 U / ( ~ p ) ,  U ) .  

Clearly 
2 U 
EP 

Pr(+b) L -Pr(G), 

2 (1 + ;)p8 and since (1 - 5 )  

Pr (TFc)  5 e-'2pe/12 < - 2  A e - 4 ~  (6) 
62 k 

for a constant 4. 
Now assume 7Fa,  Fb, and Fc and notice that if F,, holds, 

then as long as the queue is not empty it loses at least m 
packets in any interval of T steps. If Q ( t )  2 L we claim 
that these assumptions imply that there is a step in the inter- 
val [ t o ,  t ]  in which the queue is empty; otherwise 

Em < Q ( t 0 )  + m - --(t - t o )  2 T  

which is less than m since if to = 0 then & ( t o )  = 0, and 
otherwise t - to = 2 U / ( ~ p )  and Q(t0)  < U .  

Thus, under the assumptions 7Fa,  Fb, and FC, if there 
are L packets in the queue at time t ,  then there is an interval 
[t - O r ,  t ] ,  such that 
(i) the queue was empty at time t - 8' - 1; 
(ii) the queue was not empty in any step in the interval [t - 

(iii) at least L + m LcJ > L + $ - m new packets arrived 
at the queue in that interval. 

@, tl 

T 

But if L 2 m and 8' > L / ( 2 p )  then (iii) contradicts Fc. So 
we only have to consider the probability that (iii) holds for 
an interval with L 5 8' 5 L / ( 2 p ) .  This is bounded by 

This completes the proof of equation (2). 
Let us now see how to go from a geometric inter-arrival 

distribution to something more general. We observe that 
in the proof above the inter-arrival distribution is only re- 
quired to satisfy (3 ) ,  (6 ) ,  and (7). Suppose that the inter- 
arrival time is a random variable X with distribution F. Let 
p = 1/ E(X) < 1. We say that 3 is usual if there exist con- 
stants A0 and AI such that in any interval of length t ,  the 
number N of arrivals satisfies 

Pr(N 2 (1 + E)pt)  5 ~ ~ e - ~ l t ~ p ~  

for any 0 5 E 5 1. Clearly if F is usual, then our proof will 
go essentially unchanged provided that p < (1 - E) F. 

Assume finally that the arrival of packets to the queue is 
governed by some arbitrary inter-arrival distribution F. Let 
Q1 and Q2 be the two queues in front of a generic node U, as 
described at the beginning of this section. We move packets 
from the front of &I to the end of &a with probability p = 
(1 - E ) ? .  Our analysis has shown that Q2 is stable, and 
that the expected wait in Qz is O ( T ) .  The queue Q1 is a 
G / M / ~  queue. Thus, if the expected inter-arrival time to QI 
is smaller than p ,  then the queue is stable and the expected 
waiting time in &I is determined (see [6] for details) by the 
distribution F, as follows: Let z be the non-trivial (that is, 
n: # 1) root of the equation (the Laplace transform) 

The expected wait in the queue is then z / ( p (  1 - z)). 
We finally consider the fact that the average time elapsed 

from the moment a packet becomes active until it is deliv- 
ered is O ( T ) .  This can be verified by considering a long in- 
terval and dividing it into subsets of times; within a given 
subset of times, occurrences of Et can be dealt with as in the 
proof of equation (4). 

In the next three sections we deal with applications of 
Theorem 2.1 to the case where the underlying topology is a 
butterfly with L = log n levels (rows) of n nodes (switches), 
buffers only on edges and unbounded queues at input ver- 
tices. We show stability for several protocols under suitable 
assumptions about input rate and internal buffer size. We 
will explicitly consider geometric inter-arrival distributions. 
The general case is implicitly dealt with as in the proof of the 
main theorem. 
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3. Dynamic routing on a butterfly with 
bounded buffers under constant injec- 
tion rate 

For this section we assume that the buffer size q is a suf- 
ficiently large constant. We first fix m = @(log n)  and we 
will subsequently describe a protocol and define €, T ,  a, and 
b to satisfy the conditions of Theorem 2.1. 

Our approach is based on the second algorithm of Maggs 
and Sitaraman [91 and in places we follow their description 
very closely. This algorithm uses tokens whose main role is 
to define a wave number for each packet. We will assume 
that tokens occupy the same amount of space as a packet. 
Imagine that behind each input node queue there is an infi- 
nite sequence of tokens, packets and blanks. The odd posi- 
tions are always taken by tokens and the even positions con- 
tain packets or blanks, where the packets occur randomly 
with probability p .  The tokens are IabeIed 1 , 2 ,  . . . . The la- 
bel of a token is referred to as its wave number. As opposed 
to [9] we actually use these labels within the algorithm, not 
only in its analysis. 

At each time step we examine the front of the sequence. 
If it is blank then we simply delete this blank and go to the 
next time step. If there is a token or packet then we delete it 
from the sequence and place it in the back of the input queue. 
The front element (which could be a packet or a token) of the 
queue tries to enter the network only i f  it is eligible (we de- 
fine this subsequently). An eligible packet enters the system 
if the buffer on the edge that it intends to use is, or becomes 
not full during the current time step. Upon entrance into the 
network a token splits into two tokens, one for each outgo- 
ing edge. Thus both buffers need to have space before an 
eligible token can enter. 

The wave number w(I'I) of packet n is the wave num- 
ber of the token that immediately precedes it in entering the 
network. The ranlk of a packet is a pair (w, c) where w is the 
wave number ancl c is the column number of its input. The 
rank of a token is given by its wave number. Ranks are or- 
dered lexicographically. An important invariant of the algo- 
rithm is that packats go through a switch in increasing order 
of rank. 

A switch labeled (1, c = C O ,  c l , .  . . , C L - I )  where 1 is the 
level and L = lcign, has a 0-edge entering it from switch 
(1 - 1, c -  ~ 1 2 ' - ~ ' )  and a 1-edge entering it from switch (I - 
1, c - (q  - 1)2':1. The buffer of the i-edge is called the i -  
buffer. 

The behavior of each switch is governed by a simple set 
of rules. Byforwczrding a packet or token we mean sending 
it to the appropriate queue in the next level. If that queue is 
full, the switch tries again in consecutive time steps until it 
succeeds. A switc;h can either be in 0-mode or 1-mode and 
is initialized to be: in 0-mode. In i-mode, a switch forwards 
packets in the i-queue until a token is at the head of the i- 

queue. At that time, if z = 0 then the switch simply changes 
to 1-mode; otherwise, if z = 1 then there will be tokens at the 
front of both queues and the switch waits until it can forward 
both tokens, each to one of its outgoing edges. (These tokens 
have the same wave number). It then switches back to 0- 
mode. 

It will be important in the subsequent analysis to ensure 
that if IT and IT' are packets or tokens rlssiding simultane- 
ously in the network then Iw(IT) - w(n:')l 5 A logn for 
some constant A > 0. This is achieved as, follows: At every 
time step, every output node generates two chips. The 2n 
chips generated at time t will be referred to as generation t .  
Each generation travels back through the network one level 
at a time. The chips make their journey so that each chip 
occupies a different edge at each step. By the time a chip of 
generation t has reached a switch s, it has iteratively com- 
puted the lowest wave number of any packetltoken which 
left the network at time t from an output node reachable 
from s. Thus when generation t reaches the input nodes, 
each input node knows the lowest wave number w*(t) of 
any packetltoken that left the network at time t .  This hap- 
pens at time t f log  n. Note that if II is a packet/token which 
is in the network at time t or later then wl:II) 2 w* ( t )  since 
packets go through network switches in increasing order of 
rank. 

At time T a packetltoken II will be eligible to enter the 
network, only if w (II) 5 w* (7- -log n)  + A  log n. It follows 
that if II is any packedtoken already in the network at time 
T ,  or eligible at time T ,  then 

We focus now on one of the first m packets of a queue 
at time 7 .  Denote it IT. Assume for the time being that 
IT is eligible at time T .  Maggs and Sitaraman define a de- 
lay sequence of packets and tokens in a familiar way - an 
(T ,  f )  delay sequence consists of (i) a path P from an output 
node to an input node, (ii) a sequence SI ,  s2,  . . . , sT of not 
necessarily distinct buffers, (iii) a sequence II1, IT,, . . . , IT, 
of distinct packets and tokens and (iv) a non-increasing se- 
quence ~ 1 , 2 0 2 ,  . . . , wT of wave numbers. The wave num- 
bers of the tokens are shown to decrease strictly as one 
moves along the delay path, in fact thely decrease by one 
from one token to the next. The length A = A(P) is equal 
to 2 f - logn  where f is the number offorward edges of 
the path (which are traced backwards by P). It is assumed 
that IT, goes through switch s, and has wave number w,. 
Maggs and Sitaraman show (Lemma 4.1 ) that if packet IT 
takes log n + d time to exit from the network, then there is 
a ( d  + ( q  - 2 ) f ,  f )  delay sequence, with IT1 = I'I, for some 
f 2 0- 

We then have to argue that the delay sequence does not 
contain many tokens. Let k denote the number of tokens in 
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our delay sequence. We see that 

k 5 Alogn ,  (9) 

since the wave numbers of tokens decrease by one along the 
delay path, equation (8) holds, and any packetltoken on the 
delay path must be in the network at some time after T, and 
thus has wave number 2 w* (T - log n). 

If we assume (and we will subsequently remove this as- 
sumption) 

A: The destinations of packets under considera- 
tion are random 

then the expected number of delay sequences for II can be 
bounded as follows. 

Let P denote the set of possible delay paths. Choose P E 
P. Let A be the length of P. Choose a delay d 3 K log n 
where K is a large constant. (We assume q >> K >> A.) 
Choose f 2 0. Let r = d + ( q  - 2)f.  We have to count the 
number of (r ,  f )  delay sequences with delay path P. Choose 
non-negative integers a1 , u2, . . . , U k  so that a1 + a2 + . . + + 
al, 5 r - k and along our path there are tokens at positions 
a1 + 1, a1 + u2 + 2 , .  . . , a1 + a2 + . . . + a k  + k (replacing 
a packet by a token increases the upper bound). There are 
less than (L) choices for the at’s. 

Let J = [r] \ (a1 + 1,al +a2 + 2 , .  . . ,a1 + a2 + . . .  + 
ak + k } .  Now choose an edge buffer sJ for each j E J .  Ob- 
serve that having chosen P our choices are now restricted. 
However for each edge in P we can choose the multiplicity 
of its buffer in the delay sequence. This can be done in at 
most ( ) ways. 

Let dJ be the depth of the edge with buffer sJ. There 
are 2 d ~  inputs which could send a packet along this edge. 
The probability that there is such a packet with a particu- 
lar wave number (fixed by the preceding token) is at most 

Thus the expected number of delay sequences is at most 

r + X - 1  

2 4  (p2-4-1) 5 1/2. 

(1/2)T-k 
P E P d > K l o g n  f ax, ... ,ab s 3 . 3 E . J  . 

for any constant B. (Details omitted.) 
Let us now deal with Assumption A. One cannot assert 

that the destinations of packets in the network at time T are 
random. There is a tendency for “bad” configurations to 
“linger”. However, one can assert this for the destinations 
of packets with wave numbers in [w, w + k - 11 are random 
for anyJixed w. What we have actually proved is that there is 
unlikely to be a delay sequence made up from random pack- 
ets with wave numbers in [w, w + k - 13 where w = wT. We 
know however that 

w*(T) 5 wr 5 w * ( ~ )  + Alogn,  

and thus we can assume conservatively that if TO = T - 
2AnS log n and wo = w* (TO) then 

W O  + 2Al0gn 5 W, 5 W O  + A(2nS + 1) logn .  

Here S is a polynomial upper bound (proved below in 
Lemma 3.1) on the time taken for an active packet or token 
to get through the network. We use the facts: 

(a) w*(t - I) 5 w*(t) 5 w*(t - 1) + 1. 

(b) w*( t  + n S )  2 w*(t) + 1 

Of course WO itself is a random variable. But on the other 
hand, given W O ,  the conditional distribution of the destina- 
tions in wave w for w > WO + A log n are random because no 
packet in this wave could have been in the network at time 
TO. Let us therefore define 

E, E There exists w E [WO + 2A log n, W O  + A( 2nS + 
1) log n + K log n] and a delay sequence of length ex- 
ceeding K log n made from packets in waves [w, w + 
Alogn].  

The probability of E, is O(Sn logn /nB)  and can be 
made suitably small. If E, does not occur then all of the eli- 
gible packets among the first m in each queue at time T will 
be serviced in time K log n. 

We have therefore dealt with eligible packets at time T. 
Some of the first m packets in the queue can be ineligi- 
ble. If ET does not occur then they will be serviced in a 
further K log n time because they will be eligible at time 
T+K log n (all eligible packets in the network at time T will 
be out) and the extra K log n in the definition of E, means 
no delay paths for them either. We thus take T = 2 K  log n. 

We now have to give an estimate for S. 

Lemma 3.1 
S 5 4Anlog2 n. 

Proof If we trace an input-output path then the tokens we 
meet have wave numbers which decrease by one each time. 
This is a basic property of the scheduling protocol. At each 
time step at least one packet or token of lowest wave number 
moves. Thus if X denotes the set of lowest wave tokens or 
packets at time t ,  then X will be through the network at time 
t + 2n log n. The network can have no more than A log n 
distinct eligible wave numbers at any time and so we get an 
upper bound of 2An log2 n for eligible packets. An ineligi- 
ble packet might then have to wait this long to become eli- 
gible. 0 

From our definition of E, we see that it depends only on 
the destinations of packets that have wave numbers in the 
range[wo+2Alogn, wo+A(2nS+l) logn+K logn]. Ev- 
ery packet that has already made a choice of its destination 
by time t o  - S is out of the system by time to  and thus has 
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wave number :: w* ( t o )  + A log n. On the other hand, pack- 
ets that enter the network after time t o  + nS(A(2nS + 1) + 
K )  log n has wave number 2 WO + (A(2nS + 1) + K )  log n. 
Hence E, depends only on the destination of packets enter 
the network at times in the range [T - 2AnS log n - S ,  T + 
(A(2nS - 1) i- K)nSlogn].  We can thus take b = 7 in the 
main theorem. To define a suppose a packet IT becomes ac- 
tive at time T .  ‘I’hen all packets currently in the network will 
have left it by the time T + S. If II has not left the queue 
by this time then IT will certainly be eligible and can now 
enter. Thus we: can take a = 2 .  Thus, all the conditions of 
Theorem 2.1 &re satisfied, and we prove: 

Theorem 3.1 There is a constant C, such that the above al- 
gorithm is stable for  any inter-arrival distribution with ex- 
pectation at lemt C. The expected time a packet spends in 
the network is O(1og n) ,  and in the case of geometric inter- 
arrival time the expected time a packet spends in the system 
is O(1og n). 

After running the algorithm for a long time, wave num- 
bers could be come very large. To avoid the storage of very 
large numbers, wave numbers can be stored mod 2A log n 
and eligibility (defined to take account of this in the obvious 
way. 

4. Greedy dynamic routing with bounded 
buffers rand injection rate O( 1/ log n)  

We present in this section a simple greedy algorithm 
(“pure queueing protocol”) that can sustain an inter-arrival 
distribution with expectation Ct(log n )  using buffers of size 
q = O(1) in the routing switches. The algorithm and analy- 
sis is based on the static result of Maggs and Sitaraman [9]. 

We first describe the behavior of switches in the network: 
0 Packets are selected from buffers in  FIFO order. 

A switch V alternates between the two switches W, W’ 
feeding it. If at time t - 1 switch V received a packet 
from switch W ,  at time t it first checks switch W‘. If 
the buffer of W is non-empty W’ send a packet to V, 
otherwise V returns to switch W .  

The dynamiic algorithm uses a token based flow control 
mechanism. Eiich input has m = O(1) tokens. A token can 
be in one of three modes: active, used or suspended. Ini- 
tially all tokens are in active mode. To inject a packet into 
the network the input needs an active token. A packet is 
sent with a token and the mode of the token switches to used 
mode. When a. packet is delivered the token (acknowledg- 
ment) is returned to the input node. Let t ,  be the last time a 
given token was sent with a packet, let t, be the last time 
it returns to the input node. If t ,  - t ,  5 2Klogn then 
the token beco’mes active again at time t ,  + 2K log n. If 

t ,  - t ,  > 2 K  log n then the token mode is switched to sus- 
pended mode for 2mnS = 4mqn2 steps, then it is switched 
back to active mode ( K  is a constant fixed in the proof). This 
flow mechanism guarantees that an input cannot inject more 
than m packets in each interval of 2K log n steps, and that 
the input does not inject new packets when the network is 
congested. 

We use a separate network r’(n)  to route tokens back to 
their sources and the analysis of this routing mirrors that for 
r(n). 
Lemma 4.1 Under this protocol, no pucket takes more than 
S = 2qn steps to complete its service, once it has obtained 
an active token. 

Proof: We first prove by induction on i that if a buffer B at 
level i is non-empty (level 0 is the output level) then after 
at most 22 steps the front of the queue moves onto the next 
level. This is clear for i = 0 and our protocol ensures that 
after at most 2 x 2’-’ steps the switch will be able to move 
the front of B. Let p be some packet waiting in B. FIFO 
selection then ensures that a packet spends at most q2’ time 
at steps at level 2. 

The proof in [9] is based on a delay tree argument. In our 
setting this is defined as follows: Fix a packet I1 which is 
one of the first m packets of an input queue at time T .  Let 
M(n) be the set of packets that were in the network during 
any step t in which n was in the network. A node w is full 
with respect to II if at least q packets in M ( n )  traversed w. 
The spine S P ( n )  of II’s delay tree T(II) is the path in the 
network from its input node to its output node. Let F(II )  be 
the set of full nodes with respect to II in the network. T(IT) 
consists of SP(II)  plus any node reachable from it by a path 
consisting entirely of nodes in F(II ) .  ‘The number of pack- 
ets on the delay tree T(n), denote by /@-I), is the sum over 
all the nodes of the tree, of the number of packets in M ( I I )  
visiting each of the nodes. (Note that packets can be counted 
several times in this count). 

By Theorem 2.1 ‘in [9] the time a packet 11 spends in the 
network is bounded by log n + h( II). 

Let T = 311 log n, and define the event: 
I , :  There exists an input-output path P such that consid- 

ering all the packets that are in the network at time T ,  and the 
packets entering the network during the interval [T, T + T = 
T + 3K log n], 

0 

h(P)  2 ( K  - 1) log 72. 

(For each path P we imagine a packet II that took that path 
and was in the network during the whole interval [T,  T +TI. 
We compute the maximum of h(n )  over all P.) 

Clearly 4, implies that any packet that was among the 
first m packets in its queue at time T was delivered before 
time T + T ,  since a packet waits no more than 2K log n till 
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it has an active token, and its routing takes no more than 
K log n steps. 

We say that a packet is old at time t if it was injected into 
the network before time t - Klogn. The network is in a 
good state at time t if there are no old packets in the network 
and no token is in suspended mode. Otherwise the network 
is in a bad state. We define the event 

G T :  The network is in a good state at time r.  

Lemma 4.2 For any c > 0 there exists K = K ( c )  such 
that 

Pr(E, I G,) I n-'. 

Proof: The flow control mechanism ensures that no input 
can inject more than 2m = 0(1) packets during the inter- 
val [r - ZKlogn ,  T + 3Klognl. Thus, we are left with 
the problem o f  estimating the probability of  having a delay 
tree T(II) with h(lT) 2 ( K  - l)T when each input injects 
5 2m packets with random destinations into the network. 
The calculations here are similar to those in [9] Theorem 2.5. 
The main difference is that we have 2m = O( 1) packets per 
node instead of 1. 0 

It remains to bound the probability that the network is in  
a bad state at time T .  

Corollary 4.1 

Pr(G, I G T - ~ i o g , )  2 1 - n-'. 

Proof: If GT--l log, occurs then d--llog, occurs with 
the required probability. Consequently, any packet in the 
network at time T - K log n will have exited by time T .  This 
implies the occurrence of GT . 0 

Let t o  = T - 2mnS. We consider two cases: 
Case 1: The network is in a good state at times t o ,  t o  + 

1, . . . , t o  + K log n. By Lemma 4.2 and Corollary 4.1 the 
probability that the network is in a bad state at any time T' E 
[ t o ,  r] is bounded by 2mnSn-'. 

Case 2: The network is in a bad state at time t ,  t o  5 
t 5 t o  + Klogn. As long as there are old packets in the 
network at least one token switches to suspended mode in 
each interval of S steps. Thus, at some step no later than 
time t o  + nS + K log n the network gets into a good state. 
Once in this state, the probability that any packet becomes 
old before time r is bounded again by 2mnSnP. Applying 
Lemma 4.2, we see that regardless of the state of the network 
at time r ~ 2mnS, 

Pr(&,) = O(mSnl-'). 

Theorem 4.1 There is a constant C ,  such that the above al- 
gorithm is stable for any injection rate with expected inter- 
arrival time greater than C log n. The expected time a 
packet spends in the network is O(1og n). In the case of ge- 
ometric inter-arrival time the expected time a packet spends 
in the system is O(1og n). 

5. Greedy dynamic routing with buffers of size 
O(1og n)  and constant injection rate 

The algorithm in the previous section sustains an injec- 
tion rate which is only up to 0(1/ log n )  of the network ca- 
pacity. We now present a greedy algorithm that is stable 
for any inter-arrival distribution with expectation bounded 
by some constant C ,  thus a constant fraction of the network 
capacity. This algorithm, however, requires buffers of size 

The algorithm and analysis is based on the static result in 
[8] Section 3.4.4. When a packet is injected to the network 
it receives a random priority number T chosen uniformly at 
random from the interval [ 1, . . . ,8e  K log n] ( K  is a constant 
fixed in the proof). We say that a packet in the network is old 
at time t if it was injected before time t - 2K log n, other- 
wise the packet is new. Packet are selected from the buffers 
according to the following rule: old packets have higher pri- 
ority than new packets and they are selected in FIFO order. 
New packets are selected according to their random priority 
numbers. 

The algorithm uses the same token based flow control 
mechanism as the one described in the previous section. 

q = O(l0gn). 

Lemma 5.1 Under this protocol, no packet takes more than 
S = 2qn + 2K log n steps to complete its service, once it 
has obtained an active token. 

Proof: A packet becomes old 2K log n steps after it is in- 
jected to the network. Once a packet is old an argument sim- 
ilar to that given in the proof of lemma 4.1 ensures that the 
packet is delivered in the next 2qn steps. 0 

T = 3K log n and GT has the same meaning as in the 

€+ : There is a delay sequence of length K log n at some 

We then let &, = &: U lG,. 
Assume first that the buffers are unbounded. Then (see 

e.g. the proof of Theorem 3.26 of in [8]) the event i&T im- 
plies that a packet that received an active token in the in- 
terval [r, 7 + ZKlogn] is delivered within Klogn steps, 
i.e. before time r + T. As there are no suspended tokens 
at time 7 each token becomes active at least once in the in- 
terval [T ,T  + ZKlogn], thus the first m packets in each 
queue at time r are delivered by time r + T .  However, if no 
packet was delayed more than K log n steps, then no buffer 
had more than K l o g n  packets at any step in that interval 
and we get the same performance as if each buffer had size 
q = K log n. Thus, 4, implies that the first m packets in 
each queue at time T are delivered up to time T + T. 

previous section. We define the event: 

time in the interval [r, r + TI. 
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Proof: The flow control mechanism guarantees that no 
more than 2m packets are injected from each input in the in- 
terval [T - 2K log n ,  T + 3K log n].  The conditional prob- 
ability is determined by the random destinations and priori- 
ties of these < :!m packets. Thus we can argue as in Theo- 
rem 3.26 of [8]. 0 

We can then :follow the argument of the previous section, 
word for word and prove that regardless of the state of the 
network at time r - 2mnS, 

Pr(E,) = O(mSn'-"). 

6. Adversarial model 

In order to avoid probabilistic assumptions on the input, 
Borodin et al. [ 11 defined the adversarial input model. In- 
stead of probabilistic assumptions, restrictions are placed on 
the amount of required traffic through each edge. More pre- 
cisely, for an edge e of the network and a time interval I we 
let O(e, I )  denote the number of messages arriving during in- 
terval I whose input-output path contains e. An adversary 
has injection rare cy if for all e and I :  

Q(e,I) 5 4 4  (11) 

where III is the length of I .  
Surprisingly, the main results of this paper can be ex- 

tended to this model. We will indicate, in the limited space 
available, how 10 extend the result of Section 3 to the ad- 
versarial model. We assume that (1 1) holds for some (suffi- 
ciently small) cy > 0. 

When a pack.et arrives it adds a random offset between 
1 and clogn to its wave number. We route packets in the 
way previously described. The only issue is the likelihood 
of a long delay sequence. As described previously, we have 
a set of buffers s j ,  j E J and a set of wave numbers W = 
[w, w + A logn]. For each buffer we have a wave number 
wj E W, where wj+l 5 wj and there is a set Pj of packets 
which want to use this edge. Let .Fj be the event: there exists 
a choice J2j E 15 such that 

(i) IIj has wave: number wj and 

(ii) IIj ${II~,ID~,...,IIj-~} 
Our assumptions about input rate imply that Pr(Fj) 5 P = 
cy(c + A ) / c  < 1. More importantly, we have 

(12) 

Condition on thle occurrence of F1,32, . . . , 3j-1 and let 
Pj' = Pj \ { II1, n ~ ,  . . . , nj-1 } be the current set of choices 
for II,. The choice of wave number offset by packets is 
done independently and so the probability of Fj does not in- 
crease. Inequality (12) is enough to prove the unlikelihood 
of long delay sequences. The event &T can be defined in the 
same way as before. Thus we prove the following theorem: 

Pr(Fj I FI,Fz, . . . ,F~-I) 5 P. 

Theorem 6.1 There is a constant cy > 0, such that for  any 
adversary with injection rate cy the system is stable, and the 
expected time a packet spends in the system is O(log n). 

Similar modifications can be carried 'out for the other two 
models. Details are left to the final paper. 
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