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1. Introduction

The rigorous analysis of the dynamic performance of routing algorithms is one of
the most challenging current goals in the study of communication networks. So
far, most theoretical work on this area has focused on static routing: A set of
packets is injected into the system at time 0, and the routing algorithm is
measured by the time it takes to deliver all the packets to their destinations,
assuming that no new packets are injected in the meantime (see Leighton [1992]
for an extensive survey). In practice, however, networks are rarely used in this
“batch” mode. Most real-life networks operate in a dynamic mode whereby new
packets are continuously injected into the system. Each processor usually con-
trols only the rate at which it injects its own packets and has only a limited
knowledge of the global state.

This situation is better modeled by a stochastic paradigm whereby the packets
are continuously injected according to some interarrival distribution, and the
routing algorithm is evaluated according to its long-term behavior. In particular,
quantities of interest are the maximum arrival rate for which the system is stable
(i.e., the arrival rate that ensures that the expected number of packets waiting in
queues does not grow with time), and the expected time a packet spends in the
system in the steady state. The performance of a dynamic algorithm is a function
of the interarrival distribution. The goal is to develop algorithms that perform
close to optimal for any interarrival distribution.

Several recent articles have addressed the dynamic routing problem, in the
context of packet routing on arrays,1 on the hypercube and the butterfly
[Stamoulis and Tsitsiklis 1991] and general networks [Scheidler and Voecking
1996]. Except for Broder and Upfal [1996], the analyses in these works assume a
Poisson arrival distribution and require unbounded queues in the routing
switches (though some works give a high probability bound on the size of the
queue used [Leighton 1990; Kahale and Leighton 1995]). Unbounded queues
allow the application of some tools from queuing theory (see [Harcol-Balter and
Black 1994; Harcol-Balter and Wolf 1995]) and help reduce the correlation
between events in the system, thus simplifying the analysis at the cost of a less
realistic model.

Here, we focus on analyzing dynamic packet routing in networks with bounded
buffers at the switching nodes, a setting that most accurately models real
networks. Our goal is to build on the vast amount of work that has been done for
static routing in order to obtain results for the dynamic situation. Rather than
produce a new analysis for each routing network and algorithm, we develop a
general technique that “reduces” the problem of dynamic routing to the better
understood problem of static routing.

In Section 2, we prove a general theorem that shows that any communication
scheme (a routing algorithm and a network) that satisfies a given set of
conditions, defined only with respect to a finite history is stable up to a certain
interarrival rate. Furthermore we bound the expected routing time. At first
glance these conditions seems very restrictive and hard to satisfy, but in fact, as
we show later, many of the previous results on static routing can be easily

1 See, for example, Leighton [1990], Mitzenmacher [1994], Kahale and Leighton [1995], and Broder
and Upfal [1996].
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modified to fit into our framework. The theorem applies to any interarrival
distribution: the stability results and the expected routing time of a packet inside
the network depend only on the expectation of the interarrival distribution. The
relationship between the interarrival distribution and the waiting time in the
input queues is more complicated and is formulated in the theorem.

In Sections 3, 4, and 5, we present three applications of our general theorem to
packet routing on the butterfly network. In Section 6, we present an application
to packet routing on a mesh. We assume that packets arrive according to an
arbitrary interarrival distribution and have random destinations. In Section 7, we
present similar results for an alternative input model, the adversarial model
[Borodin et al. 2001], whereby probabilistic assumptions are replaced by a
deterministic condition on edge congestion.

Section 3 presents the first dynamic packet routing algorithm for a butterfly
network with bounded buffers under constant injection rate. Our algorithm is
stable for any interarrival distribution with expectation greater than some
absolute constant. The expected routing time in an n-input butterfly is O(log n)
and in the case of geometric interarrival times the expected time a packet spends
in the input queue is also O(log n). Thus, the performance of the algorithm is
within constant factors from optimal in all parameters. Our dynamic algorithm is
based on the static routing results of Ranade [1987] and Maggs and Sitaraman
[1992].

The above algorithm is not a “pure” queuing protocol (in such a protocol
packets always move forward unless progress is impeded by an already-full
queue) because as in the algorithms devised in Ranade [1987] and Maggs and
Sitaraman [1992] it generates and uses extra messages and mechanisms to
coordinate the routing. Maggs and Sitaraman [1992] studied the question of a
“pure” queuing protocol routing with bounded buffers. They gave an algorithm
that routes n packets on an n input butterfly with bounded buffers in O(log n)
steps. Based on their technique, we develop in Section 4 a simple greedy
algorithm for dynamic routing. It is stable for any interarrival distribution with
expectation V(log n), the routing time is O(log n), and in the case of a
geometric interarrival distribution the expected wait in the queues is also
O(log n).

In Section 5, we apply our approach to a dynamic version of the simple
oblivious routing algorithm on the butterfly described in Upfal [1984] and
Leighton [1992]. This algorithm routes n log n packets (all logarithms in this
paper are base 2) on an n log n butterfly in expected O(log n) steps, and with
high probability no buffer has more than O(log n) packets. Our dynamic version
of this algorithm uses a butterfly with buffers of size O(log n) and is stable for
any interarrival distribution with expectation greater than some absolute con-
stant. The expected routing time is O(log n) and the expected time a packet
waits in a queue in the case of geometric interarrival distribution is also
O(log n). Note that for dynamic routing, which is an infinite process, it does not
suffice to have a high probability bound on the size of the buffer memory needed
at a given time: we must prove that the algorithm is stable for some fixed buffer
size.

The result of Section 2 is couched in terms of a general network, but the above
examples are all concerned with the butterfly network. In Section 6, we exhibit
the generality of the result by applying it to an n 3 n mesh. Our dynamic
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algorithm is based on the Greedy Algorithm of Section 1.7 of Leighton [1992].
Our algorithm is stable for any interarrival distribution with expectation at least
Cn for some fixed constant C. The expected time a packet spends in the network
is O(n). In the case of Poisson arrival (geometric interarrival distribution) the
expected time the packet spends in the queue is also O(n). This is optimal up to
constant factors. Leighton [1990] studied this problem and obtained similar
results provided that the buffers in the routing switches are unbounded. More
precisely, Leighton’s algorithm ensures that at any fixed time, with high probabil-
ity, no routing queue has more than 4 packets. However, for any sufficiently long
execution, the maximum size of any queue exceeds any given bound. Our results
build on Leighton’s analysis, by augmenting his algorithm with a simple flow
control mechanism, which ensures that every routing queue is bounded at all
times, and thus only finite buffers are needed.

In an attempt to avoid probabilistic assumptions on the input, Borodin et al.
[2001] defined the adversarial input model. Instead of probabilistic assumptions,
for any time interval there is an absolute bound on the number of generated
packets that must traverse any particular edge. Surprisingly, our general tech-
nique can be applied here as well. In Section 7, we briefly sketch how the results
of Sections 3– 6 can be extended to this model.

These examples demonstrate several ways of applying our scheme. The analysis
required is similar to the analysis used in the proof of the corresponding static
case with several small modifications. Most notably, as often done in practice, we
sometimes augment the original static algorithm with a simple “flow control”
mechanism, such as acknowledgments. Our general theorem can be applied to
other topologies and algorithms provided that an appropriate static case analysis
can be constructed.

2. The Stability Criterion

Our model is as follows: We are given a routing algorithm ! acting on a network
G(n) with n inputs and n outputs. Each input receives new packets with an
interarrival distribution ^. We distinguish between usual and unusual distribu-
tions. We first describe the situation for usual distributions. By this we mean that
the probability that the number of arrivals in any time period significantly
exceeds its expectation falls off exponentially. A more precise definition is left
until later. In the usual case, the packets are placed into an unbounded FIFO
queue at the input node. Packets have an output destination chosen indepen-
dently and uniformly at random. When a packet reaches the front of its queue, it
is called active. At some point after becoming active, the packet is removed from
its queue and eventually routed to its destination. For convenience, we assume
that a packet chooses its random destination upon becoming active.

In an arbitrary input distribution, we modify our routing scheme as follows. We
maintain at each input node v two queues, Q1 and Q2. On arrival, packets are
placed in Q1; the front packet in Q1 leaves it to Q2 according to a geometric
service time at a rate greater than the arrival rate of ^; then Q2 feeds the
network as above. The precise details are discussed in Theorem 2.1 below.

We are interested in determining under what conditions the queuing system is
ergodic (or stable), that is, under which conditions the expected length of the
input queues is bounded as t 3 `. To this purpose we have to study the
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interdeparture time, which is the interval from when a packet becomes active until
it leaves the queue, and the packet next in line (if any) becomes active. Besides
stability, we are also interested in the expected time a packet spends in the
queue, and the expected time it spends in the network.

Since the interarrival times are independent, if the interdeparture times are
also independent, then each queue can simply be viewed as a G/G/1 system and
the stability condition would trivially be that the interdeparture rate exceeds the
interarrival rate. However, the usual situation is that there are complex interac-
tions among packets during routing and thus the interdeparture times are highly
dependent and hard to analyze.

The goal of this section is to define a set of relatively simple sufficient
conditions such that if the routing algorithm satisfies them, then the system is
stable up to a certain interarrival rate and we can bound the expected time a
packet spends in the queue and in the network. This is captured in the following.
We assume that the system is empty of packets at time t 5 0. We use * t to
denote the history of the process up to time t, that is, the outcome of the random
choices made at times 1 through t.

Let m denote the expected interarrival time and then p 5 1/m is the
interarrival rate.

THEOREM 2.1. Assume that the randomized routing algorithm ! acting on the
network G(n) is characterized by four parameters a, b, m, and T, where a and b are
positive constants, and m and T are positive integers that might depend on n and
satisfy 1/na , m/T , 1 and T , nb. Assume that the algorithm satisfies the following
conditions:

(1) Every packet is delivered at most na steps after becoming active.
(2) For every time t $ 0, there exists an event %t with the following properties:

(a) ¬%t implies that any packet that at time t was among the first m packets in
its queue, is delivered before time t 1 T.

(b) For any fixed time t,

Pr~%tu*t2nb! # B% 5
~m/T!7p

n2a12b13
.

(c) %t is determined by *t1nb.

Thus, for any k $ 1,

Pr~%tu%t22inb , i 5 1, 2, . . . , k! # B% . (1)

If there exists a positive constant e such that the interarrival distribution ^ has an
interarrival rate smaller than (1 2 e)m/T, then

(1) The system is stable.
(2) The expected elapsed time between when a packet becomes active and it is

delivered is at most 2T 1 O(1).
(3) The expected time a packet spends in the input queue is bounded by O(T) 1

f(T/m), where f is a function that depends only on ^ and not on the routing
process. (For “usual” distributions such as geometric f(T/m) 5 O(T/m)).
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PROOF. Assume first that the interarrival time is geometric, that is, at each
step, each input receives a new packet with some fixed probability p , (1 2
e)m/T. (We will show later how to extend the proof to a general interarrival
distribution).

Fix an input v and let Q(t) denote the length of the queue at node v at time t.
Let

p~t, L! 5 Pr~Q~t! $ L!.

We show that the system is stable by proving a uniform bound, independent of t,
on p(t, L). Let

b 5
e

4

m

T
and U 5 ST

mD3

na1b11.

(Hence U . m.) We will establish the bound using the following two inequali-
ties:

—For L $ U

p~t, L! # pS t 2 L

2  , ~1 1 b! LD 1 dexp~2gL!. (2)

—For m # L , U

p~t, L! # pS S t 2
2U

ep D
1

D 1
2U

ep
B% 1 exp~2fpL!. (3)

—(Define as usual x1 to be max{0, x}.)

where g 5 V((m/T)3/na1b), d 5 O(nb), and f is a positive constant. Since
p(t, L) 5 0 for t , L, these inequalities imply that for L $ U,

p~t, L! # dexp~2gL! 1 dexp~2~1 1 b!gL! 1 dexp~2~1 1 b!2gL! 1 · · ·

# dexp~2gL!~1 1 exp~2bgL! 1 exp~22bgL! 1 · · ·!

5
dexp~2gL!

1 2 exp~2bgL!
.

and that for m # L , U,

p~t, L! #
dexp~2gU!

1 2 exp~2bgU!
1

2U

ep
B% 1 exp~2fpL!.

Combining the two bounds, we get

E~Q~t!! 5 O
L$1

p~t, L!

# m 1
Udexp~2gU!

1 2 exp~2bgU!
1

2U2

ep
B%
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1 2exp~2fpm! 1
2dexp~2gU!

1 2 exp~2bgU!

5 O~m!

Since this holds for any interarrival rate bounded by (1 2 e)m/T, by Little’s
Theorem the expected time a packet spends in the queue is O(T).

We now turn to proving the recurrence (2). Since the inequality is trivially true
for t , L, assume that t $ L. Let t0 5 t 2 L/ 2. Let I denote the number of
packets arriving at input v between t0 and t, and let J denote the number of
packets leaving the queue at v during this interval. Let si denote the interdepar-
ture time of the ith packet to become active at v after time t0, that is, the interval
from when this packet reaches the front of queue until it departs. (If there was
an active packet at time t0 then s1 denotes how long it took that packet to
depart.) Let

M 5 ~1 2 b!
m

T

L

2  .

We claim that if Q(t) $ L, then at least one of the following three events holds:

^a ; Q~t0! $ ~1 1 b! L. ~Large initial queue.!

^b ; I $ ~1 1 b!p
L

2
2 1. ~Excessive number of new arrivals.!

^c ; s1 1 s2 1 · · · 1 sM .
L

2
. ~Slow processing.!

Indeed assume ¬^a, ¬^b, and ¬^c and consider two cases:

Case 1. Q(t0) . L/2. This means that at time t0 the queue contained more
than M packets, and ¬^c implies that M packets left the queue by time t 5 t0 1
L/ 2. Thus, J $ M, and

Q~t! 5 Q~t0! 1 I 2 J

, ~1 1 b! L 1 ~1 1 b! p
L

2
2 ~1 2 b!

m

T

L

2

5 L 1 S 2b 1 p 1 bp 2
m

T
1 b

m

T DL

2

# L 1 S 4b 1 p 2
m

T DL

2

# L.

Case 2. Q(t0) # L/2. Then
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Q~t! # Q~t0! 1 I ,
L

2
1 ~1 1 b! p

L

2

#
L

2
1 S 1 1

em

4T D ~1 2 e!
m

T

L

2

, L.

Thus, in order to prove the recurrence (2) it suffices to show that for L $ U

Pr~^b! # exp~2gL! (4)

and that

Pr~^c ` ~Q~t! $ L!! # O~nb!exp~2gL! (5)

Equation (4) follows immediately from standard bounds on the binomial distri-
bution

Pr~^b! 5 PrSI $ ~1 1 b!p
L

2
2 1D # exp~2b2pL/7!.

To prove Eq. (5) note that if at any time during [t0, t] the queue at v contains
less than m packets, then Q(t) $ L only if I $ L 2 m and the probability of the
latter can be bounded as above. So let’s assume that for all t [ [t0, t], we have
Q(t) $ m.

Let now z denote the number of occurrences of %t during [t0, t]. By the
hypothesis of the theorem s1 1 s2 1 . . . 1 sM # Mna. We partition the interval
[t0, t0 1 Mna] into 2nb sets, 71, 72, . . . , 72nb where 7 i 5 {t0 1 i 2 1 1
2knb: 0 # k # (Mna 2 i 1 1)/(2nb)}. Let zi denote the number of
occurrences of %t for t [ 7 i. Note that if packet i becomes active at time t and
if ¬%t then we have si 1 si11 1 . . . 1 si1m # T; if %t we can use the bound
si # na. Thus, we have the following series of implications:

s1 1 s2 1 · · · 1 sM .
L

2

f ~M 2 z!
T

m
1 naz .

L

2

f naz .
L

2
2 M

T

m
$

L

2
2 ~1 2 b!

L

2
5

bL

2

f z .
bL

2na

f ?i;zi .
bL

4na1b
.
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It follows from (1) that

Pr~zi . u! # SM/~2nb!

u DS ~m/T!7

n2a12b13Du

# S Me

2nbu
z

1

n2a12b13Du

.

So

PrS?i;zi $
bL

4na1bD # 2nbS Me

2n2a13b13
z
4na1b

bL DbL/(4na1b)

# 2nbexp~2gL!.

This completes the proof of recurrence (2) and we turn to recurrence (3). If
t , L/(2p), then for some constant f,

Pr~Q~t! $ L! # Pr~L packets arrive in @0, L/~2p!#! # exp~2fL!.

Hence, assume that t . L/(2p) and let t0 5 (t 2 2U/(ep))1. Define the
following three events:

^a ; Q~t0! $ U.

^b ; The event %t does not occur for any t [ @t0 , t#.

^c ; The queue at v receives at most ~1 2 ~e/2!!
m

T
u new packets in any interval

@t 2 u, t# with u $ L/2p.

We bound Pr(Q(t) $ L) via the inequality

Pr~Q~t! $ L! # Pr~^a! 1 Pr~¬^b! 1 Pr~¬^c!

1 Pr~Q~t! $ Lu¬^a , ^b , ^c!. (6)

By definition

Pr~^a! 5 p~t0 , U!.

Clearly

Pr~¬^b! # S2U

ep
1 1DB% ,

and since (1 2 (e/ 2))(m/T)u $ (1 1 (e/ 2)) pu

Pr~¬^c! # O
u$

L
2p

expS2e2p
u

12D
#

1

2
exp~2fL!. (7)
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for a constant f.
Now assume ¬^a, ^b, and ^c and notice that if ^b holds, then as long as the

queue is not empty it loses at least m packets in any interval of T steps. If Q(t) $
L, we claim that these assumptions imply that there is a step in the interval
[t0, t] in which the queue is empty; otherwise

Q~t! # Q~t0! 1 S 1 2
e

2Dm

T
~t 2 t0! 2 m t 2 t0

T 
, Q~t0! 1 m 2

e

2

m

T
~t 2 t0! ,

which is less than m since if t0 5 0 then Q(t0) 5 0, and otherwise t 2 t0 5
2U/(ep) and Q(t0) # U 2 1.

Thus, under the assumptions ¬^a, ^b, and ^c, if there are L packets in the
queue at time t, then there is an interval [t 2 u9, t], such that

(i) the queue was empty at time t 2 u9 2 1;
(ii) the queue was not empty in any step in the interval [t 2 u9, t]

(iii) at least L 1 mu9/T . L 1 (mu9/T) 2 m new packets arrived at the
queue in that interval.

But if L $ m and u9 . L/(2p) then (iii) contradicts ^c. So we only have to
consider the probability that (iii) holds for an interval with L # u9 # L/(2p).
This is bounded by

max
L$m

L#u9#L/(2p)

H O
i$L1((mu9)/T)2m

Su9

i Dpi~1 2 p!u92iJ # max
L#u9#L/(2p)

expS2e2p
u9

3 D
#

1

2
exp~2fpL!. (8)

This completes the proof of Eq. (3).
Let us now see how to go from a geometric interarrival distribution to

something more general. We observe that in the proof above the interarrival
distribution is only required to satisfy (4), (7), and (8). Suppose that the
interarrival time is a random variable X with distribution ^. Let p 5 1/E(X) ,
1. We say that ^ is usual if there exist constants A0 and A1 such that in any
interval of length t, the number N of arrivals satisfies

Pr~N $ ~1 1 e!pt! # A0exp~2A1e
2pt!

for any 0 # e # 1. Clearly, if ^ is usual, then our proof will go essentially
unchanged provided that p , (1 2 e)m/T.

Assume finally that the arrival of packets to the queue is governed by some
arbitrary interarrival distribution ^. Let Q1 and Q2 be the two queues in front of
a generic node v, as described at the beginning of this section. We move packets
from the front of Q1 to the end of Q2 with probability p 5 (1 2 e)m/T. Our
analysis has shown that Q2 is stable, and that the expected wait in Q2 is O(T).
The queue Q1 is a G/M/1 queue. Thus, if the expected interarrival time to Q1 is
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smaller than p, then the queue is stable and the expected waiting time in Q1 is
determined (see Kleinrock [1975] for details) by the distribution ^, as follows:
Let x be the nontrivial (i.e., x Þ 1) root of the equation (the Laplace transform)

x 5 E
0

`

exp~2pt~1 2 x!!d^~t!;

The expected wait in the queue is then x/( p(1 2 x)).
We now bound the expected time that a packet takes to reach its destination

once it becomes active. Consider a long interval of time [0, L]. Suppose that xa

packets arrive during this interval and %t occurs for xb values of t. Given this, the
average time that a packet takes to reach its destination once it becomes active is
at most

~ xa 2 xb!T 1 xbna

xa

# T 1
xbna

xa

.

Now

ESxbna

xa
D #

E~xb!na

1
2 LpPr~xa . 1

2 Lp!
1 naLPr~xa # 1

2 Lp!

3
2naB%

p
as L 3 `

3 0 as n 3 `.

Consequently, the expected time that a packet takes to reach its destination once
it becomes active is at most 2T as claimed. e

In the next four sections, we deal with applications of Theorem 2.1 to the cases
where the underlying topology is (i) a butterfly with log n levels (rows) of n
nodes (switches) or (ii) an n 3 n mesh. In both cases, there are buffers on edges
and unbounded queues at input vertices. We show stability for several protocols
under suitable assumptions about input rate and internal buffer size. We will
explicitly consider geometric interarrival distributions. The general case is implic-
itly dealt with as in the proof of the main theorem.

3. Dynamic Routing on a Butterfly with Constant Injection Rate and Bounded
Buffers

For this section, we assume that the buffer size q is a sufficiently large constant.
We first fix m 5 Q(log n) and we will subsequently describe a protocol and
define %, T, a, and b to satisfy the conditions of Theorem 2.1.

Our approach is based on the second algorithm of Maggs and Sitaraman [1992]
and in places we follow their description very closely. This algorithm uses tokens
whose main role is to define a wave number for each packet. We will assume that
tokens occupy the same amount of space as a packet. Imagine that behind each
input node queue there is an infinite sequence of tokens, packets and blanks. The
odd positions are always taken by tokens and the even positions contain packets
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or blanks, where the packets occur randomly with probability p. The tokens are
labeled 1, 2, . . . . The label of a token is referred to as its wave number. As
opposed to Maggs and Sitaraman [1992], we actually use these labels within the
algorithm, not only in its analysis.

At each time step, we examine the front of the sequence. If it is blank, then we
simply delete this blank and go to the next time step. If there is a token or
packet, then we delete it from the sequence and place it in the back of the input
queue. The front element (which could be a packet or a token) of the queue tries
to enter the network only if it is eligible (we define this subsequently). An eligible
packet enters the system if the buffer on the edge that it intends to use is, or
becomes not full during the current time step. Upon entrance into the network a
token splits into two tokens, one for each outgoing edge. Thus, both buffers need
to have space before an eligible token can enter.

The wave number w(P) of packet P is the wave number of the token that
immediately precedes it in entering the network. The rank of a packet is a pair
(w, c) where w is the wave number and c is the column number of its input. The
rank of a token is given by its wave number. Ranks are ordered lexicographically.

An important invariant of the algorithm is that packets go through a switch in
increasing order of rank.

A switch labeled (l, c 5 c0, c1, . . . , cL21) where l is the level and L 5 log n,
has a 0-edge entering it from switch (l 2 1, c 2 cl2

l21) and a 1-edge entering it
from switch (l 2 1, c 2 (cl 2 1)2 l). The buffer of the i-edge is called the
i-buffer.

The behavior of each switch is governed by a simple set of rules. By forwarding
a packet or token, we mean sending it to the appropriate queue in the next level.
If that queue is full, the switch tries again in consecutive time steps until it
succeeds. A switch can either be in 0-mode or 1-mode and is initialized to be in
0-mode. In i-mode, a switch forwards packets in the i-buffer until a token is at
the head of the i-buffer. At that time, if i 5 0, then the switch simply changes to
1-mode; otherwise, if i 5 1, then there will be tokens at the front of both queues
and the switch waits until it can forward both tokens, each to one of its outgoing
edges. (These tokens have the same wave number). It then switches back to
0-mode.

It will be important in the subsequent analysis to ensure that if P and P9 are
packets or tokens residing simultaneously in the network then uw(P) 2 w(P9) u
# A log n for some constant A . 0. This is achieved as follows: At every time
step, every output node generates two chips. The 2n chips generated at time t
will be referred to as generation t . Each generation travels back through the
network one level at a time. The chips make their journey so that each chip
occupies a different edge at each step. By the time a chip of generation t has
reached a switch s, it has iteratively computed the lowest wave number of any
packet/token which left the network at time t from an output node reachable
from s. Thus, when generation t reaches the input nodes, each input node knows
the lowest wave number w*(t) of any packet/token that left the network at time
t. This happens at time t 1 log n. w* is initialized at zero and if no packet leaves
the network at time t then w*(t) 5 w*(t 2 1). Note that if P is a packet/token
which is in the network at time t or later then w(P) $ w*(t) since packets go
through network switches in increasing order of rank.
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At time t, a packet/token P will be eligible to enter the network, only if

w~P! # w*~t 2 log n! 1 A log n.

It follows that if P is any packet/token already in the network at time t, or
eligible at time t, then

w*~t 2 log n! # w~P! # w*~t 2 log n! 1 A log n. (9)

We focus now on one of the first m packets of a queue at time t. Denote it by
P. Assume for the time being that P is eligible at time t. Maggs and Sitaraman
define a delay sequence of packets and tokens in a familiar way—an (r, f ) delay
sequence consists of (i) a path P from an output node to an input node, (ii) a
sequence s1, s2, . . . , sr of not necessarily distinct buffers, (iii) a sequence P1,
P2, . . . , Pr of distinct packets and tokens and (iv) a nonincreasing sequence w1,
w2, . . . , wr of wave numbers. The wave numbers of the tokens are shown to
decrease strictly as one moves along the delay path, in fact they decrease by one
from one token to the next. The length l 5 l(P) is equal to 2f 2 log n where f
is the number of forward edges of the path. It is a little confusing at first, but here
forward edges go from level x to level x 1 1, for some x, and are traced
backwards by P, assuming it is directed from output to input. It is assumed that
P i goes through buffer si and has wave number wi. Maggs and Sitaraman [1992]
show (Lemma 4.1) that if packet P takes log n 1 d time to exit from the
network, then there is a (d 1 (q 2 2) f, f ) delay sequence, with P1 5 P, for
some f $ 0.

We have to argue that the delay sequence does not contain many tokens. Let k
denote the number of tokens in our delay sequence. We see that

k # A log n,

since the wave numbers of tokens decrease by one along the delay path, Eq. (9)
holds, and any packet/token on the delay path must be in the network at some
time after t, and thus has wave number at least w*(t 2 log n).

If we assume (and we will subsequently remove this assumption)

A: The destinations of packets under consideration are random,

then the expected number of delay sequences for P can be bounded as follows.
Choose l 5 2f 2 log n for the length of a path P. Let 3 denote the set of

possible delay paths and note that u3u # 4l. Choose a delay d $ K log n where K
is a large constant. (We assume q .. K .. A.) Let r 5 d 1 (q 2 2) f. We have
to count the number of (r, f ) delay sequences with delay path P. Choose positive
integers a1, a2, . . . , ak so that a1 1 a2 1 . . . 1 ak # r and along our path
there are tokens at positions a1, a1 1 a2, . . . , a1 1 a2 1 . . . 1 ak. There are
( r

k) choices for the ai’s.
Let J 5 [r]\{a1, a1 1 a2, . . . , a1 1 a2 1 . . . 1 ak}. Now choose an edge

buffer sj for each j [ J. Observe that having chosen P our choices are now
restricted. However, for each edge in P, we can choose the multiplicity of its
buffer in the delay sequence. This can be done in at most ( r1l21

l21 ) ways.
Let dj be the depth of the edge with buffer sj. There are 2dj inputs that could

send a packet along this edge. The probability that there is such a packet with a
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particular wave number (fixed by the preceding token) is at most 2dj( p22dj21) #
1/ 2.

Thus, the expected number of delay sequences is at most

O
k#A log n

O
f$log n

O
P[3

O
d.K log n

O
a1,. . .,ak

O
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1 2 ~2/3!q22
,

which can be made O(n2B) for any positive constant B by choosing K sufficiently
large.

Let us now deal with Assumption A. One cannot assert that the destinations of
packets in the network at time t are random. There is a tendency for “bad”
configurations to “linger.” However, one can assert that the destinations of
packets with wave numbers in [w, w 1 k 2 1] are random for any fixed w . What
we have actually proved is that there is unlikely to be a delay sequence made up
from random packets with wave numbers in [w, w 1 k 2 1] where w 5 wr. We
know however that

w*~t! # wt # w*~t! 1 A log n,

and thus we can assume conservatively that if t0 5 t 2 2 AnS log n and w0 5
w*(t0), then

w0 1 2 A log n # wt # w0 1 A~2nS 1 1!log n.

Here S is a polynomial upper bound (proved below in Lemma 3.1) on the time
taken for an active packet or token to get through the network. We use the facts:

(a) w*(t 2 1) # w*(t) # w*(t 2 1) 1 1.
(b) w*(t 1 nS) $ w*(t) 1 1.

Of course, w0 itself is a random variable. The conditional distribution of the
destinations in wave w for w . w0 1 A log n are random because no packet in
this wave could have been in the network at time t0. Let us therefore define
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%t [ There exists w [ [w0 1 2 A log n, w0 1 A(2nS 1 1) log n 1 (K 1
1) log n] and a delay sequence of length exceeding K log n made from packets
in waves [w, w 1 A log n].

The probability of %t is O(Sn log n/nB) and can be made suitably small. If %t

does not occur, then all of the eligible packets among the first m in each queue
at time t will be serviced in time (K 1 1) log n.

We have therefore dealt with eligible packets at time t. Some of the first m
packets in the queue can be ineligible. If %t does not occur, then they will be
serviced in a further (K 1 1) log n time because they will be eligible at time t 1
(K 1 1) log n (all eligible packets in the network at time t will be out) and the
extra (K 1 1) log n in the definition of %t means there are no delay paths for
them either. We thus take T 5 2(K 1 1) log n.

We now have to give an estimate for S.

LEMMA 3.1. Under this protocol, no packet takes more than S # 4An log2 n
steps to complete its service once it has become active.

PROOF. If we trace an input– output path, then the tokens we meet have wave
numbers that decrease by one each time. This is a basic property of the
scheduling protocol. At each time step, at least one packet or token of lowest
wave number moves. Thus, if X denotes the set of lowest wave tokens or packets
at time t, then X will be through the network at time t 1 2n log n. The network
can have no more than A log n distinct eligible wave numbers at any time and so
we get an upper bound of 2 An log2 n for eligible packets. An active but
ineligible packet might then have to wait this long to become eligible. e

From our definition of %t, we see that it depends only on the destinations of
packets that have wave numbers in the range [w0 1 2 A log n, w0 1 A(2nS 1
1) log n 1 (K 1 1) log n]. Every packet that has already made a choice of its
destination by time t0 2 S is out of the system by time t0 and thus has wave
number at most w0 1 A log n. On the other hand, packets that enter the
network after time t0 1 nS( A(2nS 1 1) 1 K 1 1) log n has wave number $
w0 1 ( A(2nS 1 1) 1 K 1 1) log n. Hence, %t depends only on the destination
of packets enter the network at times in the range [t 2 2 AnS log n 2 S, t 1
( A(2nS 2 1) 1 K 1 1)nS log n]. We can thus take b 5 5 in the main
theorem. To define a, suppose a packet P becomes active at time t. Then all
packets currently in the network will have left it by the time t 1 S. If P has not
left the queue by this time, then P will certainly be eligible and can now enter.
Thus, we can take a 5 2. Thus, all the conditions of Theorem 2.1 are satisfied,
and we have proved:

THEOREM 3.1. There is a constant C, such that the above algorithm is stable for
any interarrival distribution with expectation at least C. The expected time a packet
spends in the network is O(log n), and in the case of geometric interarrival time the
expected time a packet spends in the system is O(log n).

After running the algorithm for a long time, wave numbers could become very
large. To avoid the storage of very large numbers, wave numbers can be stored
mod 2 A log n and eligibility defined to take account of this in the obvious way.
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4. Greedy Dynamic Routing on a Butterfly with Bounded Buffers and Injection
Rate O(1/log n)

We present in this section a simple greedy algorithm (“pure queuing protocol”)
that can sustain an interarrival distribution with expectation V(log n) using
buffers of size q 5 O(1) in the routing switches. The algorithm and analysis is
based on the static result of Maggs and Sitaraman [1992].

We first describe the behavior of switches in the network:

—Packets are selected from buffers in FIFO order.
—A switch V alternates between the two switches W, W9 feeding it. If at time

t 2 1 switch V received a packet from switch W, at time t it first checks switch
W9. If the buffer of W9 is nonempty, then W9 send a packet to V; otherwise, V
returns to switch W.

The dynamic algorithm uses a token-based flow control mechanism. Each
input has m 5 O(1) tokens. A token can be in one of three modes: enabled, used
or suspended. Initially, all tokens are in enabled mode. To inject a packet into the
network, the input needs an enabled token. A packet is sent with a token and the
mode of the token switches to used mode. When a packet is delivered the token
(acknowledgment) is returned to the input node. Let ts be the last time a given
token was sent with a packet, let tr be the last time it returns to the input node.
If tr 2 ts # K log n, then the token becomes enabled again at time ts 1 K log n.
If tr 2 ts # K log n, then the token mode is switched to suspended mode for
3mnS 5 O(n3) steps (S is defined in Lemma 4.1). Then it is switched back to
enabled mode (K is a constant fixed in the proof). This flow mechanism
guarantees that an input cannot inject more than m packets in each interval of
K log n steps, and that the input does not inject new packets when the network is
congested.

We use a separate butterfly network G9(n) to route tokens back to their
sources. The output nodes of G(n) are identified with the inputs for G9(n). A
token from input j of G(n) which reaches output k of G(n) must travel from
input k of G9(n) to output j of G9(n).

LEMMA 4.1. Under this protocol no packet takes more than S 5 4qn2 1
2K log n steps to complete its service once it has become active.

PROOF. Our network G(n) ø G9(n) has 2 log n levels. We prove by induc-
tion on i that if a buffer B at level i is nonempty (level 0 is the output level of
G9(n), which is the input level of G(n)), then after at most 2 i steps the front of
the queue moves onto the next level. This is clear for i 5 0 and our protocol
ensures that after at most 2 3 2 i21 steps the switch will be able to move the
front of B. Let m be some packet waiting in B. FIFO selection then ensures that
a packet spends at most q2 i time steps at level i. Thus, a token takes at most
2qn2 time steps to reach its output once it obtains a packet. By the same
argument, a packet has to wait at most 2qn2 1 K log n time steps to obtain a
token, once it has become active. e

The proof in Maggs and Sitaraman [1992] is based on a delay tree argument. To
apply this proof technique here, we analyze the delays in G(n) and G9(n)
separately. Note that since we assume that a processor has sufficient buffer space

339Dynamic Packet Routing with Bounded Buffers



to receive all packets sent to it, delays in one network do not propagate to the
other network. In our setting, the delay tree in G(n) is defined as follows: Fix a
packet P, which is one of the first m packets of an input queue at time t. Let
M(P) be the set of packets that were in the network during any step t in which P
was in the network. A node v of G(n) is full with respect to P if at least q packets
in M(P) traversed v during this time. The spine SP(P) of P’s delay tree DT 5
DT(P) is the path in G(n) from the input node, j say, to P’s output node back to
the output node of G9(n) labeled j. Let F(P) be the set of full nodes with respect
to P in the network G(n). DT(P) consists of SP(P) plus any node reachable
from it by a path consisting entirely of nodes in F(P). (Paths are directed from
nodes of the spine down to lower numbered levels.) The number of packets on
the delay tree DT(P), denote by h1(P), is the sum over all the nodes of the tree,
of the number of packets in M(P) visiting each of the nodes. (Note that packets
can be counted several times in this count). A similar construction gives DT9(P),
a delay tree of P in G9(n). Let h2(P), denote the number of packets on DT9,
and let h(P) 5 h1(P) 1 h2(P).

By Theorem 2.1 in Maggs and Sitaraman [1992], the time a packet P spends in
the network is bounded by log n 1 h1(P), and the time it takes the correspond-
ing token to return to the source is log n 1 h2(P).

Let

T 5 2K log n,

and define the event:

%t. There exist delay trees DT and DT9 such that considering all the packets
and tokens that are in the network at time t, and the packets and tokens entering
the network during the interval [t, t 1 T],

h~P! $ ~K 2 1! log n.

(For each pair of trees DT and DT9, we imagine a packet P that followed
SP(DT), and a token that followed SP(DT9), both were in the network during
the interval [t, t 1 T]. We compute the maximum of h(P) over all DT and
DT9.)

Clearly, ¬%t implies that any packet that is among the first m packets in its
queue at time t will be delivered, and its token returned to the source, before
time t 1 T, since a packet waits no more than K log n until it has an enabled
token, and then its routing takes no more than K log n steps.

LEMMA 4.2. For any a . 0, there exists K 5 K(a) such that if t 2 2K log n #
t # t 2 K log n then

Pr~%tu*t! # n2a,

provided * t # %# t.

PROOF. Under the conditions of the lemma, any packet and token in the
network at time t will have left the network by time t. The destinations of
packets generated in the interval [t 1 1, t 1 T] are random and independent of
* t. Once a token changes to a used state, it requires at least K log n steps in
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order to become enabled again. Thus, each input node can inject at most 4m new
packets between times t 1 1 and t 1 T, each having a new random destination.

Theorem 2.5 of Maggs and Sitaraman [1992] shows that if each input node
injects 1 packet to a random destination then for some K0 5 K0(a) and q
sufficiently large

Pr~?P;h1~P! $ K0 log n! 5 O~n2a!.

So if each input injects at most 4m packets with random destinations into the
network, then

Pr~?P;h1~P! $ 4mK0 log n! 5 O~n2a!.

A symmetric argument proves the same bound for h2(P). Choosing K 5
4mK0 1 1 yields the lemma. e

Let t0 5 t 2 2mnS and

@t 5 ù t5t0

t % t .

COROLLARY 4.1

Pr~%tu*t0
! # Pr~@tu*t0

! 1 2mSn12a.

LEMMA 4.3

Pr~@tu*t0
! # n2a.

PROOF. The network at time t contains at most m packets per input node.
We must find a way to be able to treat the destinations of these packets as
random given *t0

. For input i and time t, let Di, t be the set of m destinations
associated with the tokens for i. The occurrence of events % t, t [ [t0, t] can be
determined from the sets Di, t, t [ [t0, t 1 T]. Imagine that initially, that is, at
time t0 each token has a destination and it gets a new one whenever it returns
from a trip through the network. We will view the sequence Di, t, t 5 t0, . . . ,
t 1 T as being produced as follows: We start with an arbitrary set of destinations
Di, t. Each token j has due time dj for its next change of destination. At time dj

the destination of token j is replaced with a new random destination and dj is
replaced by dj 1 K log n unless either (i) j is late and becomes suspended at
some time in the interval [dj, dj 1 S] or (ii) there is no active packet waiting for
j at time dj 1 K log n, in which case j gets a new due date determined by the
arrival distribution and not by the workings of the network, which we treat as an
adversary. This adversary is limited to arbitrarily choosing tokens to make late.
We can assume that the adversary makes its decision on token j at time dj.

Suppose that there is a time t [ [t0, t 2 2K log n] such that the adversary
decides not to make any token late during the interval [t, t 1 S]. Then at the
end of this time interval the destinations of unsuspended tokens are completely
random and so the (conditional) probability Pr(% t1S) # n2a. On the other
hand, if the adversary tries to delay at least one token in every such interval then
there will be no tokens in the network at time t9 5 t0 1 mnS and %# t9 will occur,
unless there are fewer than m new arrivals at some input in the period [t, t 1
mnS]. The probability of the latter is negligible and the lemma follows. e
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Combining Corollary 4.1 and Lemma 4.3, we obtain

Pr~%tu*t22mnS! 5 O~mSn12a!.

Taking T 5 2K log n, m 5 O(1), a 5 b 5 3, a 5 16 and applying Theorem
2.1 we obtain

THEOREM 4.1. There is a constant C, such that the above algorithm is stable for
any injection rate with expected interarrival time greater than C log n. The expected
time a packet spends in the network is O(log n). In the case of geometric interarrival
time the expected time a packet spends in the system is O(log n).

5. Greedy Dynamic Routing on a Butterfly with Buffers of Size O(log n) and
Constant Injection Rate

The algorithm in the previous section sustains an injection rate that is only up to
O(1/log n) of the network capacity. We now present a greedy algorithm that is
stable for any interarrival distribution with expectation bounded by some con-
stant C; thus, a constant fraction of the network capacity. This algorithm,
however, requires buffers of size q 5 O(log n).

The algorithm and analysis is based on the static result in Section 3.4.4 in
Leighton [1992]. When a packet P is injected into the network it receives a
random priority number r(P) chosen uniformly at random from the interval
[1, . . . , 8eK log n] (K is a constant fixed in the proof). Packets are generally
selected from the buffers according to their random priority numbers. This does
not guarantee that a packet will get through the network in a reasonable time,
since it is conceivable that under this protocol a packet could stay in the network
for a very long time. Consequently, once every 10K log n steps we change the
selection rule for one step so that packets are selected according to age and
FIFO order. We call this a special step.

The algorithm uses the same token-based flow control mechanism as the one
described in the previous section, only the values of K and S will change. It also
uses a second network G9(n) to route the tokens back to the inputs. The tokens
inherit the priorities of their packets, for the return phase, as well as their age
status.

This time m is of order log n.

LEMMA 5.1. Under this protocol, no packet takes more than S 5
40Kqn2 log n 1 K log n steps to complete its service once it has become active.

PROOF. An argument similar to that given in the proof of Lemma 4.1 ensures
that a packet’s token arrives back at its input within 4qn2 special steps of getting
a packet. e

Let

T 5 2K log n

and define the event:

%t. There is a delay sequence (in G(n) ø G9(n)) of length K log n at some
time in the interval [t, t 1 T].
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The definition of a delay sequence is similar to that given in Section 3. A full
definition can be found for example on p. 550 of Leighton [1992]. It is basically a
path P from an input node to an output node (back to an input node) plus a
sequence of nodes v1, v2, . . . , vp of P. The nodes are in order on P but there
can be repetition in the sequence. There is a sequence of packets P1, P2, . . . ,
Pp where P i is required to go through node vi. Finally, there is the condition
that r(P i) # r(P i11) for 1 # i , p. Because of our special steps we have to
relax this last condition for p/(10K log n) values of i.

Assume first that the buffers are unbounded. Then (see, e.g., the proof of
Theorem 3.26 in Leighton [1992]) the event ¬%t implies that a packet that
received an enabled token in the interval [t, t 1 K log n] is delivered within
K log n steps, that is, before time t 1 T. In these circumstances, each token
becomes enabled at least once in the interval [t, t 1 K log n], and so the first m
packets in each queue at time t are delivered by time t 1 T. However, if no
packet was delayed more than K log n steps, then no buffer had more than
K log n packets at any step in that interval and we get the same performance as
if each buffer had size q 5 K log n. Thus, with this queue size, ¬%t implies that
the first m packets in each queue at time t are delivered by the time t 1 T.

Using the almost identical argument to that given in the previous section, we
can prove that for any b . 0 we can choose K 5 K(b) such that

Pr~%tu*t22mnS! # n2b.

Taking T 5 2K log n, m 5 O(log n), a 5 b 5 3, b 5 13 and applying
Theorem 2.1 we obtain

THEOREM 5.1. There is a constant C, such that the above algorithm is stable for
any injection rate with expected interarrival time greater than C. The expected time a
packet spends in the network is O(log n). In the case of geometric interarrival time
the expected time a packet spends in the system is O(log n).

6. Dynamic Routing on a Two-Dimensional Mesh with Bounded Buffers under
Injection Rate O(1/n)

Our dynamic algorithm is based on the Greedy Algorithm of Section 1.7 of
Leighton [1992].

A packet takes the shortest one-bend route from origin to destination, first
(left or right) on its origin row to its destination column, then up or down on that
column to the packet’s destination.

We assume that a switch can receive up to four packets per step, one from
each incoming edge, and send four packets per step, one through each outgoing
edge. A switch maintains a buffer for each outgoing edge. When there is a space
in a buffer the switch receives packets to that buffer according to the following
rule: Except for special steps, packets that have to travel farthest have the
highest priority. There will be a special step every 10Kn steps, where K is a
sufficiently large constant (K $ 2e2 will do). In such a step, priority is given to
age, oldest first. Packets of the same age are dealt with in lexicographic order of
pair (origin,destination).

The algorithm uses a token-based admission control mechanism similar to that
in the previous two sections, with one packet per input, that is, m 5 1. Let ts be
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the last time a given token was sent with a packet, and let tr be the last time it
returns to its input node. If tr 2 ts # Kn, then the token becomes enabled again
at time ts 1 Kn 1 Z, where Z is a random number chosen uniformly from
[0, Kn]. If tr 2 ts . Kn, then the token mode is switched to suspended mode
until time tr 1 3n2S 1 Z steps, then it is switched again to enabled mode, where
S is defined in Lemma 6.1 below and Z is chosen as above.

We use a separate network to route tokens back to their sources and the
routing mirrors that of the main network.

This flow mechanism guarantees that an input cannot inject more than one
packet within each interval of Kn steps. Furthermore, the probability that a
token becomes enabled at any fixed time is at most 1/(Kn).

LEMMA 6.1. Under this protocol no packet takes more than S 5 100Kn6 steps to
reach its destination once it has become active.

PROOF. Consider a packet P. Let P0 be its predecessor in the queue. P0 does
not leave the queue until it has an enabled token. At that time, there are no
more than n2 other packets in the network. Consider the progress of the highest
priority old packet P in the network. If P is moving along a column then it moves
at every special time step. If it is moving along a row, then it could fail to move
because further along that row there is contention for a column buffer at that
special time step. P waits at most Kn 1 n2 special steps before making another
move. This is because the packet waiting to move along the column in question
will be the oldest packet trying to get into the column edge buffer. Thus, after
Kn 1 Kn2 1 n3 special steps P will have reached its destination column and will
reach its final destination within a further n special steps. So after at most Kn3 1
Kn4 1 n5 special steps, P0 will be the highest priority packet in the network and
will be delivered within a further Kn 1 Kn2 1 n3 special steps. Thus, P0 gets to
its destination at most Kn 1 Kn2 1 (K 1 1)n3 1 Kn4 1 n5 # 2n5 special
steps after leaving the queue. The used token comes back after at most another
2n5 special steps and after at most 2Kn steps is reactivated. Finally, after at most
another 2n5 special steps the packet P is delivered. The sum of these delays is
less than 100Kn6. e

Next, we turn to the definition of the event %t. Our analysis is based on the
technique in Leighton [1990] as described in Leighton [1992, Sect. 1.7.2]. As in
Leighton [1990], we relate the execution of the algorithm to an artificial
execution on a wide-channel model in which an arbitrary number of packets can
traverse an edge at any step, and no packet is ever delayed. We assume that the
execution on the wide-channel starts at time t.

Let a and q be constants to be defined later, let

d0 5 ~a 1 3!log n 1 log~4K! 1 1.

This serves as a suitable high-probability upper bound on the delay of any given
packet. We now define the events %t as the union of the following events:

(1) There is a row edge e (in the network that routes the packets), a t $ 0, and
an interval [t0, t0 1 t 1 d0] # [t, t 1 Kn], such that at least t 1 d0 2 1
packets traverse edge e in that interval in the wide-channel model.
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(2) There is a column edge e (in the network that routes the packets), a t $ 0,
and an interval [t0, t0 1 t 1 2d0] # [t, t 1 Kn], such that at least t 1
d0 2 1 packets traverse edge e in that interval in the wide-channel model.

(3) A routing buffer (in the network that routes the packets) has q packets in
some step in the interval [t, t 1 Kn].

(4) There is a row edge e (in the mirror network that routes the tokens), a t $
0, and an interval [t0, t0 1 t 1 d0] # [t, t 1 Kn], such that at least t 1
d0 2 1 tokens traverse edge e in that interval in the wide-channel model.

(5) There is a column edge e (in the mirror network that routes the tokens), a
t $ 0, and an interval [t0, t0 1 t 1 2d0] # [t, t 1 Kn], such that at least
t 1 d0 2 1 tokens traverse edge e in that interval in the wide-channel
model.

(6) A routing buffer (in the network that routes the tokens) has q tokens in
some step in the interval [t, t 1 Kn].

We say that a packet was delayed d steps in traversing an edge if there is a d step
gap between the time it traverses the edge in the wide-channel model and the
time it traverses the edge in the standard model. Leighton’s analysis in Leighton
[1990] is based on the following fact (see Corollary 1.9 and Lemma 1.10 in
Leighton [1992]): If buffers are unbounded and the farthest to go packet always
has the highest priority, then a packet is delayed d steps in traversing a row edge
e only if there is an interval of t 1 d steps such that t 1 d packets cross edge e
in that interval in the wide-channel model.

This must be modified to account for the special steps. Then, we can only
postulate that at least t 1 d 2 (t 1 d)/(10Kn) packets cross e. Similarly, if a
packet is delayed d steps in crossing a column edge e, then, assuming no packet
is delayed more than d0 steps on a row, there is an interval of t 1 d0 1 d steps
in which at least t 1 d 2 (t 1 d)/(10Kn) packets cross edge e in the
wide-channel model (see Leighton [1992] for a detailed proof). Thus, we have
the following corollary that satisfies requirement (2.b) in the general theorem:

COROLLARY 6.1. The event ¬%t implies that any packet with an enabled token
at time t is delivered within the next 2n 1 2d0 # Kn steps.

PROOF. Any packet with an enabled token is delivered within 2n steps in
the wide-channel model. In the standard model its additional delay is at most
2d0. e

It follows that if %t does not occur then any packet which is active at time t is
delivered within T 5 3Kn time steps.

We now bound the probability of the event %t given *t22n2S. Once we have
proved the equivalent of Lemma 4.2, we can make the same arguments as in
Corollary 4.1 and Lemma 4.3, with t0 5 t 2 2n2S. The effect of adding Z is
similar to that of waiting for a packet to arrive in the butterfly examples, that is,
it is outside the control of the adversary. We will argue next that, for any a . 0,
there is a K 5 K(a) such that if t 2 2Kn # t # t 2 Kn, then

Pr~%tu*t! 5 O~n2a!, (10)

provided * t # %# t.
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For an edge e and an interval [t1, t2] # [t, t 1 Kn], let %0(e, t1, t2, r) be the
event that in the wide-channel model r packets cross e during time interval
[t1, t2]. Note that every token is used at most once in the interval and its
destination can be treated as random.

Case 1. e is a row edge:

Pr~%0~e, t1 , t2 , r!! # Sn
rDSt2 2 t1

Kn Dr

# Se~t2 2 t1!

rK Dr

.

(The nodes on the row under consideration have a total of n tokens. Each token
is used at most once in the interval. Choose r of them to transport the packets of
interest. The probability that a token becomes enabled at any fixed time is at
most 1/(Kn).)

Case 2. e is a column edge:

Pr~%0~e, t1 , t2 , r!! # Sn2

r DSt2 2 t1

Kn2 Dr

# Se~t2 2 t1!

rK Dr

.

(There is a total of n2 tokens. Each token is used at most once in the interval.
Choose r of them to transport the packets of interest. The probability that a
token becomes enabled at any fixed time is at most 1/(Kn) and the probability
that the token uses a particular column is 1/n.)

Thus, the probability that there is a row edge e, a t $ 0, and an interval [t0,
t0 1 t 1 d0] # [t, t 1 Kn], such that t 1 d0 packets traverse edge e in that
interval in the wide-channel model is bounded by

2Kn3 O
t$0

S e~d0 1 t!

~d0 1 t 2 1! KD d01t21

# 4Kn3S e

KD d021

# n2a

for K $ e2. (There are Kn possible values for t0 and # 2n2 edges.)
Similarly, the probability that there is a column edge e, a t $ 0, and an

interval [t0, t0 1 t 1 2d0] # [t, t 1 Kn], such that t 1 d0 packets traverse
edge e in that interval in the wide-channel model is bounded by

2Kn3 O
t$0

S e~2d0 1 t!

~d0 1 t 2 1! KD d01t21

# 2Kn3 O
t$0

S 2e

K D d01t

# 4Kn3S 2e

K D d021

# n2a,

provided that K $ 2e2.

Remark 1. It follows (see Leighton [1992, Sect. 1.7.2, Lemma 1.10]) that with
probability at least 1 2 2n2a, for every edge w and time interval I of d0 steps,
there is a step in I in which w is empty.

Next, we bound the probability that any buffer is full in the interval [t, t 1
Kn]. From Remark 1, we can assume that some row edge has q packets in its
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buffer only if there is a window of d0 steps in which some input tries to inject at
least q packets. The probability of this is at most

Kn3S d0

q D S 1

CnD
q

5 O~n2a!

for sufficiently large q.
From Remark 1, we can further assume that a column edge has q packets in its

buffer only if there is a window of d0 steps in which q packets turn at e.
Assuming no row delay of d0 or more, the probability of this is bounded by

Kn3Sn
qD S 2d0

Kn2D q

5 O~n2a!

for sufficiently large q (see Leighton [1992, Sect. 1.7.2, Theorem 1.13]). (The
factor Kn3 bounds the number of (interval I 5 [t1, t2], edge e) pairs. There are
(n

q) choices of token. There is a probability 1/n that its destination uses e. There
is a probability of at most 2d0/(Kn) that it becomes enabled at a time which
means it would cross e during [t1 2 d0, t2] in the wide-channel model.)

This completes the proof of (10).
Taking T 5 3Kn, m 5 1, a 5 b 5 9, a 5 50 and applying Theorem 2.1 we

obtain

THEOREM 6.1. There is a constant C, such that the above algorithm is stable for
any injection rate with expected interarrival time greater than Cn. The expected time
a packet spends in the network is O(n). In the case of geometric interarrival time, the
expected time a packet spends in the system is O(n).

7. Adversarial Model

In order to avoid probabilistic assumptions on the input, Borodin et al. [2001]
defined the adversarial input model. Instead of probabilistic assumptions, restric-
tions are placed on the amount of required traffic through each edge. More
precisely, for an edge e of the network and a time interval I, we let u (e, I)
denote the number of messages arriving during interval I whose input– output
path contains e. An adversary has injection rate a if for all e and I:

u ~e, I! # a uI u, (11)

where uI u is the length of I.
Surprisingly, the main results of this paper can be extended to this model.

7.1. BUTTERFLY WITH CONSTANT INJECTION RATE A AND BOUNDED BUFFERS.
We will show how to extend the result of Section 3 to the adversarial model. We
assume that (11) holds for some (sufficiently small) a . 0.

When a packet arrives it now adds a random offset between 1 and c log n to its
wave number. We route packets in the way previously described. The only issue
is the likelihood of a long delay sequence. As described previously, we have a set
of buffers sj, j [ J and a set of wave numbers W 5 [w, w 1 A log n]. For each
buffer we have a wave number wj [ W, where wj11 # wj and there is a set Pj of
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packets that want to use this edge. Let ^ j be the event: there exists a choice P j [
Pj such that

(i) P j has wave number wj and
(ii) P j [y {P1, P2, . . . , P j21}.

Our assumptions about input rate imply that Pr(^ j) # b 5 a(c 1 A)/c , 1.
More importantly, we have

Pr~^ju^1 , ^2 , . . . , ^j21! # b. (12)

Condition on the occurrence of ^1, ^2, . . . , ^ j21, let P9j 5 Pj\{P1, P2, . . . ,
P j21} be the current set of choices for P j. The choice of wave number offset by
packets is done independently and so the probability of ^ j does not increase.
Inequality (12) is enough to prove the unlikelihood of long delay sequences. The
event %t can be defined in the same way as before. Thus, we prove the following
theorem:

THEOREM 7.1. There is a constant a . 0, such that for any adversary with
injection rate a the system is stable, and the expected time a packet spends in the
system is O(log n).

7.2. BUTTERFLY WITH O(1/log n) INJECTION RATE AND BOUNDED BUFFERS.
Let P be the first packet that takes time D 1 log n to reach its destination after
becoming active at time t. From Maggs and Sitaraman [1992], we know that the
delay tree of P is hit at least D times. We need only consider hits from messages
in the time interval [t 2 D 2 log n, t 1 D 1 log n]. By assumption there are at
most

S ~2D 1 2 log n 1 1!a

log n
DSD

q
1 log nD

such hits. So if D 5 D log n and

2~D 1 1!aSD

q
1 1D , D , (13)

then P cannot be delayed by more than D. Now for small a and large q, D 5 3a
satisfies (13) and we conclude that every packet is delivered in time (1 1
3a)log n.

7.3. BUTTERFLY WITH CONSTANT INJECTION RATE A AND BUFFERS OF SIZE

O(log n). In this case, we will have to use our stability theorem (Theorem 2.1).
Putting p 5 2a, we know that in time interval of length [t, t 1 K log n], no
more than 2aK log n packets will arrive at any input. Also, the existence of a
delay sequence depends only on the priority calculation, since we are guaranteed
that no edge sees more than aK log n packets in the interval (removing the
necessity to prove Theorem 3.2.5 of Leighton [1992].

7.4. MESH WITH INJECTION RATE a/n, a , 1/ 2 AND BOUNDED BUFFERS. This
case is straightforward. The assumption (11) implies that in the wide-channel
model, fewer packets cross an edge e than are required for the first two

348 A. Z. BRODER ET AL.



possibilities of event %t, assuming d0 . 1/(1 2 2a). We can take q 5 d0 since
for every edge e we can argue that in any interval of d0 steps there is a step in
which e is empty.
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