
Received February 18, 2020, accepted February 29, 2020, date of publication March 6, 2020, date of current version March 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2978893

A General Approach to Uniformly Handle
Different String Metrics Based
on Heterogeneous Alphabets
FRANCESCO CAUTERUCCIO 1, ALESSANDRO CUCCHIARELLI2, CHRISTIAN MORBIDONI 2,
GIORGIO TERRACINA1, AND DOMENICO URSINO 2
1Department of Mathematics and Computer Science, University of Calabria, 87036 Arcavacata di Rende, Italy
2Department of Information Engineering, Polytechnic University of Marche, 60121 Ancona, Italy

Corresponding author: Domenico Ursino (d.ursino@univpm.it)

ABSTRACT In the last few years, we have assisted in a great increase of the usage of strings in the most
disparate areas. In the meantime, the development of the Internet has brought the necessity of managing
strings from very different contexts and possibly using different alphabets. This issue is not addressed by the
numerous string comparison metrics previously proposed in the literature. In this paper, we aim at providing
a contribution in this context. In fact, first we propose an approach to measure the similarity of strings based
on different alphabets. Then we show that our approach can be specifically adapted to several classic string
comparison metrics and that each specialization can lead to addressing completely different issues.

INDEX TERMS String metrics, generalized string similarity framework, edit distance, Jaccard distance.

I. INTRODUCTION
Strings, i.e. ordered sequences of symbols, have been widely
investigated in computer science. Indeed, their possible appli-
cations comprise the most disparate areas. For instance, with
suitable semantics, they can be used to support the interaction
and the cooperation of several systems. Research on string
comparison andmatch dates back to 1977 [1] and periodically
has received renewed interest as application areas evolve. For
example, important advancements in the research on string
comparison and match were brought about in code clone
detection [2] in the 90s, and in bioinformatics [3] ten years
later. Furthermore, data provided as streams of strings are
increasingly exploited in modern areas, such as sensor net-
works and IoT contexts [4], and biomedical data analysis [5].

In all these scenarios, the common issue to address consists
of determining how far two strings are correlated and/or
how (dis)similar they are. As a consequence, in past liter-
ature, a large variety of techniques for string comparison
have been proposed. In short, these techniques receive two
strings s1 and s2 and return a value d representing how much
s1 and s2 are (dis)similar based on some metric.

Actually, several (dis)similarity metrics have been pre-
sented in the literature; they greatly depend on the application

The associate editor coordinating the review of this manuscript and

approving it for publication was Noor Zaman .

context they have been thought for [6]. However, this wide set
of metrics share a common principle, i.e. that identical sym-
bols among strings represent identical information, whereas
different symbols introduce some form of heterogeneity.

While this principle is correct in many contexts, it is going
to be questioned in a global scenario, such as the current
one, dominated by the Internet. In fact, data sources and
systems coming from disparate contexts and locations, and
hence characterized by different symbols and alphabets, must
interact with each other.

For instance, consider the following scenario. Let
s1 = AABACCDC and let s2 = 11213343. Any classical
string similarity approach would conclude that s1 and s2
are completely different. However, a human would easily
conclude that the structure underlying these two strings is
identical and that the only difference regards the usage of
different symbols.

This example clearly highlights that, in a global scenario,
it should be possible to compare strings belonging to different
alphabets. Examples of real cases in which this is necessary
are numerous and constantly increasing; think, for instance,
of two data streams returned by two sensors, the former mea-
suring light in the day and the latter measuring temperature in
the day. The values, the scales, and the meaning of these two
sensors are totally different but, generally, there is a corre-
lation between the corresponding measures. This correlation

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 45231

https://orcid.org/0000-0001-8400-1083
https://orcid.org/0000-0003-0244-9322
https://orcid.org/0000-0003-1360-8499
https://orcid.org/0000-0001-8116-4733

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

could not be captured by a data streammanagement approach
based on a classical string comparison method working on
the discretized sensors values. As a further case, assume that
alphabets of two strings have been deliberately modified to
overcome string similarity controls; again, a classical string
comparison approach fails in recognizing this fact.

All the previous considerations lead to the conclusion that a
metric capable of comparing strings with different alphabets
but having a similar structure may be beneficial in several
application contexts [7].

Actually, some approaches to compare strings from differ-
ent alphabets already exist in the literature. However, they
address the slightly different problem of parameterized string
match, looking for a parameterized match of a (short) pattern
in a string. These approaches present some limitations on two
orthogonal aspects, namely: (i) the function used to match
symbols from different alphabets, and (ii) the metric used to
compare strings. In particular, bijection is themost commonly
adopted matching function [7], [8]. However, bijective func-
tions allow only 1-1 matching and, in some cases, this may
be not enough. For example, in the study of remote homol-
ogous proteins [9] (i.e., proteins having a pairwise sequence
identity lower than 25%), it may be necessary to study protein
similarities based on different kinds of amino acid property,
such as chemical behavior or protein profiles, thus resulting in
the necessity to allow many-to-many matches among amino
acids. As a further example, bijective matching functions
between words may miss common situations while com-
paring bilingual text corpora, where different words share
the same meaning; for instance, English words Hello and
Goodbye can be both interchangeably matched with Italian
wordsCiao, Salve, andAddio. As it will be clarified in the fol-
lowing, the approach proposed in this paper tries to overcome
the limitations of bijective matching functions by allowing
many-to-many matches. On the other hand, approaches for
parameterized string match are tailored to specific metrics,
like the Hamming distance (and its variants), the Longest
Common Subsequence, the δγ distance, or similar ones [7].
However, all of them share one common limitation, in that
they are order-preserving comparison metrics, meaning that
subsequent pairs of matched symbols must appear in the
same relative order in both strings. As a consequence of
this fact, they cannot identify similar strings where some
portions have been exchanged. In some contexts, like the
comparison of bilingual text corpora, grammatical rules may
require different orders of corresponding words in a sentence;
for instance, texts ‘‘I like this article’’ and ‘‘Questo articolo
mi piace’’ represent the same sentence, even if word order
is significantly different in each sentence. The adoption of
different string comparison metrics, like the Jaccard distance,
might be more appropriate in this case.

Actually, one of the goals of this paper is to go beyond
classical parameterized string matching. Indeed, once a gen-
eral approach (and a corresponding framework) to manage
strings with different alphabets by means of many-to-many
matching has been defined, it may be interesting to specialize

FIGURE 1. An intuitive example of two matching schema: (a) 1:1
matching; (b) n:m matching.

it to one or more string comparison metrics proposed in past
literature. In this way, if we specialize it to a certain metric
(for instance, edit distance), it can be exploited to address
several application contexts, whereas, if we specialize it to
another metric (say, Jaccard distance), it becomes well suited
to face other application scenarios, and so forth.

In this paper, first, we present an approach to handle
strings belonging to different alphabets (thus addressing
the first form of generalization described above) supporting
many-to-many matching. Then, we show how our approach,
used to implement an ‘‘alphabet aware’’ variant of the clas-
sical Jaccard distance, can effectively address the problem
of sentence alignment in comparable corpora. On the other
hand, modifying the classical edit distance along the guide-
lines underlying our approach and allowing many-to-many
matchings, we show the possibility to handle a complex het-
erogeneous sensor network scenario as well as the possibility
to extract and characterize white matter fiber bundles from a
brain.

Parameterized string match, largely investigated in the past
literature, can be seen as a simplified version of the param-
eterized string comparison problem addressed in this paper.
As a matter of fact, parameterized pattern matching focuses
on answering the question: ‘‘Does the patternP have a param-
eterized match in text T ?’’, whereas our approach aims at
answering the more general question: ‘‘Given a generic string
similaritymetric f , how (dis)similar are texts T1 and T2 using
f and a many-to-many parameterized matching schema?’’.

As we can see below, in our approach a key role is played
by the concept of matching schema. In order to illustrate what
it is and to give an idea of the behavior of our approach,
consider the following example, in which we are interested
in the computation of the (dis)similarity between two strings,
andwe calculate it in two different ways. In fact, we first com-
pute both Hamming and Jaccard distances; then, we carry out
the same computations enhanced with the support of the new
concept of matching schema. Let s1 = AQQkk48zzttQ and
s2 = 01111CXXX0CC be two strings defined over the alpha-
bets 51 = {4,8,A,Q,k,t,z} and 52 = {0,1,C,X}. Let
us denote the Hamming and the Jaccard distances between
s1 and s2 as h(s1, s2) and j(s1, s2), respectively. In this case,
we have that h(s1, s2) = 11 and j(s1, s2) = 1; as a conse-
quence, s1 and s2 should be considered completely dissimilar.
Now, we enhance the computation of these two distances
providing a matching schema. Intuitively, this is a mapping
between 51 and 52 that states which symbols of s1 can be
considered matching with symbols of s2. Figure 1 shows two

45232 VOLUME 8, 2020

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

examples M1 and M2 of matching schemas. Here, a solid
line indicates a match between two symbols. For instance,
M1 indicates that the symbols Q and 1 match. Note that
it is possible to have n-to-m matches; for instance, in M2,
the symbol Q matches the symbols 1 and C.

We now recompute h(s1, s2) and j(s1, s2) by taking match-
ing schemas into account. We denote the computation as
hMi (s1, s2) and jMi (s1, s2), i = 1, 2. Using M1, we obtain
hM1 (s1, s2) = 6 and jM1 (s1, s2) = 0.43. Instead, M2
gives hM2 (s1, s2) = 4 and jM2 (s1, s2) = 0.27.1 Note how
both Hamming and Jaccard distances consistently change
based on the provided matching schemas. In other words,
both distances decrease because of the constraint relaxation
caused by the matching schema. In particular, if the first
matching schema is valid, the Hamming distance states that
s1 and s2 differ for six symbols, while the Jaccard distance
indicates a medium similarity between these two strings.
Instead, if the second matching schema (which is even more
‘‘permissive’’ than the first one) is assumed as valid, then both
the Hamming and the Jaccard distances further decrease w.r.t.
the first matching schema, and this behavior is right because
it reflects the higher ‘‘permissivity’’.

This paper is organized as follows: in Section II, we present
related literature. In Section III, we provide a general descrip-
tion of our approach. In Section IV, we propose a specializa-
tion of our approach to the Jaccard distance and present one
possible application for bilingual sentence alignment in com-
parable corpora. In Section V, we specialize our approach
to the edit distance and present two of the many possible
applications, namely anomaly detection in wireless sensor
networks and extraction of white matter fiber bundles of
brain. Finally, in Section VI, we draw our conclusions and
illustrate some possible developments of our approach.

II. RELATED WORK
String comparison and match has a long history in computer
science literature [1]–[3]. In fact, there is a large number
of applications in which string similarity computation plays
a key role. In [10], a pattern recognition system based on
sequence alignment to detect malware on a mobile oper-
ating system is developed; it focuses on suspicious boot
sequences and compares legitimate and malicious system call
sequences. Time series analysis often exploits string similar-
ity techniques; for example, in [11], an empirical evaluation
of similarity measures for time series classification is pre-
sented. This approach leverages measures such as Dynamic
Time Warping and Edit Distance for Real sequences.

String similarity techniques and their derivatives have been
adopted in different domains. For instance, in pattern recog-
nition, they have been used to perform handwritten charac-
ter recognition [12], to compute time series similarity [13],
to manage graphs [14], [15], and to define kernel functions
for pattern classification [16].

1Details for these computations are given later in the paper.

Surveys on classical string and text similarity approaches
are available (see for instance [17], [18]). However, relevant
literature for the present work regards scenarios where ‘‘exact
match’’ is not enough for string matching. In literature, exact
match has been extended by the notion of parameterized
string matching. Here, a parameterized match is detected by
consistently renaming texts and patterns with the help of a
bijective mapping.
Parameterized string matching received growing interest in

the literature; comprehensive surveys covering several solu-
tions to this problem are available in [7], [19]. A seminal
work on parameterized match is presented in [2]. Here,
the author defines an approach to identify exact and approx-
imate occurrences of a pattern in a text via parameterized
strings, or p-strings. Symbols in p-strings are considered
either constants or parameters. Identity match is replaced by
no-cost substitutions of parameters, using bijective global
transformation functions allowing exact p-matches only. The
work in [20] is based on the approach proposed in [2]; it
introduces an order-preservingmatch, but it limits the number
of mismatches to k .
Some solutions to the parameterized string matching prob-

lem based on bijective matchings focus on efficiency. In par-
ticular, [8] surveys some approaches that exploit q-grams
in order to achieve linear time complexity; this last feature
is also obtained with the support of position heaps [21].
More recently, parameterized matching has been studied also
in its compressed version [22], [23]. In particular, in [22],
the authors aim at finding all of the parameterized matches
between a pattern P and a text T using only P and a com-
pressed version Tc of the text. In [23], compressed parameter-
ized matching performs matching on text and patterns, both
in compressed form, without decompressing any of them; it
exploits Word Based Tagged Code (WBTC) for compression
and Wavelet tree for efficient searching. In the present work
we are not focused on efficiency, but rather on extending the
range of aplications of parameterized string matching.

As for this last aspect, parameterizedmatching has applica-
tions in several areas. It was formerly used in software main-
tenance for code clone detection [24]–[26]; its extensions can
be profitably exploited in image processing and computa-
tional biology [27]–[29], in music information retrieval [30],
and even for solving the graph isomorphism problem [31].
While [2] introduces exact parameterized match, mismatches
are studied in [32]. Here, the authors analyze the problem
of finding all the locations in a string s for which there
exists a global bijection π that maps a pattern p into the
appropriate substring of sminimizing the Hamming distance.
[33] extends the parameterized matching in such a way as
to find approximate parameterized match under the weighted
Hamming distance.

As pointed out in the Introduction, parameterized string
matching approaches based on bijective mappings cover sev-
eral application domains. However, there are cases in which
bijection is not enough. As an example, in biology, it may be
interesting to match amino acid sequences of proteins based

VOLUME 8, 2020 45233

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

on their chemical characteristics. In particular, based on the
propensity of the side chain of a protein to be in contact with
water, amino acids can be classified as hydrophobic (which
have a low propensity to be in contact with water), polar
and charged (which are energetically favorable to the contact
with water). In this context, a bijective matching between
different amino acids may miss some relevant chemical cor-
respondences; more general matching schemas may allow
the accommodations of hydrophobic/polar/charged match-
ings among different amino acids. As another example, in the
context of heterogeneous sensors data streams, similarity
computation using bijective matching introduces several lim-
itations. For instance, battery powered sensors may introduce
slow, but constant, variations in sensed data during time
in different sensors. In this case, many-to-many matching
between sensed data would allow us to recognize important
matches that could bemissed by bijectivematching functions.
As a final example, in comparing texts from two different
languages, bijective match functions may miss common sit-
uations in which different words in the two languages share
the same meaning. One of the objectives of the present paper
is precisely to overcome the limitations of bijective matching
functions.

As a matter of fact, one of the research directions in param-
eterized string comparison relates to the function adopted to
express parameterized match. As an example, injective func-
tions, instead of the bijective ones used in [2], are considered
in [34], whereas generalized function matching applied to
the pattern matching problem is introduced in [35]. In [36],
a frequency-based approach to a many-to-many mapping
function for string alignment can be found; it computes align-
ments between two parameterized strings and gives prefer-
ences to alignments based on the co-occurrence frequency.
The approach proposed in this paper generalizes all matching
functions mentioned above and moves from the parame-
terized string matching problem to the more general prob-
lem of measuring string (dis)similarity with parameterized
matching.

On the other hand, in past literature, several metrics tomea-
sure the similarity between two parameterized strings have
been considered. Among them we cite the Longest Common
Subsequence (LCS), the δγ distance and the Edit/Hamming
distance. The parameterized version of LCS has been studied
in [37], where a proof of NP-Hardness is provided and an
approximate algorithm is proposed. The longest parameter-
ized common subsequence has been studied also in [38],
where a quite different notion of parameterized string is
adopted. Interestingly, LCS allows only insertions and dele-
tions, but no substitutions.

The δγ distance has been designed to compare equal length
integer strings; they are said to δγ -match if their corre-
sponding symbols differ at most by δ, and the sum of such
differences is at most γ . This metric has found interesting
applications in bioinformatics [27] and music information
retrieval [30]. In [39], a parameterized version of the δγ
distance has been presented. In the context of parameterized

Edit/Hamming distance, this problem has been stated as the
identification of a proper transformation script allowing a
parameterized string to be obtained from another. A simpli-
fied version of this problem considers parameterized match-
ing under the Hamming distance, also called parameterized
matching with k mismatches [32], [34].

In [25], the notion of p-edit distance is introduced.
It focuses on the edit distance; allowed edit operations are
insertions, deletions and exact p-matches. Mismatches are not
allowed. Furthermore, two substrings that participate in two
distinct exact p-matches are independent of each other, so that
mappings have local validity over substrings not broken by
insertions and deletions. In particular, within each of these
substrings, the associatedmapping functionmust be bijective.

The work presented in [37] extends the approach proposed
in [25] by requiring the transformation function to have a
global validity; however, it still limits the set of allowed
edit operations (in particular, substitutions are not possible).
Finally, in [36], the full edit distance (allowing insertions,
deletions and substitutions) is considered, but parameterized
symbol matches are detected by considering frequency-based
co-occurrences of symbols in the strings; here NP-Hardness
of the problem is proved and an approximate algorithm is
proposed.

All the metrics mentioned above share a common limita-
tion in that they require that matching symbols preserve their
order of appearance in the corresponding strings. However,
there are common and interesting situations in which the
order of matching symbols can be different in the corre-
sponding strings; think, for instance, of the comparison of
sentences in bilingual text corpora: grammar rules could force
matching words to be positioned in different order within the
sentences. This is another limitation of past approaches, and
our approach aims at proposing a solution also in this setting.

The related literature outlined above, and our consider-
ations about its limitations, point out the wide variety of
metrics, mapping functions and applications of interest in
the research addressed by this paper. One of the main con-
tributions of our work is a general framework which can be
easily specialized to different metrics, covers a wide range
of mapping functions and, consequently, can be applied to
very different contexts with very limited specialization steps.
Furthermore, the proposed approach explores metrics and
mapping functions not considered in past literature, so as to
further extend the range of possible application scenarios.
As a matter of fact, in this paper we show an application
of our framework to the alignment of sentences in bilingual
comparable corpora, to the analysis of sensor networks and to
the extraction of white matter fiber bundles; not all of these
contexts have been previously addressed by parameterized
match literature.

III. DESCRIPTION OF OUR APPROACH
In this section, we provide a general description of our
approach. Its key components are matching schemas and a
generalized metric function. Given two input strings s1 and

45234 VOLUME 8, 2020

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

s2, a set M of possible matching schemas and a generalized
metric function f (·, ·), our approach aims at computing the
minimum value of f (s1, s2) which can be obtained by apply-
ing the different matching schemas ofM.
We start by defining the first core component of our frame-

work, i.e., the matching schema.
Let 51 and 52 be two (possibly disjoint) alphabets of

symbols and let s1 and s2 be two strings defined over51 and
52, respectively. We call length of a string si (i ∈ {1, 2}),
denoted by len(si), the number of its symbols. Furthermore,
for each position 1 ≤ j ≤ len(si), we indicate with si[j] the jth

symbol of si.
Given an alphabet 5 and an integer π such that

0 < π ≤ |5|, we call π-partition a partition 8π of 5 such
that 0 < |φ| ≤ π , for each φ ∈ 8π .
Given two alphabets 51 and 52 and two integers π1 and

π2, we call 〈π1, π2〉-matching schema a function M〈π1,π2〉 :
8
π1
1 × 8

π2
2 → {true, false}, where 8πii (i ∈ {1, 2}) is a

πi-partition of 5i and, for each φv ∈ 8
π1
1 (resp., φw ∈ 8

π2
2),

there is at most one φw ∈ 8
π2
2 (resp., φv ∈ 8

π1
1) such that

M (φv, φw) = true. This means that all the symbols in φv
match with all the ones in φw. M (φv, φw) = false indicates
that all the symbols in φv mismatch with all the ones in φw.
Intuitively, given two strings s1 and s2 defined over 51
and 52, M states which symbols of s1 can be considered
matching with symbols of s2. Many-to-many matches are
expressed with π -partitions, and partitions disallow ambigu-
ous matches.
Example 1: Let51 = {3,K,Z,g} and52 = {0,1,a,x}.

Let s1 = KggZ333Z and s2 = 101xxxaa. For π1 =
π2 = 2, one (of the many) possible matching schema(s) is
{{K, g}-{0, 1}, {3, Z}-{a, x}}. It is worth observing how
the matching schema changes depending on the values of π1
and π2. For instance, for π1 = π2 = 1, a possible matching
schema is {{3}-{1}, {K}-{a}, {Z}-{x}, {g}-{0}}. �

Observe that, given 51, 52, π1 and π2, many possible
matching schemas can be defined. In some contexts, it may
be useful to limit valid matching schemas through some
constraints.

Formally speaking, a constraint χ associated with a match-
ing schema M〈π1,π2〉 is a set of unordered pairs of symbols
(ci, cj), such that ci ∈ 51, cj ∈ 52 and, for each (ci, cj) ∈ χ ,
there exists no pair (φv, φw), φv ∈ 81

π1 , φw ∈ 82
π2 , having

ci ∈ φ1, cj ∈ φ2 and M (φ1, φ2) = true. A 〈π1, π2, χ〉-
constrained matching schema is represented by M〈π1,π2,χ〉
only if χ 6= ∅.
Example 2: Continuing the previous example, if we have

χ = {(K,a), (Z,0), (g,1)}, the matching schema {{K,
g}-{0, 1}, {3, Z}-{a, x}} is no longer valid, whereas the
matching schema {{K, Z}-{1, x}, {3, g}-{0, a}} is a valid
one. �

In the following, whenever it is clear from the context, for
the sake of simplicity, we avoid writing M〈π1,π2,χ〉, and we
simply denote it byM .
The generalizability of the proposed framework is based

on the fact that it can generalize any string metric based

on the assumption of symbol identity. Therefore, in defining
it, we are not interested in a particular function specifica-
tion. To highlight this fact, we formally introduce the con-
cept of generalized metric function. Given a metric function
f (·, ·), based on symbol identity, and given a valid con-
strained matching schema M , the generalized metric func-
tion f M〈π1,π2,χ〉 (·, ·) (or simply f M (·, ·)) is obtained from f (·, ·)
by substituting symbol identity with the symbol matchings
defined inM .

The last definition, necessary before formalizing our
approach, is the one of generalized distance. Given two
strings s1 and s2 over 51 and 52, respectively, and given
the set M of valid constrained matching schemas, the gen-
eralized distance F(s1, s2) between s1 and s2 returns the
minimum value returned by f M (s1, s2) which can be obtained
by taking any possible matching schemaM ofM. Formally:

F(s1, s2) = min
M〈π1,π2,χ〉∈M

{f M (s1, s2)} (1)

We are now able to formalize our approach. It can be
represented as a tuple A consisting of five components:

A = 〈51,52, 〈π1, π2, χ〉,M, f M (·, ·)〉 (2)

Here, 51 and 52 are the alphabets on which the strings
under consideration are defined, 〈π1, π2, χ〉 are the param-
eters necessary to define valid matching schemas, M is the
set of all the valid constrained matching schemas over 51
and52, and f M (·, ·) is the generalized metric function. When
applied on two strings s1 and s2 over the alphabets51 and52,
respectively, A returns the value of F(s1, s2), where F(s1, s2)
is the generalized distance of s1 and s2 over f (·, ·) andM.

IV. SPECIALIZATION OF OUR APPROACH TO THE
JACCARD DISTANCE
In this section, we show how A can be applied to generalize
the Jaccard Distance in such a way that symbol identity
is substituted by many-to-many symbol correlations, where
identifying the best matching schema is part of the problem.
In particular, we next introduce the Multi-Parameterized Jac-
card Distance (MPJD).

A. DESCRIPTION OF THE SPECIALIZATION ACTIVITY
In order to define MPJD, we must preliminarily introduce
some concepts. The Jaccard Distance is defined over sets of
elements and is generally applied to measure (dis)similarities
between texts. In our context, tokens in a text play the role
of the symbols of our framework. Let ti be a text, then
5i consists of the set of tokens of ti. The classical Jaccard
Distance measures the (dis)similarity between two texts t1
and t2 by means of the following formula:

J (t1, t2) =
|51 ∪52| − |51 ∩52|

|51 ∪52|
(3)

Here, ∪ and ∩ are the usual union and intersection oper-
ators on sets. The discriminating factor to compute them is
based on the question: ‘‘Is 51[i] = 52[j]?’’, where 5[i]

VOLUME 8, 2020 45235

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

is the i-th element of 5. In our framework, this question is
substituted by the following one: ‘‘According toM , do tokens
51[i] and 52[j] match?’’.
After this premise, we can introduce the notion of MPJD

between two texts t1 and t2.
Specifically, let t1 and t2 be two texts and let 51 and 52

be the corresponding sets of tokens; let π1 and π2 be two
integers such that 0 < π1 ≤ |51| and 0 < π2 ≤ |52|.
The Multi-Parameterized Jaccard Distance between t1 and
t2 (J〈π1,π2,χ〉(t1, t2), for short) is the minimum distance that
can be obtained with any 〈π1, π2, χ〉-constrained matching
schema. Formally:

AJ = 〈51,52, 〈π1, π2, χ〉,M,JM (·, ·)〉 (4)

and

FJ (t1, t2) = J〈π1,π2,χ〉(t1, t2) = min
M〈π1,π2,χ〉∈M

{JM (t1, t2)}

(5)

where J (·, ·) is the classical Jaccard distance.
Now, while for the case π1 = π2 = 1 the semantics

of the union and the intersection operators when using our
framework is obvious, since each element of the first set
matches with at most one element of the second set, some
considerations must be drawn when πi = 2 or higher. In fact,
in this case, one element of the first set (resp., one element of
the second set) might matchwithmore elements of the second
set (resp., more elements of the first set). In order to better
understand this fact, consider the following example. Let
51 = {A,B,C} and let 52 = {1, 2}. For π1 = π2 = 1,
a possible matching schema is {{A}-{1}, {B}-{2}}
and, consequently, we can use either A or 1 (resp., either
B or 2) when expressing their identity in51∪52. In particu-
lar,51∪52 = {{A|1}, {B|2}, {C}}, and, thus, |51∪52| = 3;
similarly, 51 ∩ 52 = {{A|1}, {B|2}}, and |51 ∩ 52| = 2.
Now, if π1 = π2 = 2, a possible matching schema is
{{A,B}-{1,2}}, meaning that we can use both {A|1} and
{A|2} (resp., {B|1} and {B|2}) to represent them in the union
set. As a consequence, we can assume that 51 ∪ 52 =

{{A|1}, {A|2}, {B|1}, {B|2}, {C}}, and, thus, |51 ∪ 52| = 5;
similarly, 51 ∩ 52 = {{A|1}, {A|2}, {B|1}, {B|2}}, and
|51 ∩52| = 4.
Actually, in real cases, the extension presented above for

the Jaccard distance, when applied to a single pair of texts
and without constraints on the matching schemas, may have
a limited relevance. In fact, since the Jaccard distance is
based only on the presence of tokens in the texts, without
considering their relative positions or frequency, the obvious
matching schema that minimizes the distance is the one that
matches as many tokens as possible. Consequently, theMPJD
would depend only on the number of tokens in the text.
In particular, every pair of texts with the same number of
tokens would share the same distance, independently of their
contents and structures. A much more interesting scenario
arises when we want to compare several pairs of texts to

determine the best commonmatching schema that minimizes
some objective function defined on the overall set of pairs.
This further extension can be simply obtained in our frame-

work by extending F(·, ·) in such a way as to handle sets of
elements, instead of single strings/texts.

As an example, let T1 and T2 be two ordered sets of texts;
if we want to obtain the minimum average Jaccard distance
between the pairs of texts in the same position in T1 and T2,
using a common matching schemaM , the function F(·, ·) can
be modified as follows:

FJ (T1,T2)

= J〈π1,π2,χ〉(T1,T2)
= min

M〈π1,π2,χ〉∈M
{avg{JM (t1, t2)|∀i, t1 = T1[i], t2 = T2[i]}}

(6)

In this framework, even more complex objective functions
can be accommodated. They may find interesting applica-
tions in several contexts. In particular, let T1 and T2 be two
sets of texts; we might be interested in determining the best
pairs of matching texts between T1 and T2, regardless of their
position in T1 and T2, based on their dissimilarity. Determin-
ing the best pairs of matches can be obtained by running
a minimum weighted bipartite matching algorithm (mwbm,
for short). In more detail, let M be a matching schema; a
complete bipartite graph G can be built from T1 and T2 by
introducing one node for each text in T1 and T2. G contains
an arc between each ti ∈ T1 and tj ∈ T2 and the weight
of this arc is set to JM (ti, tj). The application of a function
mwbmJM (T1,T2) that computes the mwbm over this graph,
would then find the best pairs of matching texts allowing us
to obtain, overall, the minimum Jaccard distances between
them, given a matching schemaM .
In order to determine the best pairs of matching texts over

all possible matching schemas, F(·, ·) can be extended as
follows:

FJ (T1,T2) = J〈π1,π2,χ〉(T1,T2)
= min

M〈π1,π2,χ〉∈M
{mwbmJM (T1,T2)}. (7)

B. APPLICATION TO SENTENCE ALIGNMENT IN
BILINGUAL COMPARABLE CORPORA
In this section, we show how the MPJD, discussed in detail
in the previous section, can be applied to the problem of
aligned sentence identification in comparable corpora, and
we present the results of some experiments carried out in
order to check the effectiveness of this measure. To the best of
our knowledge, this is the first attempt to apply parameterized
matching in such a context.

1) BACKGROUND
According to [40], comparable corpora are defined as col-
lections of documents that are comparable in content and
form in various degrees and dimensions. This definition also
includes parallel multilingual corpora, i.e. sets of pairs of

45236 VOLUME 8, 2020

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

multilingual documents that are translations of each other
(with full sentences alignment). Parallel corpora are valu-
able resources both in language engineering and in linguistic
research areas. In the former case, they are widely used as
training and/or test data in statistical machine translation [41]
and in cross-lingual retrieval methods [42]; in the latter case,
they are the basis of inter-linguistic analysis and language
comparison [43].

Many approaches to bilingual sentence alignment in com-
parable corpora are based on the idea of performing raw
sentence translations, using a bilingual lexicon, and then
measuring token-based similarity among sentences (see, for
instance, [44]). In [45], the authors propose an approach
to estimate cross-lingual document similarity and to gener-
ate dictionaries with comparable corpora. This approach has
two main goals, namely bilingual dictionary generation and
cross-lingual similarity estimation. To reach these objectives,
it exploits kernel approximation on word embeddings, which
are then used to estimate the cross-lingual document similar-
ity. In a recent challenge focusing on the task of extracting
parallel sentences from comparable corpora [40], the best
approach, described in [46], is based on learning a bilingual
dictionary (using a well known tool, i.e., GIZA++) and
then using bidirectional Jaccard index to measure similarity
among translated sentences. This work extends the STACC
approach [44], [47] and outperforms methods based on bilin-
gual neural word embeddings [48] that were considered,
in recent literature, the best ones for this task. A similar idea is
used in context-based similarity approaches (e.g. [49]) where
words are represented by their contexts (co-occurring words)
in the source and target languages. A bilingual dictionary
is used to project terms from one language to the other,
and similarity scores (e.g. cosine and Jaccard distances) are
used to find the best alignment. It is worth pointing out that,
in general, the best performing approaches are the hybrid
ones, combining multiple features, such as sentence length,
distance among sentences to be aligned, and so on. String
similarity metrics are often used in such methods. For exam-
ple, in [50], variants of the edit distance are applied to derive
bilingual token alignments and Text Entailments (TE) within
a monolingual corpus. This allows sentences to be clustered
based on their meaning and, in turn, facilitates the sentence
alignment task [51].

2) BILINGUAL SENTENCES COMPARISON
The core of our approach is the comparison between two sen-
tences extracted from an English-Italian (en-it) comparable
corpus. Let us introduce our method with an example, by con-
sidering two scenarios: in the former one, we compare the two
sentences by using matches between en-it tokens included
only in an input dictionary; in the latter one, we compare the
two sentences by using matches included both in the input
dictionary and in a matching schema.

Let Sen and Sit be the two sentences, where Sen (resp. Sit)
is the English (resp. Italian) one, and Sit (resp., Sen) is the
translation of Sen (resp., Sit). The input dictionary D contains

TABLE 1. Lemmas {ten}-{tit} present in D.

the pairs {ten}-{tit} such that ten (resp. tit) is an English (resp.
Italian) token, and tit (resp., ten) is the translation of ten (resp.,
tit). Thus, {ten}-{tit} is a matching.
For instance, assume that the two sentences Sen and Sit are:

Sen : If the House agrees, I shall do as
Mr Evans has suggested.

Sit : Se l’Assemblea è d’accordo seguirò il
suggerimento dell’onorevole Evans.

Now, we compare the two sentences in the first scenario,
in which only the input dictionary D is used. Table 1 shows
the matches inD appearing in Sen and Sit. Here, only matches
in D concur to the computation of the distance: the identity
between symbols is exclusively denoted by pairs present
in D.

In the second scenario, suppose we have the following
matching schema, inferred by the application of our tech-
nique:

M1 =

{{suggested}-{suggerimento}, {Mr}-{onorevole},
{I}-{seguirò}.{House}-{Assemblea}}.

By exploiting both the matches in D and the ones in M1,
we observe that the Jaccard distance between Sen and Sit
would decrease because of a higher number of matches
between symbols than in the first scenario. It is worth pointing
out that M1 does not carry any semantic information related
to contained matches; for instance, the pair {i}-{seguirò}
does not represent a valid match from a linguistic point of
view, although it concurs as a valid match to the computation
of the distance between Sen and Sit. However, when a large
set of sentences in a comparable corpus is analyzed through
our method, pairs of tokens frequently occurring together
in aligned sentences will be preferred because, overall, they
will allow lower Jaccard distances in the minimum weighted
bipartite matching.

Summarizing, the application of our approach to bilingual
sentences alignment in comparable corpora is carried out
as follows. Given Ten and Tit , the sets of sentences to be
aligned and an input dictionary D, the application of FJ on
Ten and Tit with the minimum weighted bipartite matching
yields the pairs of sentences that should be considered one
the translation of the other. Setting the parameters π1 and
π2 to 0 implies that only the dictionary D is exploited to
compute the Jaccard distance. Instead, setting π1 and π2 to
values higher than 0 activates a sort of dictionary enrichment
through our approach, which determines the best matching
schemas.

VOLUME 8, 2020 45237

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

C. EXPERIMENTS
The aim of our experiments is to show how the MPJD can be
effectively applied to compare bilingual sentences. We start
using an existing bilingual dictionary as the only source of
matches between a subset of word lemmas in the source lan-
guage and the corresponding lemmas in the target language.
Then, we show that, by using MPJD to automatically deduce
a matching schema (i.e., by adding matches not present in
the original dictionary), the performances of the unsupervised
sentence alignment increase.

1) TEST CORPORA AND DICTIONARY
In order to test our approach, we created a set of comparable
corpora starting from the Europarl parallel corpora.2 This is
a set of parallel documents in the 21 European languages
extracted from the proceedings of the European Parliament
Sessions [52], which is widely used in the automatic trans-
lation research area. For our experiments, we focused on the
English-Italian language-pair (en-it). To obtain a comparable
pair of documents from the parallel corpus, we defined a
source document by randomly selecting a set S of sentences
from Europarl and we paired it with a target document T
containing both sentences being translations of the source and
sentences representing noise. To test the effectiveness of the
parameterized string comparison in computing the Jaccard
similarity in different conditions, we generated 8 different
comparable pairs. All the sources have the same value as S,
whereas the related targets differ in T (we use 0.6, 1 and 1.4 as
values for the T/S ratio), as well as in the ratio between the
sentences that are actually translations of sentences in the
source, Ts, and noise, Tn (1, 2.5 and 10 for signal-to-noise
ratio SNR: Ts/Tn).
In Table 2 we list the characteristics of the 8 generated

corpora. For example, in the corpus C1, we have a target
smaller than the source and a number of aligned sentences
equal to the number of noisy ones (600); in C6, the target size
is equal to the source size; the corpus contains 1819 aligned
sentences and 181 noisy ones, Finally, in C8 the target corpus
is greater than the source and contains the translation of all the
source sentences. The 8 different corpora structures, obtained
by using the selected parameters values, match with a good
approximation the ones of the corpora commonly used in
real alignment tasks [53]. Note that when T/S is set to 1.4,
the maximum possible value of S/N is 2.5.
The English-Italian dictionary used in our experiment is

the one available from the Apertium project.3 As stated in the
documentation, this dictionary was extracted from Europarl
corpus using the popular GIZA++ tool and contains corre-
spondences between about 22000 Italian and English lem-
mas.

Before using our test corpora in the experiments, we per-
formed some simple, pretty standard pre-processing. In par-
ticular, we removed the empty lines in the original Europarl

2http://www.statmt.org/europarl/
3https://github.com/apertium/apertium-en-it/

TABLE 2. Overview of the generated comparable corpora.

TABLE 3. Results of the sentences alignment experiments under different
conditions.

FIGURE 2. Average Precision, Recall and F1-score in the three
experimental settings (s1, s2 and s3).

corpora and we replaced upper-case letters at the beginning
of each sentence with the corresponding lower-case ones.
Then, we replaced each word with the corresponding lemma.
This is a mandatory step in order to correctly match dictio-
nary entries. For this purpose, we used the TreeTagger tool,4

described in [54] and [55].
The Apertium it-en dictionary provides a partial, but rela-

tively good, coverage of the lemmas used in our test corpora.
In fact, on average, it covers about 75% of the lemmas appear-
ing in the English documents and about 66% of the lemmas
in the Italian ones.

2) RESULTS AND DISCUSSION
In Table 3, we summarize the results of our experiments.
For each document pair, we measure the Precision, as the
fraction of sentence pairs aligned by our method that are
really translations of each other, the Recall, as the fraction
of real translations that are correctly detected by our method,
and the F1-score, combining Precision and Recall using the
harmonic mean.

4http://www.cis.uni-muenchen.de/vschmid/tools/
TreeTagger/

45238 VOLUME 8, 2020

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

For each corpus, we ran experiments using MPJD with
three different settings, labeled as s1, s2 and s3 (see Table 3).
In the setting s1, we used only matches directly provided
by the bilingual dictionary, whereas in s2 and s3 we consid-
ered additional matches between Italian and English lemmas.
More precisely, in s2 we allowed only 1:1 matches, whereas
in s3 we allowed 2:2 matches as well. With respect to the
MPJD definition given in the previous section, s2 corresponds
to the case π1 = π2 = 1 and s3 to the case π1 = π2 = 2.
From the analysis of Table 3 we can observe that,

as expected, when the percentage of noisy sentences is high
(e.g. C1, C4 and C7) the alignment task is harder to accom-
plish; by contrast, when noisy sentences are rare (as in C3,
C6 and C8), we obtained better performances. As the dictio-
nary provides a relatively good coverage of lemmas, perfor-
mances with the s1 settings are already reasonable, showing a
F1-score between 0.70 and 0.72. Figure 2 illustrates the
trend of the average Precision, Recall and F1-score across the
three experimental settings (s1, s2 and s3). The results clearly
evidence that MPJD increases both Precision and Recall in
all considered corpora. Inferred 1:1 matches (s2) increase
F1-score by 2 to 5 percentage points, and even better results
are obtained when inferring 2:2 matches, in which a value
of 0.78 is reached. By averaging the performances over all
the corpora, we can see that our approach increases F1-score
by 6%, which we consider an interesting result.

It is worth pointing out, again, that our approach does
not take semantic or linguistic aspects of words into account
because its aim is not to augment the original bilingual dic-
tionary. While we cannot expect all inferred matches to be
correct translations of lemmas, by looking at the resulting
alignments we notice that many of them do in fact make
sense, proving that our approach is really able to capture some
of the corresponding terms of different languages.

In Table 4, some randomly extracted alignment examples
are shown. Within each sentence, the same superscript is
associated with English/Italian lemmas that were not paired
in the original dictionary and were inferred thanks to our
approach. Bold and underlined lemmas represent correct
translations, or words having a close meaning in the two
languages, while bold ones (without underline) represent
matches having no clear meaning. We can see that lemmas
such as understandable and comprensibile, or confine and
limitare, are exact translations. Other terms, like nationaliza-
tion and rinazionalizzazione, or test and vaglio, clearly have
a similar meaning.

An example of a 2:2 match is present in the second
sentence: (design, make) is matched with (inteso, rendere).
In this context, twomulti-word expressions (designed tomake
and inteso a rendere), which have the same meaning, are
captured. Other 2:2 matches, where the same English term
is matched with different Italian terms in different sentences
(an vice versa), appear in the results. Due to space constraints,
they are not shown in Table 4.

As a final consideration, we want to highlight how, in abso-
lute terms, the performances of our approach for sentence

FIGURE 3. Average Precision, Recall and F1-score for each method
indicated in Section IV-D.

alignment is barely comparable with the state-of-the-art sys-
tems mentioned in the literature (see, for example, [46]). This
result was expected, given that we used an approach founded
on a single metric, i.e., the Jaccard distance, whereas the most
effective systems for sentence alignment are based on mul-
tiple combined metrics. However, applying it to the specific
domain of aligned corpora construction, the general approach
to compute string similarity based on different alphabets has
proven to be effective in implementing one of themost widely
used measure.

D. COMPARISON OF MPJD WITH OTHER METRICS
In this section we compare the performance of MPJD with
other existing metrics based on parameterized string similar-
ity. In particular, as pointed out in [7] parameterized string
matching has been exploited in some approaches to com-
pute the similarity between pairs of parameterized strings.
Specifically, extensions of the Hamming distance [32], [34],
the Edit distance [25], [36], the δγ distance [30], and the
LCS [37], [38], [56] have been investigated. In our experi-
ments we do not consider the approaches based on the δγ
distance, because they are tailored to numerical sequences,
and approaches based on theHamming distance, because they
require that compared strings are of equal lengths. Therefore,
we focus on the parameterized edit distance, as computed
in [25], which is based on bijective parameterized matches,
and its variant proposed in [36], where many-to-many param-
eterized matches are identified, based on the frequency of
co-occurring symbols. Moreover, we consider the Longest
Common Parameterized Distance, as computed in [37].

In order to carry out a fair comparison, we adapted the
compared methods in order to treat each lemma as a symbol;
moreover, we considered matches directly provided by the
bilingual dictionary as known matches for all tested methods.
We tested MPJD with the setting s3 introduced above. For
each method we computed the average Precision, Recall and
F1-Score on the corpora presented in the previous section.
Results are shown in Figure 3.

This figure shows that the approach described in [36] is
the worst performing one. As a matter of fact, even if it
allows many-to-many matches, these are inferred through the
frequency of co-occurring symbols; clearly, the same lemma
does not appear frequently in a sentence and, consequently,
inferred matchings are not meaningful in this application

VOLUME 8, 2020 45239

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

TABLE 4. Examples of sentences aligned by our method; inferred matching lemmas are denoted by the same superscript.

context. Actually, the approach of [36] was conceived for
the analysis of long sequences of data. The approach of [25]
performs slightly better than the one of [36], but the perfor-
mances are still quite low. In this case, the main motivation
relies on the edit distance, which penalizes distant matching
symbols, because deletions have a cost in terms of com-
puted distance.

The Longest Common Parameterized Distance [37]
resulted to be the best performing one among the competitors
of MPJD; this can be motivated by the fact that deletions are
not penalized. However, since LCS requires that the relative
order of matching symbols is preserved, it misses all those
cases in which word order in the two languages is different
due to grammar rules.

Finally, it is worth observing also that, while the
approaches of [25], [36], [37] identify symbol matches
locally for each pair of sentences, MPJD finds a matching
schema that maximizes matches among lemmas in the entire
corpus, possibly allowing many-to-many matches. Further-
more, MPJD does not consider the relative order of lemmas
in the sentences and, consequently, it is able to handle word
order swaps caused by the different grammar rules of the
two languages. These are themainmotivations underlying the
significantly higher performance of MPJD with respect to the
other tested approaches. The results obtained substantiate the
usefulness of a framework in which many-to-many matches
are allowed and almost any comparison metric can be easily
accommodated in order to fit the application context at hand.

V. SPECIALIZATION OF OUR APPROACH TO THE EDIT
DISTANCE
In this section, we show howA can also be applied to general-
ize the edit distance. Again, also in this task, symbol identity
is substituted by many-to-many symbol correlations, where
identifying the best matching schema is part of the problem.
As a result of this task, we introduce the Multi-Parameterized
Edit Distance (MPED).

A. DESCRIPTION OF THE SPECIALIZATION ACTIVITY
1) DEFINITION OF MPED
In order to define MPED, we must preliminarily introduce
some concepts. First of all let us briefly recall the definition
of Edit Distance.

In its simplest form, the edit distance between two strings
s1 and s2 is the minimum number of edit operations (inser-
tions, deletions or substitutions) of single characters needed
to transform s1 into s2, where each operation has a cost equal
to 1 [57]. This version of the edit distance is also referred to
as Levenshtein distance. A basic algorithm for edit distance
computation exploits a dynamic programming approach; in it,
the choice of the edit operation is carried out by a recurrence
formula, where the discriminating factor is based on the
question ‘‘Is s1[i] = s2[j]?’’. Intuitively, in our framework,
this question is substituted by ‘‘According to M , do symbols
s1[i] and s2[j] match?’’.

In more detail, let s1 and s2 be two strings defined over
the alphabets 51 and 52. Let − be a symbol not included
in 51 ∪ 52. Then, a string s̄i over 5i ∪ {−}, i ∈ 1, 2, is a
Indel-Edit of si if si can be obtained from s̄i by deleting all
the occurrences of −. The set of all the possible Indel-Edits
of si is denoted by IE(si).
An alignment of the strings s1 and s2 is a pair 〈s̄1, s̄2〉,

where s̄1 ∈ IE(s1), s̄2 ∈ IE(s2) and len(s̄1) = len(s̄2).
Here, − is meant to denote an insertion/deletion operation
performed on s1 or s2.
Let 〈s̄1, s̄2〉 be an alignment for s1 and s2, letM〈π1,π2,χ〉 be

a 〈π1, π2, χ〉-constrained matching schema over π -partitions
8
π1
1 and 8π22 and the set of constraints χ , and let j be a

position with 1 ≤ j ≤ len(s̄1) = len(s̄2). We say that 〈s̄1, s̄2〉
has a match at j if:

• s1[j] ∈ φv, s2[j] ∈ φw, φv ∈ 8
π1
1 , φw ∈ 8

π2
2 , and

• M〈π1,π2,χ〉(φv, φw) = true.

The distance between s̄1 and s̄2 under M〈π1,π2,χ〉 denotes
the number of positions in which the pair 〈s̄1, s̄2〉 does not
have a match.
We are now able to introduce the notion of Multi-

Parameterized Edit Distance (hereafter, MPED) between two
strings s1 and s2.
Specifically, let π1 and π2 be two integers such that 0 <

π1 ≤ |51| and 0 < π2 ≤ |52|; the Multi-Parameterized
Edit Distance between s1 and s2 (L〈π1,π2,χ〉(s1, s2), for short)
is the minimum distance that can be obtained with any
〈π1, π2, χ〉-constrained matching schema and any alignment

45240 VOLUME 8, 2020

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

〈s̄1, s̄2〉. Formally:

AL = 〈51,52, 〈π1, π2, χ〉,M,LM (·, ·)〉 (8)

and

FL(s1, s2) = L〈π1,π2,χ〉(s1, s2)
= min

M〈π1,π2,χ〉∈M
{LM (s1, s2)} (9)

where L(·, ·) is the classical edit distance.
Analogously to what we have seenwithMPJD, alsoMPED

has several applications. Among them we cite the anomaly
detection in heterogeneous Wireless Sensor Networks
(i.e., networks where the involved sensors might be het-
erogeneous and correlation between mate sensors might be
unexpected) and the extraction of White Matter fiber-bundles
from the high number of streamlines generated by a tractog-
raphy algorithm. The interested reader is referred to [4] for
the former application and to [5] for the latter one. In the
former application, MPED allowed us to deal with hetero-
geneous sensor networks, where classical anomaly detection
approaches were not perfectly suited, due to the heterogeneity
of the data and the kind of anomalies addressed. In particular,
the usage of MPED made possible to identify long-term
anomalies, difficult to be addressed by classical machine
learning tools. Furthermore, the possibility to use MPED to
compare heterogeneous data streams allowed us to reduce the
computational overhead. In the latter one, MPED allowed
us to extract and characterize White Matter fiber-bundles.
In particular, this metric, coupled with a novel string-based
representation of White Matter fibers, effectively reduced
the complexity of the problem at hand. Indeed, thanks
to it, the extraction and characterization of White Matter
fiber-bundles reduces to a string extraction and comparison
problem.

2) EXAMPLE
Let s1 = QQQx88yy8QQ and s2 = KKHbEbbHEE be two
strings, from which we draw the alphabets51 = {8,Q,x,y}
and 52 = {E,H,K,b}. For π1 = π2 = 1, the best
alignment 〈s̄1, s̄2〉 that can be computed is obtained by the
matching schema {{8}-{E}, {Q}-{K}, {x}-{b}, {y}-{H}}.
We visualize the alignment by drawing s1 and s2 one below
the other, and we add a star (*) in a third row for each position
in which they do not have a match:

s1 : QQQx88yy8QQ→ QQQx88yy8QQ

s2 : KKHbEbbHEE → KKHbEbbHE-E

* ** **

By counting the star symbols, we obtainL〈1,1〉(s1, s2) = 5.
It is worth observing how this approach works properly even
in the cases 51 ∩52 = ∅ and len(s1) 6= len(s2).

Furthermore, if we set π1 = π2 = 2, the matching schema
{{8, y}-{H, b}, {Q, x}-{E, K}} allows us to obtain another
alignment, that is

s1 : QQQx88yy8QQ→ QQQx88yy8QQ

s2 : KKHbEbbHEE → -KKHbEbbHEE

* * *

which gives L〈2,2〉(s1, s2) = 3, that corresponds to a lower
distance.

As previously pointed out, sometimes there may be some
constraints over symbols, specifying that some matches are
not possible. In this example, suppose we have the constraint
χ = {〈Q,K〉}. For π1 = π2 = 1, the best alignment 〈s̄1, s̄2〉
is:

s1 : QQQx88yy8QQ→ QQQx8-8yy8QQ

s2 : KKHbEbbHEE → --KKHbEbbHEE

*** **

that results in L〈1,1,χ〉(s1, s2) = 5 and sets Q and K to not
match. Indeed, the optimal matching schema is now given by
{{8}-{H}, {Q}-{E}, {x}-{K}, {y}-{b}}.

VI. CONCLUSION
In this paper, we have proposed an approach to measure
the (dis)similarity degree of strings belonging to different
alphabets. In order to show that our approach is general and
can be adapted to different metrics, we have illustrated its
specialization to two metrics, namely the Jaccard and the
Edit distances. We have shown how, thanks to the generalized
Jaccard distance, it is possible to address the problem of
transforming comparable corpora to parallel ones through
an alignment process. Then, to illustrate how it can lead to
address completely different issues, we have shown how,
thanks to the generalized Edit distance, it is possible to handle
a complex heterogeneous sensor network scenario and, also,
to extract and characterize whitematter fiber bundles of brain.

As far as future work is concerned, the generalization of
other metrics can pave the way to a wide variety of new
application scenarios, such as air flow or weather perturba-
tion clustering, discovery of frequent or specific patterns on
multi-dimensional data, and so on. Other interesting research
lines regard the multiple alignment problem, extended to
parameterized strings, or the comparison of multivariate time
series, where several heterogeneous variables are monitored
simultaneously.

REFERENCES
[1] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, ‘‘Fast pattern matching in

strings,’’ SIAM J. Comput., vol. 6, no. 2, pp. 323–350, Jul. 1977.
[2] B. Baker, ‘‘A theory of parameterized pattern matching: Algorithms and

applications (extended abstract),’’ in Proc. Annu. ACM Symp. Theory
Comput., 1993, pp. 71–80.

[3] G. Sandve and F. Drabløs, ‘‘A survey of motif discovery methods in an
integrated framework,’’ Biol. Direct, vol. 1, no. 11, pp. 1–16, Apr. 2006.

[4] F. Cauteruccio, G. Fortino, A. Guerrieri, A. Liotta, D. C. Mocanu, C. Perra,
G. Terracina, andM. T. Vega, ‘‘Short-long term anomaly detection in wire-
less sensor networks based on machine learning and multi-parameterized
edit distance,’’ Inf. Fusion, vol. 52, pp. 13–30, Dec. 2019.

[5] F. Cauteruccio, C. Stamile, G. Terracina, D. Ursino, and
D. Sappey-Marinier, ‘‘An automated string-based approach to extracting
and characterizing white matter fiber-bundles,’’ Comput. Biol. Med.,
vol. 77, pp. 64–75, Oct. 2016.

VOLUME 8, 2020 45241

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, ‘‘Duplicate record
detection: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 19, no. 1,
pp. 1–16, Jan. 2007.

[7] J. Mendivelso, S. V. Thankachan, and Y. Pinzón, ‘‘A brief history of param-
eterized matching problems,’’Discrete Appl. Math., vol. 274, pp. 103–115,
Mar. 2020.

[8] R. Singh, D. Rai, and R. Prasad, ‘‘A review on parameterized string
matching algorithms,’’ J. Inf. Optim. Sci., vol. 39, no. 1, pp. 275–283,
Nov. 2017.

[9] H. Rangwala, ‘‘A survey of remote homology detection and fold recogni-
tion methods,’’ in Introduction to Protein Structure Prediction: Methods
and Algorithms, 2010, pp. 165–194.

[10] J. M. Vidal, M. A. S. Monge, and L. J. G. Villalba, ‘‘A novel pattern
recognition system for detecting Android malware by analyzing suspicious
boot sequences,’’ Knowl.-Based Syst., vol. 150, pp. 198–217, Jun. 2018.

[11] J. Serrà and J. L. Arcos, ‘‘An empirical evaluation of similarity measures
for time series classification,’’ Knowl.-Based Syst., vol. 67, pp. 305–314,
Sep. 2014.

[12] J. Oncina and M. Sebban, ‘‘Learning stochastic edit distance: Application
in handwritten character recognition,’’ Pattern Recognit., vol. 39, no. 9,
pp. 1575–1587, Sep. 2006.

[13] D. Folgado, M. Barandas, R. Matias, R. Martins, M. Carvalho, and
H. Gamboa, ‘‘Time alignment measurement for time series,’’ Pattern
Recognit., vol. 81, pp. 268–279, Sep. 2018.

[14] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke, ‘‘Approx-
imation of graph edit distance based on Hausdorff matching,’’ Pattern
Recognit., vol. 48, no. 2, pp. 331–343, Feb. 2015.

[15] J. Lerouge, Z. Abu-Aisheh, R. Raveaux, P. Héroux, and S. Adam, ‘‘New
binary linear programming formulation to compute the graph edit dis-
tance,’’ Pattern Recognit., vol. 72, pp. 254–265, Dec. 2017.

[16] M. Neuhaus and H. Bunke, ‘‘Edit distance-based kernel functions for
structural pattern classification,’’ Pattern Recognit., vol. 39, no. 10,
pp. 1852–1863, Oct. 2006.

[17] W. H. Gomaa and A. A. Fahmy, ‘‘A survey of text similarity approaches,’’
Int. J. Comput. Appl., vol. 68, no. 13, pp. 13–18, Apr. 2013.

[18] M. Yu, G. Li, D. Deng, and J. Feng, ‘‘String similarity search and
join: A survey,’’ Frontiers Comput. Sci., vol. 10, no. 3, pp. 399–417,
Jun. 2016.

[19] J. Mendivelso and Y. Pinzón, ‘‘Parameterized matching: Solutions and
extensions,’’ in Proc. Prague Stringology Conf., 2015, pp. 118–131.

[20] P. Gawrychowski and P. Uznanski, ‘‘Order-preserving pattern matching
with k mismatches,’’ in Proc. 25th Annu. Symp. Combinat. Pattern Match-
ing (CPM), Moscow, Russia, vol. 8486. Berlin, Germany: Springer, 2014,
pp. 130–139.

[21] D. Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara,
Position Heaps for Parameterized Strings, Wadern, Germany: Dagstuhl,
2017, pp. 8:1–8:13.

[22] R. Beal and D. Adjeroh, ‘‘Compressed parameterized pattern matching,’’
Theor. Comput. Sci., vol. 609, pp. 129–142, Jan. 2016.

[23] R. Khetan, S. Agarwal, and R. Prasad, ‘‘An efficient approach towards
compressed parameterized word matching using wavelet tree,’’ J. Inf.
Optim. Sci., vol. 37, no. 2, pp. 285–301, Apr. 2016.

[24] T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,’’
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul. 2002.

[25] B. S. Baker, ‘‘Parameterized diff,’’ in Proc. Annu. ACM-SIAM Symp.
Discrete Algorithms, Baltimore, MD, USA, 1999, pp. 854–855.

[26] R. Prasad and S. Agarwal, ‘‘Parameterized string matching: An application
to software maintenance,’’ SIGSOFT Softw. Eng. Notes, vol. 35, no. 3,
pp. 1–5, 2010.

[27] J. Mendivelso, C. Pino, L. Ni no, and Y. Pinzón, ‘‘Approximate abelian
periods to find motifs in biological sequences,’’ in Proc.11th Int. Meeting
Comput. Intell. Methods Bioinf. Biostatistics (CIBB), vol. 8623, 2014,
pp. 121–130.

[28] R. Beal and D. Adjeroh, ‘‘Efficient pattern matching for RNA secondary
structures,’’ Theor. Comput. Sci., vol. 592, pp. 59–71, Aug. 2015.

[29] R. Singh, D. Rai, R. Prasad, and R. Singh, ‘‘Similarity detection in biologi-
cal sequences using parameterized matching and Q-gram,’’ in Proc. Recent
Adv. Eng., Technol. Comput. Sci. (RAETCS), Allahabad, India, Feb. 2018,
pp. 1–6.

[30] E. Cambouropoulos, M. Crochemore, C. Iliopoulos, L. Mouchard, and
Y. Pinzon, ‘‘Algorithms for computing approximate repetitions in musi-
cal sequences,’’ Int. J. Comput. Math., vol. 79, no. 11, pp. 1135–1148,
2002.

[31] J. Mendivelso, S. Kim, S. Elnikety, Y. He, S. Hwang, and Y. Pinzón, ‘‘Solv-
ing graph isomorphism using parameterized matching,’’ in Proc. 20th Int.
Symp. String Process. Inf. Retr. (SPIRE), Jerusalem, Israel, vol. 8214.
Berlin, Germany: Springer, 2013, pp. 230–242.

[32] C. Hazay, M. Lewenstein, and D. Sokol, ‘‘Approximate parameterized
matching,’’ ACM Trans. Algorithms, vol. 3, no. 3, pp. 29–es, Aug. 2007.

[33] S. Das and K. Kapoor, ‘‘Weighted approximate parameterized string
matching,’’ AKCE Int. J. Graphs Combinatorics, vol. 14, no. 1, pp. 1–12,
Apr. 2017.

[34] A. Apostolico, P. L. Erdös, and M. Lewenstein, ‘‘Parameterized matching
with mismatches,’’ J. Discrete Algorithms, vol. 5, no. 1, pp. 135–140,
Mar. 2007.

[35] A. Amir and I. Nor, ‘‘Generalized function matching,’’ J. Discrete Algo-
rithms, vol. 5, no. 3, pp. 514–523, Sep. 2007.

[36] G. Greco and G. Terracina, ‘‘Frequency-based similarity for parameterized
sequences: Formal framework, algorithms, and applications,’’ Inf. Sci.,
vol. 237, pp. 176–195, Jul. 2013.

[37] O. Keller, T. Kopelowitz, and M. Lewenstein, ‘‘On the longest com-
mon parameterized subsequence,’’ Theor. Comput. Sci., vol. 410, no. 51,
pp. 5347–5353, Nov. 2009.

[38] I. Costas, M. Kubica, M. Rahman, and T. Waleń, ‘‘Algorithms for com-
puting the longest parameterized common subsequence,’’ in Proc. 18th
Annu. Symp. Combinat. Pattern Matching (CPM), London, ON, Canada,
vol. 4580. Berlin, Germany: Springer, 2007, pp. 265–273.

[39] I. Lee, J. Mendivelso, and Y. Pinzón, ‘‘Delta-gamma-parameterizedmatch-
ing,’’ in Proc. 15th Int. Symp. String Process. Inf. Retr. (SPIRE), Mel-
bourne, VIC, Australia, vol. 5280. Berlin, Germany: Springer, 2008,
pp. 236–248.

[40] R. Rapp, P. Zweigenbaum, and S. Sharoff, ‘‘Overview of the third
bucc shared task: Spotting parallel sentences in comparable corpora,’’ in
Proc. 11th Workshop Building Using Comparable Corpora, Paris, France,
May 2018, pp. 39–42.

[41] O. Bojar et al., ‘‘Findings of the 2016 conference on machine
translation,’’ in Proc. 1st Conf. Mach. Transl., vol. 2. Berlin,
Germany: Shared Task Papers, 2016, pp. 131–198. [Online]. Available:
https://www.aclweb.org/anthology/W16-2301

[42] I. Vulić and M. Moens, ‘‘Monolingual and cross-lingual information
retrieval models based on (bilingual) word embeddings,’’ in Proc. 38th Int.
ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, 2015,
p. 363–372.

[43] V. Z. Agić and N. Schluter, ‘‘Baselines and test data for cross-
lingual inference,’’ in Proc. 11th Int. Conf. Lang. Resour.
Eval. (LREC), Miyazaki, Japan, May 2018, pp. 1–5. [Online]. Available:
https://www.aclweb.org/anthology/L18-1614

[44] T. Etchegoyhen and A. Azpeitia, ‘‘Set-theoretic alignment for comparable
corpora,’’ in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics (Long
Papers), Berlin, Germany, vol. 1, Aug. 2016, pp. 2009–2018. [Online].
Available: https://www.aclweb.org/anthology/P16-1189

[45] T. Štajner and D.Mladenić, ‘‘Cross-lingual document similarity estimation
and dictionary generation with comparable corpora,’’ Knowl. Inf. Syst.,
vol. 58, no. 3, pp. 729–743, Mar. 2018.

[46] T. E. Andoni Azpeitia and E. M. Garcia, ‘‘Extracting parallel sentences
from comparable corpora with stacc variants,’’ in Proc. 11th Int. Conf.
Lang. Res. Eval. (LREC), Paris, France, May 2018, pp. 1–5.

[47] A. Azpeitia, T. Etchegoyhen, and E. Martínez Garcia, ‘‘Weighted set-
theoretic alignment of comparable sentences,’’ in Proc. 10th Workshop
Building Using Comparable Corpora, Vancouver, BC, Canada, Aug. 2017,
pp. 41–45. [Online]. Available: https://www.aclweb.org/anthology/W17-
2508

[48] H. Bouamor and H. Sajjad, ‘‘H2@BUCC18: Parallel sentence extraction
from comparable corpora using multilingual sentence embeddings,’’ in
Proc. 11th Int. Conf. Lang. Res. Eval. (LREC), 2018, pp. 43–46.

[49] G. Kontonatsios, I. Korkontzelos, J. Tsujii, and S. Ananiadou, ‘‘Com-
bining string and context similarity for bilingual term alignment
from comparable corpora,’’ in Proc. Conf. Empirical Methods Natu-
ral Lang. Process. (EMNLP), 2014, pp. 1701–1712. [Online]. Available:
https://www.aclweb.org/anthology/D14-1177

[50] J. Smith, C. Quirk, and K. Toutanova, ‘‘Extracting parallel sentences
from comparable corpora using document level alignment,’’ in Proc. Hum.
Lang. Technol., Annu. Conf. North Amer. Chapter Assoc. Comput. Linguis-
tics (NAACL HLT), 2010, pp. 403–411.

[51] S. Pal, P. Pakray, and S. K. Naskar, ‘‘Automatic building and using parallel
resources for SMT from comparable corpora,’’ in Proc. 3rd Workshop
Hybrid Approaches Mach. Transl. (HyTra), 2014, pp. 48–57. [Online].
Available: https://www.aclweb.org/anthology/W14-1009

45242 VOLUME 8, 2020

F. Cauteruccio et al.: General Approach to Uniformly Handle Different String Metrics Based on Heterogeneous Alphabets

[52] P. Koehn, ‘‘Europarl: A parallel corpus for statistical machine translation,’’
in Proc. 10th Mach. Transl. Summit, Phuket, Thailand, 2005, pp. 79–86.
[Online]. Available: http://mt-archive.info/MTS-2005-Koehn.pdf

[53] P. Zweigenbaum, S. Sharoff, and R. Rapp, ‘‘Overview of the sec-
ond BUCC shared task: Spotting parallel sentences in comparable cor-
pora,’’ in Proc. 10th Workshop Building Using Comparable Corpora,
Vancouver, BC, Canada, Aug. 2017, pp. 60–67. [Online]. Available:
https://www.aclweb.org/anthology/W17-2512

[54] H. Schmid, ‘‘Probabilistic part-of-speech tagging using decision trees,’’ in
Proc. Int. Conf. New Methods Lang. Process., Manchester, U.K., 1994,
p. 154.

[55] H. Schmid, ‘‘Improvements in part-of-speech tagging with an application
to German,’’ in Proc. ACL SIGDAT-Workshop, Dublin, Ireland, 1995,
pp. 13–25.

[56] A. Gorbenko and V. Popov, ‘‘The longest common parameterized subse-
quence problem,’’ Appl. Math. Sci., vol. 6, no. 58, pp. 2851–2855, 2012.

[57] V. Levenshtein, ‘‘Binary codes capable of correcting deletions, insertions
and reversals,’’ Sov. Phys. Doklady, vol. 10, p. 707, Feb. 1966.

FRANCESCO CAUTERUCCIO received theM.Sc.
degree in computer science and the Ph.D.
degree in mathematics and computer science
from the University of Calabria, in 2014 and
January 2018, respectively. He is actively working
in research projects, such as the Smarter Solutions
in the Big Data World, funded within the call
HORIZON2020 PON I&C 2014-2020. He is
currently a member of the Advanced Database
Research Laboratory, hosted by the University of

Calabria. He is also the author of 11 articles. His research interests include
machine learning, time series analysis, and biomedical applications.

ALESSANDRO CUCCHIARELLI received the
M.Sc. degree in electronic engineering from the
University of Ancona (now Polytechnic University
of Marche), in 1985. In 1991, he joined the Com-
puter Science Institute, Polytechnic University of
Marche, where he has been an Associate Profes-
sor with the Department of Information Engineer-
ing (DII), since 2005. His research interests are
focused on the application of natural language
processing techniques to automatic extraction of

information from the Web, domain ontologies definition, and definition of
tools and metrics for social network analysis and recommendation systems.
He is the author or a coauthor of about 90 articles on refereed journals,
conference proceedings, and book chapters.

CHRISTIAN MORBIDONI received the M.Sc.
degree in electronic engineering and the Ph.D.
degree in computer science from the Polytechnic
University of Marche, Ancona, Italy, in 2003 and
2006, respectively. He currently carries out his
research activity with the Polytechnic University
of Marche. His research interests include seman-
tic Web, knowledge representation, information
extraction, recommendation systems, machine
learning, and deep learning. He leaded research

and development work packages are several EU and national funded projects
in the area of cultural heritage and digital humanities. He is also the author
of around 50 research articles.

GIORGIO TERRACINA received the M.Sc.
degree in computer engineering from the Uni-
versity of Calabria, in April 1999, and the Ph.D.
degree in electronic engineering from the Univer-
sity of Reggio Calabria, in 2002. From Decem-
ber 2002 to October 2010, he was a tenured
Assistant Professor with the University of Cal-
abria, where he is currently anAssociate Professor,
since November 2010. He has been responsible of
several research units in national and international

research projects and held several management positions, such as a member
of the Board of Directors with the University of Calabria and IDUM, a spin-
off from the University of Calabria. His research interests include source
and data integration, social network analysis, knowledge representation and
reasoning, and bioinformatics. In these research areas, he has publishedmore
than 140 articles.

DOMENICO URSINO received the M.Sc. degree
in computer engineering and the Ph.D. degree in
system engineering and computer science from
the University of Calabria, in July 1995 and
January 2000, respectively. From January 2005 to
December 2017, he was an Associate Profes-
sor with the University Mediterranea of Reggio
Calabria. Since January 2018, he has been a
Full Professor with the Polytechnic University of
Marche. His research interests include source and

data integration, data lakes, social network analysis, social internetworking,
ecosystems consisting of the Internet of Things, innovation management,
knowledge extraction and representation, biomedical applications, and rec-
ommender systems. In these research fields, he has published more than
180 articles.

VOLUME 8, 2020 45243

