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A general bilinear vector integral
by

R. (. BARTLE (New Haven, Conn.)

Since the time of the introduction of the Lehesgue integral, several
types of extensions and generalizations have been studied. ‘We shall be
concerned with two such generalizations in the present paper.

The first extension is in the direction of integration when both the
tunetion to be integrated and the meagure take values in a relatively
general vector space®). This paper considers the case that there is & con-
tinuous bilinear “multiplication” defined on the product of the veetor
spaces in which the function apnd the measure fake their values, the pro-
duct lying in a (possibly different) vector space. The integral discussed
here possesses many of the properfies of the usual Lebesgue integral;
in particular, we show that the well-known Vitali and Bounded Conver-
gence theorems remain valid in this generality, while the nafural exten-
gion of the Lebesgue Dominated Convergence theorem fails. The second
extension is in the direction of replacing the usual reqnirement of coun-
table additivity of the meagure by the assumption of finite additivity.
It was shown by Hildebrandt [20] and TFichtenholz and Kantoroviteh
[137] that this may be done for bounded functions, but some recent work
of Dunford and Schwartz [12] demonstrates that it is also possible for
unbounded functions, provided that almost everywhere convergence is
replaced by convergence in measure.

The structure of the present paper is as follows: sections 1 and 2 in-
troduce the basic terminology and elementary properties; section '3,
the principal seetion, develops the general integral with respect to an addi-
tive set function. In section 4 the assumption of countable additivity
is imposed and the main results of section 3 are recast in this light. Finally,
in gection § comparisons are made with other integrals. Tt is found that
certain cases of the countably additive integral presented here reduce
to (a) the Lebesgue integral, (b) the seeond Dunford [97] integral of vector
functions with respect to a scalar measure (Which inclndes the Bochner

1) Such integrals arise naturally in the definition of the concept of work, and
in Ampdre’s law. '

Studla Mathematica XV. 22
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[8] integral and ecoincides with the Birkhoff [4] and Pettis [22] integralg
for strongly-measurable functions), and (e) an integral introduced by
Bartle, Dunford and Schwartz [3] for sealar functions with respect to
a vector-valued measure,

The writer is pleased to acknowledge his debt to Professors Dunford
and Schwartz for making their unpublished manuseript [12] available
to him. The use of these notes has been an invaluable guide in the wri-
ting of this paper

1. Elementary notions. In the sequel we let X and ¥ denote two real
or. complex normed linear spaces. We assume that there is a biliness
mapping, which is denoted by jusxtaposition, defined on X x ¥ with
values in a Banach space Z, satisfying |ay| <K |#||y] for some fixed Pposi-
tive number K. For example, (i) X and ¥ may be taken to be one and
the same Banach algebra; (ii) one of the gpaces X and ¥ may be a Ba-
nach space and the other its adjoint space; or (ifi) one of the spaces X
and ¥ may be a Banach space and the other the space of bounded linear
operators on this space with values in a Banach space Z. We observe
that the general case may be reduced to case (tii}, but for reasons of sym-
metry we prefer to avoid doing so.

In the following § denotes an abstract set and & a field of subsets
of §, called the measurable subsets of § ; hence © is closed under finite
unions, intersections and complements, By u we signify an additive func-
tion-on & to ¥': thus if B, Fe© and B~ F — @, then u(BOF)= u(B)+u ().
In seetion 4 we shall consider the additional properties when u is coun-
tably additive, but for the present we assume only additivity.

The semi-variation of u is the extended non-negative function ||
whose value on a set ¥ in &, denoted by | B or |luf|(E), is defined to be

VBl =sup| ¥ w,u(B)

where the supremum is extended over all partitions of F into a finite
number of disjoint sets {B:} CS and all finite collections of elements
{m)CX with |, <1, The variation of 4 iy the extended mnon-negative

function || whose value on & get E in &, denoted by |B| or |l (B, 18 de-
fined fo he

?

B| = sup D |u(By)l,

where the supremum is taken over all partitions of ¥ into a Hnite num-
ber of disjoint measurable gets.

The reader may readily verify that the semi-variation of 18 & mo-

notone, subadditive function on €, and that the variation of 2 18 & mo-
notone, additive function on &. It is evident that if ® is in &, then
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O0<IEI<K|B|<+oo. It Y is the scalar field, then the finiteness of {2
implies that of [, but for a general space it is possible that [[Bfl< oo while
|E|=+o0. (For an example, see [15], p. 257). ;t is for this reason thas
we prefer to work with the semi-variation rather than the wvariation.
If w is countably additive, then the fact that 8¢S leads to the conclu-
sion that [|8] is finite, but this does not follow in the additive case.

It is technically convenient to extend the definition of Jju|| and la
to arbitrary subsets of 8. We do this as follows: if 4 is an arbitrary sub-

" seb of 8, then [[A]l=llzll(4) is defined to be in.f[HEH:EeG,ACE}. We may

extend |u| similarly. It is easily seen that the extensiom of [uf agrees
with its former value on & and is a monotone, subadditive function on
the collection of all subsets of §.

We say that a subset A of § is a u-null set?) it [Ali=0, i e. if for
every e>0 there is an ¥ in & such that ACE and ||E<e. We say that
a proposition holds u-almost everywhere if it holds outside of a null se.

A y-simple fumotion i3 a function f: §—X which assumes only s fi-
nite number of values #;,4=1,...,n, each non-zero value z; being taken
on a set B; in & with ||E|<<co. Such a function may be represented as
& linear combination of characteristic functions; thus

(*) f=2‘fﬂimﬂ,: E;ieB,
i=1

where yp denotes the characteristic function of the set E. Tt § is‘a. funetion
and M>0, then f denotes the M-truncation of f and is defined by

1ts), it |f(s) < M,
5./ —
PESI I i m
(1)l
It will be noted that fM is a simple function if f is.

It f is a simple function with representation given by (*) and if F
iz in &, we define the integral of f over E to be

[He)uids)= Y o;u(BAT).
pil i=I

The reader will observe that the integral of a si@ple fuiilc.tilon is in-
dependent of the representation of the form (*) in its deflmtl?n. We
omit the proof of thig statement and of the following lemma which will

" be used repeatedly:

) Bubsequently, if confusion does not threaten, we will ordinarily omit explicit

mention of the measure, . ® g9+
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Temwa 1. Let p be an additive function on S Y.

(a) Hor each fized E in @, the integral over Il is o linear mapping
defined on the Winear space of simple functions on 8 to X, and has values
in Z. . »

(b)  For cach fized simple function, the integral s an additive fundion
o O. - ‘

(o) If fis a simple funetion and If(®)| <M for all s in HeS, then

| [0 | < M.
&

2. Measurable functions. In extending the notion of integral to
a larger clags of functions we need the concepts of convergence in measure
and of measurable function. A sequence [f,} of functions on § to X
it said to comverge im p-messure to a function [ if {(8,n,6)[>0 as
n—oo for each &> 0, where we have put (8,n,e) = {seS: f,(8)—f(s)| = ¢}.

A similar definition ean be given for a sequence of Innetions to be fun-
damental in measure. We gay that a fnnetion is u-measurable®) if it si
$he limit in measure of a sequence of simple funetions. It is not difficult
to show that the collection of all measurable functions on & to X is a li-
near space which is closed under the operation of convergence in measure
of sequences. We also omit the demonstration, that if f is & measurable
function, then there exists a sequence {Aﬂ} of subsets of § with |4,/ <oo

00

and such that 7 vanishes outside of |] A4,.

n=1

A sequence f,] of funetions is said to be u-almost wpgformly con-
vergent to a function f on § if for every £>0 there is a subset A, of §
such that ||4)l<s and the convergence to f is uniform on §-—4,.

Lunma 2. Let u be an additive function on © to Y.

(a) w-almost unmiform -comvergence Tmplics CORVErgence in y-mensure
to the same function.

(b)  p-almost wniform convergence tmplies p-almost everywhere con-
vergence to the same function.

The demonstration requires only trivial modifications in the usual
proofs (cf. [18], p. 92, 89). .

3. The general integral. We are now prepared to introduce the
general integral and show that it possesses at least some of the proper-
ties usually associated with a Lebesgue theory of integration. Through-
out this section g is an additive function on & to ¥.

#) This notion of measurability it somewhat more restrietive than that employed
by some authors, but it is sufficient for the purposes of integration.

Genoral bilinear vector infegral 341

Definition 1. A function f on 8§ to X is said to be u-integrable
over § it there is a sequence f,] of simple functions on § to X satisfying
the conditions:

{i) the sequence {fn} converges in measure to f;

(ii) the sequence {A,} of indefinite integraly

In(B)= [fy(o)plds), BeS,
¥

has the property that given any >0 there is a §>0 such that if ¥ is
in © and | Bl <§, then |(E) <¢, n=1,2,...;

(iii) the sequence {4} has the property that given any >0 there
is a set H, in & with [|B ||<<co and such that if ¢ is in © and GCS—E,,
then |4, (6| <e, n==1,2,...

We remark that condition (iii) is trivially safisfied in case ||8]<Coo,
bubt otherwige it is important. Condition {(ii) is frequently described by
saying that the seguence {4,} is undformly absoluiely continuous with res-
pect to {ull, and (ili) by saying that {A,} i eguiconttnuous with Tespect
o [/l In the case that X and ¥ are the spaces of sealars a definition of
this sort has been employed. by Riesz [26] and Graves [17] to lead to a sim-
ple and rapid development of integration theory. Hildebrandt ([21],
p. 117) reports that he employed a similar approach in an unpublished
paper [107 desling with the integration of vector-valued funetions with
respect to a scalar measure.

TrroraM 1. If { 45 integrable over S in the sense of definition 1, then
for each B in S the Wmst of the indefinite integrals ewisis in the norm
of Z. This limit is denoted by A(E) or by

R [1(8)ptds),
B

and is called the value of the indefinite integral A at E, or the integral of
over the set B. In addition, the limit

A(B)=lim 1, (E)

N0

exists in the worm of Z wniformly for B in &.

Proof. Let e>0 be given and take & as in condition (ii) and F°
with |B,[s£ 0 as in (iii). By (i) there exists an integer N, guch that if m
and n are any fixed integers larger than ¥,, then there is o get Fe®S with
[ Fj<8 such that if seF then [f,(s)—Ffu(s)] < e/IlEl
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Now if Fe® is arbitrary, then we have from the above and Lem-
ma 1 that

Vo () — (] < o (B T+ 120 (B )| -
AV [B— PO B+ I [E—(FUE,)] +
. b [(B—T) B, =y [(E—F) ]|
<eteretet| [ Afmle)—Fu(®)plde)

(E—~F)Es

<de+(e/|E,|) INE—F)~E,| <Be.

This proves the existence and the uniformity of the limit.

The fact that the integral is independent of the sequence of simple
functions used to define it is readily shown and will be omitted. It will
alzo be elear what is meant for a function to be integrable over a subset
E in G.

TuroREM 2. (a) If E is in O, the sel of funciions integrable over B
s a linear space and the integral over I 48 a linear mapping of this space
into Z.

{b) If f is integrable over 8, the integral of [ is an additive fumsiion
on the field S.

(¢) If f is integrable over §, then

lim [£(s)ps(ds) =0.

1E-20

(d) If f is integrable over 8, then given any >0 there i a set B, in
S such that if G is in S and GCS—B, then

| f1(2)u(as)
@

<&,

We omit a detailed proof of this theorem. Properties (a) and (b)
rfaqm:re”Lemma!_ l and properties (¢) and (d) are consequences od defini-
tion 1 (i} and. (iii) and the uniformity of the limit established in Theorem 1.

We say that a function f on § to X is u-essentiolly bounded on a sub-
set 4 of § if ‘

inf sup [f{s}<oq,

N sgd=N
wh‘ere.the infimum is taken over all null sets N. We write ess sup|f(s)|
for this number. - agd

THEOREM 3. An essentially bounded meq

surable function 18 integrable
over any set B in & with |[Bj<co. : . g
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Proof, Let
M, =ess suplf(s),
seE

and suppose that the sequence {f,} of simple functions converges in mea-
gure to f. Let M =24 M;, then there exists a null sebt B such that
{seB: 1f(s)] =M, +1YCB, and hence {seBE: If,(s)|> M|CBu(B,n,1).
Therefore, for the sequence of truncated simple funetions {f3‘}, we have

[se B: |12 (8)—1(8)] 2 20} e B 1) —Ful8)Z6) LB, 0)
CRBU{E,n,1) v (B,n,e), |

and so (/) converges in measure to f on #. Hence we may and do assume
that the sequence {f,} is uniformly bounded; from Temma 1(e) it follows
that definition 1 (ii) is satistied. Since (iii) is automatic for [Ej<oe,
we conclude that f is integrable over E.

TEEOREM 4. If | is measurable ond essentially bounded on o set E in
& with || Bl<coo, then

J )| < fess s/} LB

This wag given for a simple function in Lemma 1 (¢). The general
cage follows from & slight vefinement of the argument in the first part
of the preceding theorem and from theorem 1.

‘We now prove a theorem which, in the case of scalars, 18 essentially
due to G Vital. Tt derives ite importance from the faeti thab it is a key
to the interchange of limits and integration.

THEOREM 5 (VITALL CONVERGENCE rarorREM). Let f be a funclion
on 8 to X and let {f,,} be @ sequence of integrable functions which are such
that

(i) the sequence {fn} converges in measure o f; )

(i) the seguence of indefinite integrals is uniformly absolutely conbi-
nuous with respect to |lull; _

(i) the indefinite integrals are equicontinuous with respect to [1g2d}
Then 4t follows that f is an integrable fumction and that

[#(8)w(ds) =lim [ f,(s)u(ds), Be®.
B sl

TFurthermore, the lmit is uniform for B in &.
Proof. We shall first prove the integrability of . Since f, possesses
this property, definition 1 implies that there is a simple function g, such
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that {8681, (8) —g,(8)| =2 "}|l<2™* From the uniformity of the limit
in theorem 1, we may also suppose that g, is selected such that

(*) ()~ (B)] <27, Be,

where we have put 1, and A, for the indefinite integrals of f, and ¢, re-
spectively. Suppose that sueh a simple function g, has heen chogen for
#n=1,2,... Since

{s€8:|g,(s) 7 (5)1 226} Clse Sty () —Fu(8) 26} {5 € 82 1, (8) =1 (5)| = o},
it; follows that {g,} converges in measure to f. Also, since
(#%) L (B) <2, (B)| 277, Heb,

it follows that condition (ii) of definition 1 is satisfied for the sequence
{9u]. Condition (iii) of that definition for the sequence {g,] is a conse-
quence of hypothesis (iii), the inequality (**) and the fact that a finite
numper of simple functions vanish outside of a set of finite ||x-measure
Hence f is integrable. We conclude from theorem 1 that .

Ff 1(6) u(ds) = lim 7,(E),

and that this convergence is uniform on &. Applying (*), the statement
is proved. ; ’

In thfa cases when either X or ¥ is the sealar field, the integrability
of a funetion g implies that of the function |g(-)|. Further, in these cases
one may ordirarily use the Vitali Convergence theorem to derive & re3
sult generalizing the Lebesgue Dominated Convergence theorem. In the
case at hand, these remarks are not true, in general, as we shall ghow,

E.xamples. (a) Let X==¥Y=real Euclilean three-gpace, with the
usual inner product, and let §,,4, and §, be the unit ooofdina;te vectors.
Let 1 be Lebesgue measure on § = [0,1] and let u(E)=A(E) ;. Tt is easy
to see that the funetion g(s)=s~"4, is p-integrable and its" integral over
any measurable set is zero. However, the function |g(-)| is not integrable.
_ (b) Let §,X,7,p and g be as in (a). It f, (s)=5~"+*m g, then {f,)
is a sequence of integrable funetions with I, (s)|<|g(s)| a.ndquuc',h thgt
{fn} converges almogt everywhere and in meagure to fn(s)r-s;ié Since
fo is not integrable, the usual formulation of the Lebesgl—lg Do;r.linated
Convergence theorem does not hold, in general. .

(e) Let 8,X,7, and u« be as in -
8o each h, is int:agl"able a;gd in (@) Let b, (s)=18, and hy(s)=15;,

i o(8) p(ds) = Tim [ B, (s) u(ds) =0

N0 B

icm®
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uniformly for B in ©. Condititions (if) and (iii) of the Vitiali Convergence
theorem are satistied, bub [h,} does not converge at any point o h, and
not in measure. Thus the converse of the Vitali theorem faily.

Despite (b), o slight alteration in statement renders valid a form
of the Dominated Convergence theorem.

THROREM 6 (DOMINATED CONVERGENGE THEOREM). Let |f,} be a
sequonce of inlegrable funciions on & to X which converges im measure to
o function f. If there ewists an integrable function g such that if B is ind
and w==1,2,..., then

| [Fu)etdn)| <| [ gt nias)],
£ b

then we may conglude that | 1s integrable on S and

[ #(s)p(ds) = lim [fafs)nlds),  He®.
b2 n—so0 7

Proof. Tt follows from. theorem 2(c) that condition (ii) of theorem B

is satisfied, and from 2(d) that (iii) ig. Therefore the Vitali theorem may

he applied.
A weaker, but somewhat more convenient, resulf follows:

TaRoREM 7 (BoUNDED CONVERGENCE THEOREM). Leb {fn} be a se-
quence of integrable funetions on 8 to X which converges in measure to 7.
It [ (NS for almost all se8, then [ is integrable over any sot E inS
with ||Bll<co and

J 1) pds) =T | £,(5)p(33)-
X IO R

Tn the theorem jnst stated and in the next one, the requirement
that [|El|<<co cannot be dropped, as is easily seen.

TaporeMm 8. Let {fn} be a sequence of inteyrable fumctions which con~
wverge almost uniformly to f. Then f is imtegrable over any set E in S with
| Blj< oo and

[ f(s)p(ds) =lim [ fal8) i (ds).
o 700 I

Thig is an immediate consequence ol theorem 5 once it is obse.rvted
that lemma 2(a) implies that eondition (i) of that theorem 18 satisfied
and that the almost uniform convergence implies condition (ii).

4. The countably additive case. In the preceding section a theory
of integration was congtructed nnder the agsumption that the .mea;sur‘e H
was merely finitely additive. In this section we suppose that Sisa g-field
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and that u is countably additive in the sense that if |&,} is a disjoint ge-
quence in &, then

where the series converges unconditionally in the norm of ¥. Under this
regtriction we can prove that if f:8-»X is integrable, then the indefinite
integral of f is a countably additive set function on Sto Z. If fis a
simple funection this conclusion follows immediately from the countable
additivity of x; in the general case it follows from the definition of
the integral and the uniformity of the convergence egtablished in
theorem 1. '

Ordinarily the countable additivity of the measure insures that the
requirement of convergence in measure — made frequently throughout
section 3 — can be replaced by almost everywhere comvergence. We
have not been able to demonstrate thie without further restrictiong.
Fortunately these restrictions are frequently automatic.

Definition 2. We say that a countably additive measure u defi-
ned on & ¢-field @ to ¥ has the *-property (with respect to X) if there
is a non-negative finite-valued counfably additive measure » on &
such that »(¥)—0 if and only if | B||=|u/| (#)~>0. When we are assuming
this we will mark the theorems with an asterisk, and employ terms such
as the “*.jntegral’. .

The *-property is available under o variety of circumstances: (a) if
¥*u i8 a finite countably additive scalar-valued measure for each y*e ¥*,
it is seen in [3] that u has the *-property with regpect to the sealar field,
(b) if g is scalar-valued, or (o) if 4 has a finite variation in the sense of
section 1, then x has the *-property with respect to any Banach space X.
It is not diffienlt to show from a theorem of Saks [27], that if 4 has the
*-property, then [|§||<co. In addition, ||ju|| i3 countably subadditive on
subsets of 5. We shall use these two facts freely.

(*) LEMma 3. (a) If a sequence {f,) of junctions on 8 to X conver-
ges i p-measure to o fumction f, then some subsequence cOnverges u-almost
wniformly o f. |

(b) If a sequence {fﬂ} converges u-almost everywhere to f, then it con-
verges u-almost uniformly to f.

Proof. Statement (a) is proved Precisely as in the usual cage (cf.
[18], p. 93). To prove (b), let >0 and take E,¢® such that ||| <e and
Tn(8)7(s) for all sel,. Let 6=4(e)>0 be such that if XeS and v(H)<d
then |[Blj<e. By the standard proof of the theorem of Hgoroff (cf. [18],
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p. 88) which is valid for vector-valued functions, we conclude that there
is a set By e S with »(H,)<8 such that {7} converges to f uniformly on
8 —(Byo@,). But |Byo Byfi<2e, and so {f,} econverges p-almost uniformly
to f.

Thus we conclude that if p has the *-property, then a function is
meagurable if and only if it is the limit almost everywhere of a sequence
of simple functions. Further, the family of measurable funetions is closed
under the operstion of almost everywhere convergence of sequences.
We now show that integrability takes a simpler, though eduivalent,
form.

(*} THEOREM 9. 4 function f on 8 to X is integrable if and only if
there exists a sequence {f,} of simple funciions such that

(i) the sequence |f,} converges to f almost everywhere;

{if) #he sequence A} of indefinite integrals converges in the novm of
Z for each B in S,

Proof. Let f satisfy the hypotheses of definition 1. Lemmas 3(a)
and 2(b) imply that some subsequence converges almost everywhere,
and from theorem 1 we conclude that the corregponding subsequence
of indefinite integrals converges for each Ee®. Conversely, if {f,] satisfies
the present hypotheses, then by lemmas 3(b) and 2(a), the sequence
{f.) converges in measure. Since [S|<oo, it suffices to establish condi-
tion (ii) of definition 1. To do this we use Lemma 1{c) and definition 2
to observe that for each n=1,2,..., we have

{(+) lim 4,(E)=0.
WE)—D
Furthermore, by hypothesis (ii) we have that the funetion Aon Sto Z
defined by
A(B) = im 4,(B),
m—>00
exists for each B in &. Tt follows from the well-known Vitali-Hahn-Saks
theorem (cf. [277]), whieh is valid for countably additive functions with
values in a Banach space, that the convergenee in (+) is uniform in #«.
Thus definition 1(ii) is verified.
Because of its importance, we explicitly restate theorem 5 in a form
appropriate for measures with the *-property.
(*) TeEorEM 10. If {f,} i8 a sequence of integrable functions which
are such thai
(i) the sequence |fn} converges almost everywhere o f;
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(ii) given e=0 there is @ 6>>0 such thot if B isin © and |B||<4, then
‘ffn(s),“(ds).<fa n=1,2,..3
B

then we may conclude that f is iniegrable on S and

[ f(s) u(ds) =lim [ () u(ds),
B

200 J7
uniformly for B in €.

Corregponding replacement of almost everywhere convergence by
convergence in measure is possible in theorems 6 and 7.

5. Relations with other integrals. Since there are already many
abstract integrals, it is proper that we indicate the connection between
them and the integrals in sections 8 and 4. For a very readable account
of abstract integration the reader should consult Hildebrandt [21]. In
most cases studied in the past, x4 is countably additive, so unless explicit
mention to the contrary is indicated, we ghall assume this condition.
Algo, for simplieity, we shall consider only the case of finite measure,

Scalar functions; scalar measure

If X, Y and Z are all the field of sealars, then it is clear that if
a function is Lebesgue-integrable, then itis *-integrable, and conversely.
Hence the *-integral reduces to the Lebesgue integral in this eage.

Independently, Hildebrandt [20] and Fichtenholz and Kantoro-
vitch [13] employed an integral for hounded functions with respect to
a measure with finite variation which was assumed to be finitely addi-
tive. It is readily verified that the integral of section 3, with X, ¥, and
Z taken as the sealars, includes this integral.

Vector functions; sealar measure

The first abstract integral was studied by Graves [16] and was of
the Riemann ftype. However, it is not subsumed in our discussion,
sinee a Graves-integrable funetion need not be almost separably-valued
([113, p. 166)%). If it is, then it is *.integrable to the same value.

Probably the most frequently-used abstract integral is that intro-
duced by Bochner [5], and also studied by Dunford [8] and Hildebrandt

. *) It may he seen that if 4 is countably additive, then any funetion integrable
in the sense of section 3 is essentially separably-valued.
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[19] (ef. [21], p. 117). Tt may be seen that any funetion which is Bochner-
-integrable is *-integrable to the gsame value. This follows very readily
from {21] (p. 117-118) or from theorem 9 and the definition employed
by Dunford [8]. However, there are functions which are *.jntegrable
but not Bochner-integrable ([4], p. 377).

Dunford [9] introduced an infegral (the second Dunford integral)
by declaring a function f on § to X o be integrable with respect fo a fi-
nite positive measure g if it satisfies the hypothesis of theorem 9. Thus
the *-integral contains this Dunford integral, and therefore ([21], p- 123)
it ecoincides for measurable functions with the integrals of Birkhoff [4]
and of Gelfand [14] and Pettis [22]. Birkboff’s integral is more gen-
eral than the *-integral, however, since it also inbegrates certain multi-
ply-valued functions. The Gelfand-Pettis integral is more general than
the *-integral in that it does not require the integrable funetion to be
essentially contained in a separable manifold. The convergence theorems
presented here compare favorably with those in [4] and [22]. Again,
the Phillips integral [23] includes this ease of the *-integral, since it 1s
defined for functions with values in a locally convex fopological
linear space and includes both the Birkhotf and Gelfand-Pettis in-
tegrals.

The only extensive development of a finitely additive integral in
the gpirit presented here that is known to the writer is due to Dunford
and Schwartz [12]. While the approach is different, it may be seen that
it u is a scalar measure, the integral of section 3 containg the Dunford-
-Schwartz integral.

Scalar functions; vector measure

Integrals of the Riemann type which allow cne to integrate scalar-
-valued continwous functions with respect to a vector-valued measure
have been treated by Dunford ([11], p.312). In the generality treated
in [11], they are subsumed here.

Alexiewicz [1] employed an integral of a bounded function with
respect to a finitely additive measure with values in ah F-gpace. The
diseussion is close to the treatment in Fichtenholz and Kantorovitch
[18] and the Banach space case of this integral is included in the results
of seetion 3.

A Lebesgue-type theory of integration for unbounded functions
with respect to a countably additive measure was presented by Bartle,

. Dunford and Schwartz [3]. It follows from theorem 9 that the *integral

containg this theory.
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Vector functions; vector measure

The first integral of this sort known to the writer iy due to Gowurin
[15]. Xt is of the Riemann type and the discussion is almost entirely
limited to bounded functions. A convergence theorem along the lines
of theorem 8 is presented. Section 3 contains and extends the Gowurin
theory, Similar Riemann integrals and their extensions were defined
and employed by Bochner and Taylor [6] — they were only incidentally
concerned with the development of an integration theory, however.

The first Lebesgue theory in the bilinear case was presented by
Price [24] and i along the lines of the Birkhoff integral. Tnsofar as it
permits the integration of multiply-valued functions it is more general
than the *-integral. In the Price integral, X=Z and the measure u is
a function on a o-field to the space of bounded linear operators in the
space X, and such that (a) if ECE.eS and wu(H,)==0, then u{#)=0;
(b) if u{H) 50, then (E) has a bounded inverse; and (e¢) p is countably ad-
ditive. The portion of Price’s paper most closely related to the pregent
one is Part IV ([24], p. 25-34); here he gshows that bounded measurable
functions are integrable in his sense and obfaing a bounded convergence
theorem of the same sort as theorem 7. Unbounded functions are inte-
grated (cf. [24], p. 32-34) only when u hag finite variation, and here
Price obtaing a dominated convergence theorem. It is seen, then, that
the results of this part of [24] are contained in what we have done.

We now furn to the remarkable Rickart integral [25]; we are con-
cerned primarily with his bilinear integral ([25], p. 511-519). This in-
tegral is more general than ours in that it permits the integration of mul-
tiply-valued functions in a locally convex linear topological space. Om
the other hand it is countably additive and requires ([25], p. 518) that
if BC ByelS and zu(E,)=0 for all #¢.X, then zu(H)=0, v¢ X. Nevertheless,
Rickart obtains theorems related to thecrems 3 and 10. Direet com-
parisons between the Rickart integral and the one presented here are dif-
ficult due to the radieally different nature of these integrals. Tt iy clear
however, that neither definitely contains the other. ,

In [7], Day treated the case where X'=2Z and 4 is defined on a o-field
© with values in the space of bounded operators in X. In much of {7]
(p- 596-603), it iz assumed that x is countably additive, hut in a sense
appropriate to the strong operator topology rather than in the uniform
operator topology as in section 4. The possibility of integrating bounded
measurable functions is shown, as is a theorem of the bounded conver-
gence type. In addition, the permutability of the integral and a bounded

linear operator is discussed. Except for the last result, section 3 extends
these results to some extent.
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Regu par lo Rédaction Te 20. 9. 1955

Zum distributiven Gesetz der reellen Zahlen
von

3. GOLAB (Krakéw)

Im Jahre 1952 habe ich im Zusammenhange mit einem Problem aus
der Algebra der geometrischen Objekte (vgl. [4]) die Frage gestellt, welehe
(moglichst schwache) Voraussetzungen iiber die Funktionen f md g
in der Gleichung des distributiven Gesetzes

(1) glf (@), 2]=flg(,2),9(¥,%)]

hinreichend sind, um die Folgerung zu ziehen, daB j und ¢ einen Auto-
morphismus inbezug auf die Addition und Multiplikation im Bereiche
der reellen Zahlen bilden.

Die gestellte Frage habe ich beantwortet. Die Losung habe ich im
Jahre 1053 Herrn J. Lo¢ sehriftlich mitgeteilt und im Jahre 1954 habe
ich sie in polnischer Sprache verdffentlicht [2].

Tm Jahre 1953 ist eine Arbeit von Herrn M. Hosszti [3] erschienen,
die unter gewissen Regularitdtsannahmen itber die Funktionen f und g
eine allgemeine Ligung der Gleichung (1) gibt.

Da mein Satz inzwischen eine Anwendung in der Wahrscheinlichlkeits-
rechnung gefunden hat [1], da zweitens die Zeitschrift, in welcher mein
Brgebnis erschienen ist, schwer zuginglich ist, und da letztens es gelun-
gen ist eine der Voraussetzungen meines Satzes abzuschwichen, habe
ich mich entschlossen den Satz nochmals zu publizieren.

Sarz. Wenn die Funktionen f(z,y) und g(z,y) folgende Vorausse-
tzungen erfiillen: :

1. sie sind reell und in der ganzen Ebene definiert;

1. sie gehéren auf der yonzen Fbene der Kiasse @, an (d. h. sie besi-
teen sietige Ableitungen erster Ordnung));

1) Meine urspringliche Voraussetzung II war etwas stirker; sie lautete, dafl
die Funkiion g mit den ersten Ableitungen 8g/8z, dgfdy und suflerdem mit der Zwei-
ten Ableitung 8%g/dxdy (auf einer gewissen Geraden) ausgestatiet ist. Meiner Sehil-
lerin U. Stono-Wrébelist es gelungen diese Voraussetzung abzusechwichen. Dadurch
Labe ich die Beweismethode (in bezug auf die frithere) in zwei Punkten umindern
miissen.
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