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Abstract. In this paper we prove that any upper semicontinuous decomposition
of E" which is generated by a trivial defining sequence of cubes with handles deter-
mines a factor of E"*1. An important corollary to this result is that every 0-dimen-
sional point-like decomposition of E3 determines a factor of E*. In our approach
we have simplified the construction of the sequence of shrinking homeomorphisms
by eliminating the necessity of shrinking sets piecewise in a collection of n-cells, the
technique employed by R. H. Bing in the original result of this type.

1. Introduction. In [5] Bing proved that the product of a certain nonmanifold
with a line is F4, and in [14] we proved the same was true of another space whose
construction was similar in many ways to that of the "dogbone" space of [5].
Such nonmanifolds are the decomposition (quotient) spaces of upper semicon-
tinuous decompositions of F3 generated by trivial defining sequences whose
elements are locally finite, disjoint sets of cubes with handles.

One may then ask, under what conditions do these defining sequences determine
a decomposition space which is a factor of F4 ? In [3] the authors partially answered
this, generalizing the result of [14] by showing that if the defining sequence is
trivial and toroidal then it determines a factor of F4. We there conjectured that any
trivial defining sequence whose elements are sets of cubes with handles defines a
factor of F4. In [15] and [16] we gave partial solutions to this conjecture; but now
in this paper we shall generalize all the results of [3], [5], [14], [15], [16] by proving
that the conjecture of [3] is true.

For another reference on this subject see [2]. Consult [17] for the subject of
covering spaces and [9] for other references in general topology.

2. Definitions and notation. We shall use bd ( Y) to mean the topological
boundary of a subspace Y and also to mean the boundary of F as a manifold if Y
is a manifold. In all cases, we shall make it clear in which sense we are using the
term. Similarly, for interior we shall use int ( Y). If A is a collection of sets we shall
often write A* = (J {a \ a e A}. The symbol "s" will mean "homeomorphic to".
Let Z + denote the set of natural numbers, and En euclidean «-space. We use I to
denote the closed unit interval [0, 1]<=F.
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Let {A¡} be a sequence of locally finite, disjoint collections of nonempty, compact
subsets of Ek such that, for each ieZ+, Af+,<^int (A*). Then the collection of
components of f) Af along with the sets of points not in f) Af is an upper semi-
continuous decomposition C of Ek. We say {A^ is a defining sequence for C. If for
each Te At, the inclusion map (Af+, n T)<=■ Tis null homotopic we say the defining
sequence is trivial.

3. Statement of main result. This paper is devoted mainly to the proof of the
following theorem.

Theorem 1. Let {A¡} be a trivial defining sequence for an upper semicontinuous
decomposition C ofE3. If each At is a disjoint, locally finite collection of cubes with
handles, then E3/C is a factor ofE*; specifically (E3/C)xE^E4.

Before going into the details of proof it will be worthwhile to outline the
approach that will be taken.

Let Sn denote the «-sphere. We shall assume S3 = E3 u {u>}, a one-point com-
pactification, and that S4 is the suspension of S3 from the two points N, and N2.
Let Q denote the arc obtained from the suspension of {to} between N, and N2.
The suspension will be taken as the two-point compactification of S3 x E so that
Ei = Si — Q and we can use the usual coordinate system of F4.

We shall use the following notions in the sequel. Let C be an upper semicon-
tinuous decomposition of F3 into compact elements. Then C induces an upper
semicontinuous decomposition of S3 by appending {to} to C, but we shall still
refer to this decomposition as C. Furthermore, C induces an upper semicontinuous
decomposition C of F4 = F3xF whose elements are the sets gx{t}, geC and
t e E. In turn C induces an upper semicontinuous decomposition C u {{x} | x e D}
of S4 which we shall still call C. Suppose there exists a continuous surjective
function/: S4 -> S* whose point inverses are the elements of C; then Si/C'/^Si.
If in addition/is the identity on D then Ei/C'^Ei. In this case it follows from
standard theory of decomposition spaces that (E3/C)xE^Ei and that the suspen-
sion of S3/C is homeomorphic to S4. In this paper we shall prove the existence of
such a function/relative to the decompositions indicated in Theorem 1. As usual,
/ will be defined as the limit of a uniformly convergent sequence {/} of homeo-
morphisms of S4 onto itself. Each/¡ will be the identity on O.

The standard practice is to define the sequence {fi} so that the elements of C
are uniformly shrunk to points as i increases without bound. We shall prove the
following lemma.

Lemma 1. For all e > 0 and ieZ+ there exists H : S4 s 54 such that
(1) 77= 1 on the complement of A* x E and in particular on Í2,
(2) for all g e Ai+, and t e E, diam [H(g x {/})] < e, and
(3) if(x,t)eE3xEandH(x,t) = (x',t'), then \t'-t\^e.
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1972] A GENERAL CLASS OF FACTORS OF £4 217

With the aid of Lemma 1 and the techniques developed in [5] and used elsewhere,
the desired sequence {/} can be constructed. We shall not give that construction
here.

Lemma 1 will be a corollary of Lemma 2. For A c E3 let Z(A) be the first positive
integer such that Z(^l) is greater than the distance from A to the origin.

Lemma 2. For all e > 0, ieZ+, and A e A¡, there exists H: S4s S* such that
(1) 22= 1 on the complement ofAxE and in particular on Q,
(2) for all g e At+1 such that g<=A, and t e E, diam [H(g x {/})] < e, and
(3) if(x, t)eE3xEandH(x, t)=(x', t'), then \t'-t\ <e/Z(A).

That Lemma 1 is a corollary of Lemma 2 can be seen as follows. The map H
is to be defined piecewise by defining H as in Lemma 2 on each set A x E for A e At.
Then the local finiteness of At enables us to extend H to (E3 x 2s1) u {TVJ u {TV2}
by setting H= 1 on the complement of A* x E. Condition (3) guarantees that H
can be extended to £2 and is the identity on Í2.

Let us describe how we plan to prove Lemma 2. Let D he a 3-cell, ieZ+,
Ae At and A0 = A*+ 1 n A. We shall thread the tube DxE through the set A x E
so that A0 x E is contained in its interior. We shall shrink the necessary subsets of
A0xE inside this tube, holding the tube fixed on its boundary and compressing in
towards the central core of the tube.

To be more precise, let e > 0. We shall exhibit an imbedding F: DxE^- AxE
such that Cl[F(DxE)]=F(DxE)u{N1}u{N2} (the unique two-point com-
pactification—thus Cl [F(D x E)] is a 4-cell) having the property that F(D x {t})
cA x [t, t+e] for all / e E.

The reader can easily provide a proof of the following lemma.

Lemma 3. Suppose B is a compact topological space and G: B x E -> A x E is an
imbedding having the property that G(B x {t})<= F(int (D)x{t}) for all t e E. Then
there exists H0: Si^S* such that

(1) 720 = 1 on the complement ofAxE and in particular on Q,
(2) for all t e E, diam [H0 o G(B x {/})] < e, and
(3) if(x,t)eE3xEandH0(x, t) = (x', t'), then \t'-t\<e.

We shall prove the following lemma.

Lemma 4. There exists G: S*^S* such that
(1) G= 1 on the complement ofAxE and in particular on Í2,
(2) G(A0 x {t})c F(int (D) x {t}) for all t e E, and
(3) if (x, t) e E3 x E and G(x, t) = (x', t'), then |f'-/|<£.

With appropriate choices of e in Lemmas 3 and 4, the map H of Lemma 2 is the
composition H0 ° G. Therefore to prove Theorem 1, it is sufficient to demonstrate
the existence of an imbedding F: DxE^- AxE and a homeomorphism G : S* ̂  S*
satisfying Lemma 4.
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4. Injecting a universal covering space. Suppose « ̂  1 is a natural number and
T is a cube with «-handles («-holed solid torus). Let F0 he a 3-cell in T such that
Cl (T—F0) is the disjoint union of « 3-cells, Flf..., F„, where each F( n F0 is a
disjoint pair of 2-cells. Letp: T-+ The a universal covering projection [17] in the
category of connected topological spaces.

Our purpose in this section is to show the existence of a continuous injective
map (not an imbedding) /: T^-TxE such that -n of=p where -n: TxE^-T is
the natural projection. Although the description of this map / is complicated, the
idea itself is not, and we have depicted schematically some of the construction in
Figure 1 for a 2-holed solid torus.

Figure 1

Each Fj is evenly covered by p in the sense that each component of p ~ 1(F,) maps
homeomorphically onto F¡ underp and is an open subset ofp~1(Fi). Let C¡ denote
the (countable) collection of components of p'1(Fl). Let 2? be a 2-cell and for each
ie{l,...,«} let gi'.BxI^-Fi he a homeomorphism such that g¡(2?x0) and
gt(B x 1) are the two 2-cell components of F0 n F(.

Write the universal covering space T as \J{ff\jeZ +} where, for each j, fj is
an element of some C¡ and (J {fk | 1 úk¿j} is a 3-cell which intersects fj+1 in a
2-cell contained in one and only one fk. Assume without loss of generality that
fx e Co, and for each; let T, denote p(f,). If i^O and F, = F¡, we refer to the two
2-cell components of [p ' 1(Fi n F0)] n T, as ends.

We will have need to use the following information.

Lemma 5. Suppose a1<ß1<a2<ß2 and fuf2 are two maps of F, into TxE
where ¿VO, satisfying f1(x) = (x, a1 + (a2-a1)t) andf2(x) = (x,ß1+(ß2-ß1)t) where
x=giib, t). Then bothfx andf2 are injective maps a«c7/1(Fi) n/2(F() = 0.
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This can be easily proved by the reader.
In what follows the reader may reference Figure 1 and find it useful to sketch

the analogous construction where T is replaced by a 2-cell with «-holes lying in the
plane and Fis to be immersed in FxE^E3.

Since f has the weak topology [9] determined by {f,} it will be sufficient to define
/piecewise on {f,} and we proceed by induction.

Define f,: f, -^ TxEby fi,(x)=(p(x), 0)forxeT,. Thus the condition n °f,=p
holds on f, and f, is injective.

Now f, n f2 is a 2-cell. Let T2=Ft; then Ft^F0 by standard properties of
covering spaces. Either p(f, n T2)=gi(BxO) or gt(Bx I). In the former case let
«i=0, a2 = l; in the latter let ^=-1, a2=0. For x=g,(b, t)eFt define f*(x)
= (x,a, + (a2-a,)t)eTxE, and for zef2 define f2(z)=f* °p(z). It is easy to
check that /2 agrees with f, on their common domain, the end f, n f2, and that
{f,,f2} determines an injective map of f, u F2->-FxF. Furthermore, n°f2(z)
=p(z) as required.

Suppose fk has been defined on all fk for k<M where M>2 and assume
(1) {fk I k<M) determines a well-defined, continuous, injective map of

(J {fk | k < M} into TxE such that n ofik(x) =p(x) whenever x e fk,
(2) if Tk=F0 then fk(Tk)<^Tx a for some a e E,
(3) if K^Tk is an end then/fc(7i)cFxa for some ae E,
(4) if Tk=F,, ij=0, then there are numbers a,<a2 and a map/,*: F,->TxE

given by/*(x) = (x, a, + (a2 - a,)t) where x=gt(b, t) and/fc =f* o p with p restricted
toffc.

Let TM=Ft. There is one and only one y'<M for which fMr\f,^0. Then
FM n F, is an end. Let a, be the real number for which fi,(fM n f^Txa,. We
break the construction of/M into two cases.

Case 1. Fj=F0. Then define/M(x) = (/>(x), ai) for all x e TM. It is easy to verify
that with this definition of fM, {fk \ k<M+l} satisfies all the conditions of the
induction hypothesis.

Case 2. F,=¿F0. Let W={s | for some./'<Mandsomeend TCof T„fj(K)<=-T-xs}.
Then let V={(ß, ß') \ß<a,<ß' and for some j<M there is a f, e C( having ends
K, K' with fi(K)^Txß and fi,(K')cTxß'}. The following may easily be checked.
If k<M, fke Ct, and the ends of fk map to Txo,, Txo2 where o,<o2, then it is
impossible that (ß, ß') e V and ß<o,<o2^ß'. If this were true, it would not be
difficult to show the maps {fk | k < M} did not determine an injective map on
U{Ffc|A:<M}.

There are now two possibilities, either p(fM n Tj)=gi(Bx0) or g¡(Bx 1). We
shall considerp(fM n Tj)=gt(BxO) only, the latter situation requiring similar but
symmetric techniques.

If V=0 let <r=inf [{s | s e W and s>a,} u {a, +1}]. Let a2 be a real number
such that a1<a2<a. With this choice, if k<M and Tk = Ku then fk(tk)
n(Tx [a,, a2]) = 0. We shall define fM: fM^-Tx [a,, a2] so that it agrees with/}
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on fMC\fj. Define/m: Fj->Fx [a1; o¡2] by the rule fJH(x) = (x, a1 + ia2-a1)t)
where x=gtib, t). Then define fM(z) -f£ o p(z) for z e fM.

However, if V+<z we must choose a2 more carefully. Let (ft, ß2) e V such that
if (j8, ß') e V then ft^ft. Let a=inf [{s \ s e W and s>ß2} u {ß2 +1}]. Choose <x2
so that ß2<a2<a. With this choice of u2, define/, as for the case V=£0.

There is no difficulty seeing/M is injective and that/M agrees with/ on fM n f¡.
Therefore {fk \ k^M} uniquely determines a map of \J {fk \ kfíM} to TxE.
We now indicate why this map is injective.

By our choice of a2, and since fM( fM) c Ft x E, the only way {fk \ k S Af} may not
determine an injective map is that for some q<M,fQeCt and fq(fq) O fM(fM) + 0.
Suppose fq has ends AT, A" for whichfq(K)<=Txß andfq(K')^Txß'. If iß, ß') e V,
it is not true that f3 < ft ^ ft ^ ft ; since j8 ̂  ft, then /S < ft < ft < ß2. Hence, ß<ax<ß'
<a2, so that, by Lemma 5,/*(F9) n/*(TM) = 0. Therefore/(f,) n/M(fM) = 0.

If iß,ß')iV then either
(1) ß<ß'<ax<a2,
(2) a1<i3<J8'<a2, or
(3) a1<a2<ß<ß'.

A simple analysis will rule out (2). In (1) and (3) since f*(Tq)<=Tx [ft ß'] and
fZ(TM)^Tx [a,, ̂ lfq(fq) n/M(fM) = 0.

5. Some 4-cells in TxE. Let M e Z+, D = (J {fk | k ̂  Af}, and / also denote
the restriction of/to D. Because/is an injection and 2) is compact, the next lemma
is true.

Lemma 6. The mapf: D^-TxE is an imbedding.

For each 6 e E, let Le:Tx E^Tx E he the map which sends (x, t) to (x, t+ 6).
Then define fe: D-* TxE by fe=Le of Define F*: DxE-+TxE hy F*ix, 6)
=feix) and F** : D x E -> Tx E x E by F**(x, 0) = (F*(;c, 0), 6).

Lemma 7. 7«ere exi's/j e>0 íwc« /«ai ifa<6 and 6 — a^e, then F* on Dx [a, 6]
is an imbedding.

Proof. First note that if k ^ Af then F* restricted to fkxE is injective. This may
be easily computed by the reader from the definition of F* since/on fk is injective.

Suppose kij and {fk, f^C, for some i. Then Tk = Tj = Fi,fifk)=fk*iFi), and
f(f¡) =/*(F¡). Associated with f* are numbers o^ < a2 and with /* are numbers
ft <ß2 where either [au a2] n [ft, ft] = 0, or a1<ß1<a2<ß2, or ß1<a1<ß2<a2.
In any case, if we examine the definitions of the maps f*,f* we can see there exists
a number e>0 such that if o^e and x=gx(b, t) eF¡, then I, o/*(x)
= (;c, o^ + ^-a^r+a)^*, |31+(j82-/31)i+a)=L(J °/*(x). For example, in case
ft < c*! < ft < a2, a formal computation shows that £ = min{(a1—ft)/2, (a2—ß2)/2}
will suffice.

Thus  Laof*(Fi)nLaof*(Fi) = 0.   Therefore  Lt»/(ft)nLa»/(f/) = 0,   so
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fi(Tk) nfa(f,) = 0. We conclude further that F*(Tkx [a, 8]) n F*(T,x [a, 8]) = 0
as long as 8 — a<e.

By induction on the finite number of Tk e C¡ we see there exists e > 0 such that,
for any pair {T^T^d, F*(fkx[a, 8]) n F*(f, x [a, 8]) = 0, as long as 8-a<e.
Let 5, = (J {fk | k = M and fk e C¡}. Then F* restricted to Sj x [a, 8] is injective as
long as 8-a<e. Since we may do the above for each S,, we may choose e to be
the minimum of the finite set of numbers £ so obtained, one for each S¡. Now if
8 — a<e, (J F*(St x [a, 8]) = F*(D x [a, 8]) so that F* is injective on the compact
set D x [a, 8] and is therefore an imbedding of it.

Roughly speaking, F* on D x [a, 8] is an imbedding obtained by stacking copies
of AD).   '

One may similarly deduce the following lemma which is important to us in the
sequel.

Lemma 8. There exists a number e>0 satisfying the following conditions. Suppose
x, y e D, x e fk, y e ?,, fknf¡ = 0. Let f(x) = (x, u) andf(y) = (y, v) and suppose
x,ye F¡. 7//=0, then \u — v\ >e. 7///0, but both x, y e g¡(B x a) for some a e I, then
\u — v\ >e.

6. A pseudo-isotopy in a cube with handles. Let A be a cube with «-handles and
X a compact subset of int (A). Let F^int (A) be a cube with «-handles obtained
from A by moving away from the boundary of A along a collar so that A'cint (T).
To be more precise, there is an imbedding of bd (A) x I into A such that (x, 0) -> x
and, for any t>0, (x, t) is mapped into int (A). Then for some £>0, F may be
taken to be the closure of the complementary domain of the image of bd (A) x e
which does not contain bd (A).

Let F be written as the union of 3-cells, F0, F„ ..., F„, as in §4.
We wish to state the existence of a certain map p: Ax[— 1, 1] ->- A, and for

this purpose it is best to think of A as a standard, unknotted, unlinked cube with
«-handles lying in F3. Thus, if Tí" is a cell with «-holes lying in E2, we might use
A = KxIcE2xE=E3. Then, by moving away from bd (A') along a collar as we
did with A, we find a cell with « holes, say !F<=int (K). Take F= Wx [%, £]. The
following lemma is obvious.

Lemma 9. There exists a continuous map p.: Ax[—l,l]-> A satisfying the
following conditions:

(1) for t e [— 1, 1], the map pt = p\Axt is the identity map on bd (A),
(2) for t e(—l, I), pt is a homeomorphism,
(3) p.,(T) n pt(T) = 0 for t* -1 andp,(T) n pt(T) = 0 for f#l,
(4) ifx, y e T and p(x, t)=p(y, u) then for some i, both x,ye F¡, and furthermore,

ifij^O, then there is a number ae I such that both x, y e gt(B x a),
(5) if a,b e[—l, I], a==b, then pa(x)/pb(x) for all xeT,
(6) both p,(T) and p~,(T) are topologically equivalent to K above, a cell with n-

holes.
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Intuitively we may think that as t -> 1, the maps pt move F away from itself and
upwards, gradually thinning T until it reaches 0 thickness at t = 1. There is a similar
description for / ->• -1. The map p may be referred to as a pseudo-isotopy.

7. A certain imbedding. Let A and T he as in the previous section, / f, etc.,
as in §4 and D = {J {fk | kfíM} for some M eZ + . We shall now determine an
imbedding F: DxE-> AxEas promised in §3 by adjusting the map F* of §5.

We shall adjust F* relative to the map p of Lemma 9.
Let {ccj | / an integer}c(—1, 1) be a sequence such that if i<j, then a(<af,

px(T) r\ py(T) = 0 whenever xáa, and a;^, inf{a,}= —1 and sup{a¡}=l. Let
e>0 be as in Lemma 8, 8 = e/2, and ^:F~(—1, 1) such that, for each integer «,
r¡(nS) = an and t; carries the closed interval [«S, («+1)S] linearly onto [an, an+1].

Let us now define the function F: D x E ^- Ax E. \f (x, t) e D x E, then xe D,
so f(x) = (x,u) eTxE^AxE. Define F(x, t) = (prit(x), u+t). To see Fis contin-
uous, observe that F is equivalent to the composition of functions indicated as
follows :

M)
1, l)x£c AxIxE^XaxE.

To prove F is an imbedding it is only necessary to show F is injective. To
this end suppose (x, t), (y, s) e D x E, (x,t)^(y,s) and F(x, t) = (p„t(x),u+t)
= (^s(P), v+s) = Fiy, s), where/(*) = (•*, u) and j\y)=iy, v). Then ftJ®=*rhÁ9)
and u + t = v + s. We shall first conclude that x^y, t^s, and u^v.

If x=y then by Lemma 9(5) it must be true that r)t=r¡s so that t=s. This implies
u = v so that ix, u)=iy, v). Since fix) = (X, u),f(y) = (y, v), and/is injective, x=y.
Therefore ix, t) = iy, s) which is a contradiction, so we conclude x^y.

Suppose t = s; then r¡t = r¡s. Since p„t is injective by Lemma 9(2), and x^y, then
rt-ntix)j=pnliy) = pr,siy), again a contradiction. So t=/=s and hence u^v.

Assume t > s so that either t—s>eorO<t — s^s.lft—s>e, then /%(F) n /x„s(F)
= 0 and, since both x, jeF, /Lt„((x)#/iw(j). This leaves only the possibility that
0<i — s^e. Since pvlix) = p.„siy), by Lemma 9(4) both x, y e F¡ for some OíSt"^«.
If i=0, then both x, y e F0. Since u^v, \u — v\>e. But 0 = u + t—v—s=(i—s)
+iu—v). Hence t—s = v — u, so \t—s\=t—s = \u — v\ which is a contradiction. It
must be concluded then that zVO. In this case, by Lemma 9(4) there exists a number
Û67 such that both x,y e g^B x a). This again implies |u - v\ > e which leads to a
contradiction and completes the proof that F is injective.

The reader may desire a better intuitive idea for the last case, 0<t—s^e. The
basic concept is that F* on Dx [s, t] is an imbedding and that FiDx[s, t]) is
obtained by adjusting the 4-cell F*iD x [s, t]) continuously with respect to p..

Define p*:AxE^AxE by the rule p*ix, t) = (jj.„ix), t). The map p* = l on
bd (/I) x E. We can now state the important properties of the imbedding F.

DxE^UtxExE1^X AxExi-

S Ax(-
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Lemma 10. Let Abe a cube with handles and X a compact subset of int (A). There
exists Feint (A) with T%A and A'cint (F). Furthermore if D = \J{fk\k-¿M} is a
3-cell in f, there is an imbedding F: DxE^- AxE such that, for each t e E,
n o F(Dxt)^n o p*(Txt)^int(n o p*(AxT)) = int (A) where n: AxE -> A is the
natural projection. If e > 0 we may select F to also have the property that, for each
t e E, the projection of F(D xt)cAxE into E is contained in the interval [t, t+e].

8. Adjusting F4. Let A be a cube with handles and X be a compact subset of
int 04) such that the inclusion X^int(A) is null homotopic. Then choosing
7c int (A) as in §6, X<= int (A) and the inclusion Ic int (T) is null homotopic
since F is a strong deformation retract of A. We now proceed as in [3]. According
to the homotopy lifting theorem [17] there is a lifting imbedding L of X into f.
So for any x e X, p ° L(x)=x. SinceL(X) is compact there exists M eZ+ for which
L(X)^int(D) where D = \J{fk\k^M} which is a 3-cell. Then/»/ is an im-
bedding of X into /(int (D)) <=/( D). There is a lifting homeomorphism X:AxE
-^ AxE defined as in §2 of [3] having the properties :

(1) A = l on the complement of TxE, and
(2) if 8 e E then X(Xx 8)=fe o L(X) where fe is as in §5.
Furthermore if e > 0 we may choose A so that it changes F coordinates no more

than e.
Substitute A0 for A'in the hypothesis of Lemma 4. Define G:Si^Siby G=p* ° A

on AxE and the identity elsewhere. Then it is easy to check that G satisfies all the
requirements of Lemma 4 as stated in §3. Therefore the main result of this paper,
Theorem 1, is established.

9. Further results. By examining the steps in the proof of Theorem 1, and in
particular the construction of the map/, it is not difficult to see that certain of the
dimensional restrictions were not necessary. Using Ac-cells with handles in place of
cubes with handles we can state a more general theorem.

Theorem 2. Let {At} be a trivial defining sequence for an upper semicontinuous
decomposition C of Ek (k^3). If each A¡ is a disjoint, locally finite collection of
k-cells with handles, then (Ek/C)xE^Ek + 1.

By Theorem 1 of [11] if C is a point-like 0-dimensional decomposition of F3,
then C is definable by cubes with handles. It is not difficult to see that because C
is point-like, C is also definable by a trivial sequence of cubes with handles. How-
ever, recent developments allow us to state even more. Recall [10] that A is cell-like
if there is an imbedding /of A into some euclidean space such that/(/I) is cellular.
Since En is an ANR, by Theorem 1.1 of [10], a subset A of Fn is cell-like if and only
if it has the property UV°° [12] with respect to Fn.

Now suppose C is an upper semicontinuous decomposition of Fn having the
property that the closure of the projection (to the decomposition space) of the
union of the nondegenerate elements of C can be written as a disjoint union of
compact sets {CJ such that each Ca is 0-dimensional and {Ca} is locally finite.
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If, in addition, each element of C is cell-like, then we shall say C is a standard cell-
like decomposition of F". (By the comments above, it would be equivalent to say
each element of C has property UV°° with respect to Fn.) Referring to [12] and the
proof of Theorem 1 of [11], we see that if C is a standard cell-like decomposition
of F3, then Cis definable by a trivial sequence of cubes with handles. The following
theorem and corollary follow from the preceding remarks and Theorem 2.

Theorem 3. Let C be a standard cell-like decomposition of E3. Then (E3/C)
xE^E*.

Corollary. Every point-like 0-dimensional decomposition of E3 determines a
factor of E*.

The following conjecture has been partially solved in [7] and [8].
Conjecture. Let C be a standard cell-like decomposition of F\ Then (En/C)

x£~En+1.

The results of [1] may be useful in attacking this problem.
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