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A GENERAL CLASS OF IMPULSIVE EVOLUTION EQUATIONS

JinRong Wang — Michal Fečkan

Abstract. One of the novelty of this paper is the study of a general class of

impulsive differential equations, which is more reasonable to show dynamics

of evolution processes in Pharmacotherapy. This fact reduces many diffi-
culties in applying analysis methods and techniques in Bielecki’s normed

Banach spaces and thus makes the study of existence and uniqueness the-

orems interesting. The other novelties of this paper are new concepts of
Ulam’s type stability and Ulam–Hyers–Rassias stability results on compact

and unbounded intervals.

1. Introduction

The dynamic of evolution processes in the real world is often subjected to

abrupt changes such as shocks, harvesting, and natural disasters. In general,

these short-term perturbations are usually regarded as having acted instanta-

neously or appearing in the form of instantaneous impulses involving the cor-

responding differential equations. Many authors were devoted to study mild

solutions to impulsive evolution equations with instantaneous impulses of the
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form

(1.1)

x′(t) = Ax(t) + f(t, x(t)), t ∈ J ′ := J \ {t1, . . . , tm}, J := [0, T ],

x(t+k ) = x(t−k ) + Ik(x(t−k )), k = 1, . . . ,m,

where the linear unbounded operator A: D(A) ⊆ X → X is the generator of

a C0-semigroup (analytic or compact) {T (t), t ≥ 0} on a Banach space X with

a norm ‖·‖, f : J×X → X and Ik : X → X and fixed impulsive time tk satisfy 0 =

t0 < t1 < . . . , tm < tm+1 = T , the symbols x(t+k ) := lim
ε→0+

x(tk + ε) and x(t−k ) :=

lim
ε→0−

x(tk + ε) represent the right and left limits of x(t) at t = tk, respectively.

Note that Ik in (1.1) is a sequences of instantaneously impulse operators and has

been developed in physics, population dynamics, biotechnology, and so forth.

For more details on differential equations with instantaneous impulses, one can

see for instance the monographs [8], [10], [33], the works on not time variable

impulses problem [4], [5], [12], [14]–[16], [26], [34], [36], [37] and time variable

impulses problem [1]–[3], [17]–[19] and the references therein.

However, the action of instantaneous impulses seems do not describe some

certain dynamics of evolution processes in Pharmacotherapy. Taking into consid-

eration the hemodynamic equilibrium of a person, the introduction of the drugs

in the bloodstream and the consequent absorption for the body are gradual and

continuous process. Thus, we do not expect to use the model (1.1) to describe

such process. In fact, the above situation is fallen in a new case of impulsive

action, which starts at an arbitrary fixed point and stays active on a finite time

interval. To this end, Hernández and O’Regan [21] introduce a new class of

impulsive evolution equations (with not instantaneous impulses) of the form

(1.2)


x′(t) = Ax(t) + f(t, x(t)), t ∈ (si, ti+1], i = 0, . . . ,m,

x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, . . . ,m,

x(0) = x0 ∈ X,

where A and f are the same as (1.1) and the fixed points si and ti satisfy

0 = t0 = s0 < t1 < s1 < t2 < . . . < sm−1 < tm < sm < tm+1 = T , and

gi : [ti, si] × X → X is continuous for all i = 1, . . . ,m. Here gi is regarded as

continuous action process.

The concepts of mild solutions and classical solutions are introduced by

Hernández and O’Regan [21] (see Definitions 2.1 and 2.2). Meanwhile, exis-

tence and uniqueness results of (1.2) are presented by using the theory of strongly

continuous semigroup and compact semigroup via fixed point theorems (see The-

orems 2.1 and 2.2, [21] and Theorems 2.1 and 2.2, [29]). Next, Pierri et al. [29]

continue the work and development in [21] and study the existence and unique-

ness of mild solutions to semilinear impulsive differential equations with not
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instantaneous impulses in the fractional power space by virtue of the theory of

analytic semigroup.

Next, we have a remark on the conditions in (1.2):

(1.3) x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, . . . ,m,

where gi ∈ C([ti, si] ×X,X) and there are positive constants Lgi , i = 1, . . . ,m

such that

‖gi(t, u1)− gi(t, u2)‖ ≤ Lgi‖u1 − u2‖ for each t ∈ [ti, si] and all u1, u2 ∈ X.

It follows from Theorems 2.1 and 2.2 in [21], [29], that a necessary condition

max{Lgi : i = 1, . . . ,m} < 1 is considered. Then Banach fixed point theorem

gives a unique zi ∈ C([ti, si], X) so that z = gi(t, z) if and only if z = zi(t). So

(1.3) is equivalent to

(1.4) x(t) = zi(t), t ∈ (ti, si], i = 1, . . . ,m,

which does not depend on the state x( · ). Thus it is necessary to modify (1.3)

and we recommend to consider the conditions

(1.5) x(t) = gi(t, x(t−i )), t ∈ (ti, si], i = 1, . . . ,m.

Comparing with (1.3), the new conditions (1.5) is a better and reasonable gen-

eralization of sudden impulses to not instantaneous ones.

Motivated by the above remark, we study impulsive evolution equations of

the form

(1.6)


x′(t) = Ax(t) + f(t, x(t)), t ∈ (si, ti+1), i = 0, . . . ,m,

x(t+i ) = gi(ti, x(t−i )), i = 1, . . . ,m,

x(t) = gi(t, x(t−i )), t ∈ (ti, si], i = 1, . . . ,m.

Note that we consider in (1.6) that x ∈ C((tk, tk+1], X), k = 0, . . . ,m, and there

exist x(t−k ), x(t+k ), k = 1, . . . ,m with x(t−k ) = x(tk). Next this model is more

suitable to show dynamics of evolution processes in Pharmacotherapy: the first

equation denotes the health status of a patient; the second equation denotes the

doctor takes some actions to test medicine for the patient practicably; the third

equation denotes the testing medicine is valid for this patient and then begin to

deal with the effect of patient for some time.

The rest of this paper is organized as follows. In Section 2, we give an

existence and uniqueness result of (1.6) with x(0) = x0 ∈ X. In Section 3,

we introduce new four types of Ulam’s type stability for differential equations

with not instantaneous impulses (see Definitions 3.1–3.4). Ulam problem [35]

has been attracted by many researchers, one can refer to the monographs of

Cădariu [11], Hyers [22], [23], Jung [24], Rassias [30] and other mathematicians.

For more recent contribution on such important fields, one can see the papers [6],

[7], [13], [20], [25], [27], [31], [32], [37] and reference therein. We mainly present
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the generalized Ulam–Hyers–Rassias stability results for the equation (1.6) on

a compact interval.

Finally in Section 4, we extend our study to

(1.7)


x′(t) = Ax(t) + f(t, x(t)), t ∈ (si, ti+1), i ∈M,

x(t+i ) = gi(ti, x(t−i )), i ∈M,

x(t) = gi(t, x(t−i )), t ∈ (ti, si], i ∈M,

where t ∈ R+ := [0,∞), the fixed points si and ti satisfy ti < si < ti+1 and either

M = {1, . . . ,m} or M = N and then with lim
i→∞

ti = ∞. We also set tm+1 = ∞
for M = {1, . . . ,m}. Some extensions of Ulam–Hyers–Rassias stability for the

case with infinite impulses are given. The existence and uniqueness result is also

presented for this case.

2. An existence and uniqueness result

Set J := [0, T ]. Throughout this paper, we need the Banach space

PC(J,X) := {x : J → X : x ∈ C((tk, tk+1], X), k = 0, . . . ,m

and there exist x(t−k ) and x(t+k ), k = 1, . . . ,m with x(t−k ) = x(tk)}

endowed either with the Chebyshev PC-norm ‖x‖PC := sup{|x(t)| : t ∈ J} or

with the Bielecki PCB-norm ‖x‖PCB := sup{|x(t)|e−Ωt : t ∈ J} for some Ω ∈ R.

We recall the following concepts of mild solutions of semilinear evolution

equations with not instantaneous impulses.

Definition 2.1 (see Definition 2.1, [21]). A function x ∈ PC(J,X) is called

a mild solution of the problem

(2.1)


x′(t) = Ax(t) + f(t, x(t)), t ∈ (si, ti+1), i = 0, . . . ,m,

x(t+i ) = gi(ti, x(t−i )), i = 1, . . . ,m,

x(t) = gi(t, x(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

x(0) = x0 ∈ X,

if x(0) = x0 and

x(t) = gi(t, x(t−i )), t ∈ (ti, si], i = 1, . . . ,m;

x(t+i ) = gi(ti, x(t−i )), i = 1, . . . ,m,

x(t) =T (t)x0 +

∫ t

0

T (t− s)f(s, x(s)) ds, t ∈ [0, t1];

x(t) =T (t− si)gi(si, x(t−i )) +

∫ t

si

T (t− s)f(s, x(s)) ds,

t ∈ [si, ti+1], i = 1, . . . ,m.
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Note that we consider x ∈ C((ti, ti+1], X), i = 0, . . . ,m.

Cornering the existence and uniqueness of solutions to the problem (2.1),

Hernández and O’Regan [21] initial obtain a interesting result under strong con-

ditions via PC-norm. Here, we give another result under weak conditions via

PCB-norm.

We introduce the following conditions:

(H0) A : D(A) ⊆ X → X is the generator of a C0-semigroup {T (t), t ≥ 0}
on a Banach space X with a norm ‖ · ‖. Then ‖T (t)‖ ≤ Meωt for some

M ≥ 1 and ω ∈ R [28].

(H1) f ∈ C(J ×X,X).

(H2) There exists a positive constant Lf such that

‖f(t, u1)− f(t, u2)‖ ≤ Lf‖u1 − u2‖ for each t ∈ J and all u1, u2 ∈ X.

(H3) gi ∈ C([ti, si]×X,X) and there are positive constants Lgi , i = 1, . . . ,m

such that

‖gi(t, u1)− gi(t, u2)‖ ≤ Lgi‖u1 − u2‖ for each t ∈ [ti, si] and all u1, u2 ∈ X.

Theorem 2.2. Assume that (H0)–(H3) are satisfied. Then the equation (2.1)

has a unique mild solution x ∈ PC(J,X).

Proof. Consider a mapping F : PC(J,X)→ PC(J,X) defined by

(Fx)(0) =x0;

(Fx)(t) = gi

(
t, T (ti − si−1)gi−1(si−1, x(t−i−1)) +

∫ ti

si−1

T (ti − s)f(s, x(s)) ds)

)
,

t ∈ (ti, si], i = 1, · · · ,m;

(Fx)(t) =T (t)x0 +

∫ t

0

T (t− s)f(s, x(s)) ds, t ∈ [0, t1];

(Fx)(t) =T (t− si)gi(si, x(t−i )) +

∫ t

si

T (t− s)f(s, x(s)) ds,

t ∈ (si, ti+1], i = 1, . . . ,m,

where we set g0(t, x) := x0 and so Lg0 = 0. Obviously, F is well defined due

to (H1).

Supposing Ω > ω, for any x, y ∈ PC(J,X) and t ∈ (si, ti+1], i = 1, . . . ,m,

we have

‖(Fx)(t) − (Fy)(t)‖

≤Meω(t−si)Lgi‖x(t−i )− y(t−i )‖+MLf

∫ t

si

eω(t−s)‖x(s)− y(s)‖ ds

≤Meω(t−si)+ΩtiLgi‖x− y‖PCB +MLf

∫ t

si

eω(t−s)+Ωs ds‖x− y‖PCB
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≤M
(
eω(t−si)+ΩtiLgi +

eΩtLf
Ω− ω

)
‖x− y‖PCB ,

which implies that

e−Ωt‖(Fx)(t)− (Fy)(t)‖ ≤M
(
eω(t−si)+Ω(ti−t)Lgi +

Lf
Ω− ω

)
‖x− y‖PCB

≤M
(
eΩ(ti−si)Lgi +

Lf
Ω− ω

)
‖x− y‖PCB ,

for t ∈ (si, ti+1]. Proceeding as above for t ∈ [0, t1], we obtain that

‖(Fx)(t)− (Fy)(t)‖ ≤MLf

∫ t

0

eω(t−s)‖x(s)− y(s)‖ ds

≤MLf

∫ t

0

eω(t−s)+Ωs ds‖x− y‖PCB ≤
MLfe

Ωt

Ω− ω
‖x− y‖PCB ,

which implies that

e−Ωt‖(Fx)(t)− (Fy)(t)‖ ≤ MLf
Ω− ω

‖x− y‖PCB , t ∈ [0, t1].

Using the above estimates, similarly for t ∈ (ti, si], i = 1, . . . ,m, we derive

‖(Fx)(t)− (Fy)(t)‖ ≤MLgi

(
eω(ti−si−1)Lgi−1‖x(t−i−1)− y(t−i−1)‖

+ Lf

∫ ti

si−1

eω(ti−s)‖x(s)− y(s)‖ ds
)

≤MLgi

(
eω(ti−si−1)+Ωti−1Lgi−1

+
eΩtiLf
Ω− ω

)
‖x− y‖PCB ,

which implies that

e−Ωt‖(Fx)(t) − (Fy)(t)‖

≤MLgi

(
eω(ti−si−1)+Ω(ti−1−ti)Lgi−1

+
Lf

Ω− ω

)
‖x− y‖PCB

≤MLgi

(
eΩ(ti−1−si−1)Lgi−1 +

Lf
Ω− ω

)
‖x− y‖PCB ,

for t ∈ (ti, si], i = 1, . . . ,m. Summarizing the above estimates, we have that

‖Fx− Fy‖PCB ≤ LF ‖x− y‖PCB

for

LF := M × max
1≤i≤m

{
Lf

Ω− ω
,Lgi

(
eΩ(ti−1−si−1)Lgi−1

+
Lf

Ω− ω

)
,

eΩ(ti−si)Lgi +
Lf

Ω− ω

}
.

Obviously, one can choose a sufficient large Ω > ω such that LF < 1, and so

F is a contraction mapping. Then, one can derive the results immediately. �
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3. Concepts and results of Ulam’s type stability

on a compact interval

In this section, we introduce Ulam’s type stability concepts for the equa-

tion (1.6).

Let ε > 0, ψ ≥ 0 and ϕ ∈ PC(J,R+) be nondecreasing. We consider the

following inequalities

(3.1)


‖y′(t)−Ay(t)− f(t, y(t))‖ ≤ ε, t ∈ (si, ti+1), i = 0, . . . ,m,

‖y(t+i )− gi(ti, y(t−i ))‖ ≤ ε, i = 1, . . . ,m,

‖y(t)− gi(t, y(t−i ))‖ ≤ ε, t ∈ (ti, si], i = 1, . . . ,m,

and

(3.2)


‖y′(t)−Ay(t)− f(t, y(t))‖ ≤ ϕ(t), t ∈ (si, ti+1), i = 0, . . . ,m,

‖y(t+i )− gi(ti, y(t−i ))‖ ≤ ψ, i = 1, . . . ,m,

‖y(t)− gi(t, y(t−i ))‖ ≤ ψ, t ∈ (ti, si], i = 1, . . . ,m,

and

(3.3)


‖y′(t)−Ay(t)− f(t, y(t))‖ ≤ εϕ(t), t ∈ (si, ti+1), i = 0, . . . ,m,

‖y(t+i )− gi(ti, y(t−i ))‖ ≤ εψ, i = 1, . . . ,m,

‖y(t)− gi(t, y(t−i ))‖ ≤ εψ, t ∈ (ti, si], i = 1, . . . ,m.

Now we set the vector space

Z := PC(J,X)

m⋂
i=0

C1((si, ti+1), X)

m⋂
i=0

C((si, ti+1), D(A))

The following concepts are inspired by Wang et al. [37].

Definition 3.1. The equation (1.6) is Ulam–Hyers stable if there exists

a real number cf,m,g > 0 such that for each ε > 0 and for each solution y ∈ Z of

the inequality (3.1), there exists a mild solution x ∈ PC(J,X) of the equation

(1.6) with

(3.4) ‖y(t)− x(t)‖ ≤ cf,m,gε, t ∈ J.

Definition 3.2. The equation (1.6) is generalized Ulam–Hyers stable if there

exists θf,m,g ∈ C(R+,R+), θf,m,g(0) = 0 such that for each solution y ∈ Z of

the inequality (3.1), there exists a mild solution x ∈ PC(J,X) of the equation

(1.6) with

(3.5) ‖y(t)− x(t)‖ ≤ θf,m,g(ε), t ∈ J.

Definition 3.3. The equation (1.6) is Ulam–Hyers–Rassias stable with re-

spect to (ϕ,ψ) if there exists cf,m,g,ϕ > 0 such that for each ε > 0 and for each
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solution y ∈ Z of the inequality (3.3), there exists a mild solution x ∈ PC(J,X)

of the equation (1.6) with

(3.6) ‖y(t)− x(t)‖ ≤ cf,m,g,ϕε(ϕ(t) + ψ), t ∈ J.

Definition 3.4. The equation (1.6) is generalized Ulam–Hyers–Rassias sta-

ble with respect to (ϕ,ψ) if there exists cf,m,g,ϕ > 0 such that for each solution

y ∈ Z of the inequality (3.2) there exists a mild solution x ∈ PC(J,X) of the

equation (1.6) with

(3.7) ‖y(t)− x(t)‖ ≤ cf,m,g,ϕ(ϕ(t) + ψ), t ∈ J.

Remark 3.5. It is clear that: (a) Definition 3.1 ⇒ Definition 3.2; (b) Defi-

nition 3.3⇒ Definition 3.4; (c) Definition 3.3 for ϕ(t) = ψ = 1⇒ Definition 3.1.

Remark 3.6. A function y ∈ Z is a solution of the inequality (3.3) if

and only if there is G ∈
m⋂
i=0

C1((si, ti+1), X)
m⋂
i=0

C((si, ti+1), D(A)) and g ∈
m⋂
i=1

C([ti, si], X) (which depend on y) such that:

(a) ‖G(t)‖ ≤ εϕ(t), t ∈
m⋃
i=0

(si, ti+1) and ‖g(t)‖ ≤ εψ, t ∈
m⋃
i=0

[ti, si];

(b) y′(t) = Ay(t) + f(t, y(t)) +G(t), t ∈ (si, ti+1), i = 0, . . . ,m;

(c) y(t) = gi(t, y(t−i )) + g(t), t ∈ (ti, si], i = 1, . . . ,m;

(d) y(t+i ) = gi(ti, y(t−i )) + g(ti), i = 1, . . . ,m.

One can have similar remarks for the inequalities (3.1) and (3.2).

Remark 3.7. If y ∈ Z is a solution of the inequality (3.3) then y is a solution

of the following integral inequality

(3.8)



‖y(t)− gi(t, y(t−i ))‖ ≤ εψ, t ∈ (ti, si], i = 1, . . . ,m;∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)(s, y(s)) ds

∥∥∥∥
≤ εM

∫ t

0

eω(t−s)ϕ(s) ds, t ∈ [0, t1];

‖y(t+i )− gi(ti, y(t−i ))‖ ≤ εψ, i = 1, . . . ,m;∥∥∥∥y(t)− T (t− si)gi(si, y(t−i ))−
∫ t

si

T (t− s)f(s, y(s))ds

∥∥∥∥
≤ εMeω(t−si)ψ + εM

∫ t

si

eω(t−s)ϕ(s) ds,

t ∈ [si, ti+1], i = 1, . . . ,m.

In fact, by Remark 3.6 we get

(3.9)


y′(t) = Ay(t) + f(t, y(t)) +G(t), t ∈ (si, ti+1), i = 1, . . . ,m;

y(t+i ) = gi(ti, y(t−i )) + g(ti), i = 1, . . . ,m;

y(t) = gi(t, y(t−i )) + g(t), t ∈ (ti, si], i = 1, . . . ,m.
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Clearly [28, p. 105], the solution y ∈ Z of the equation (3.9) is given by

y(t) = gi(t, y(t−i )) + g(t), t ∈ (ti, si], i = 1, . . . ,m;

y(t) =T (t)y(0) +

∫ t

0

T (t− s)(f(s, y(s)) +G(s)) ds, t ∈ [0, t1];

y(t) =T (t− si)(gi(si, y(t−i )) + g(ti))

+

∫ t

si

T (t− s)(f(s, y(s)) +G(s)) ds, t ∈ [si, ti+1], i = 1, . . . ,m.

For t ∈ [si, ti+1], i = 0, . . . ,m, we get∥∥∥∥y(t)− T (t− si)gi(si, y(t−i )) −
∫ t

si

T (t− s)f(s, y(s)) ds

∥∥∥∥
≤Meω(t−si)‖g(ti)‖+

∫ t

si

eω(t−s)‖G(s)‖ ds

≤ εMeω(t−si)ψ + εM

∫ t

si

eω(t−s)ϕ(s) ds.

Proceeding as above, we derive that

‖y(t)− gi(t, y(t−i ))‖ ≤ ‖g(t)‖ ≤ εψ, t ∈ (tj , sj ], j = 1, . . . ,m;

∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)f(s, y(s)) ds

∥∥∥∥ ≤M ∫ t

0

eω(t−s)‖G(s)‖ ds

≤ εM
∫ t

0

eω(t−s)ϕ(s) ds, t ∈ [0, t1].

Similarly, one can give similar remarks for the solutions of the inequalities (3.2)

and (3.1).

To discuss stability, we need the following additional assumption:

(H4) Let ϕ ∈ C(J,R+) be a nondecreasing function. There exists cϕ > 0 such

that ∫ t

0

ϕ(s) ds ≤ cϕϕ(t), for each t ∈ J.

We need an impulsive Gronwall inequality which was given by Bainov and

Simeonov (see Theorem 16.4, [9]).

Lemma 3.8. Let M0 := M ∪ {0} and the following inequality holds

(3.10) u(t) ≤ a(t) +

∫ t

0

b(s)u(s) ds+
∑

0<tk<t

βku(t−k ), t ≥ 0,

where u, a, b ∈ PC(R+,R+), a is nondecreasing and b(t) > 0, βk > 0, k ∈ M.

Then, for t ∈ R+, the following inequality is valid:

(3.11) u(t) ≤ a(t)(1 + β)k exp

(∫ t

0

b(s) ds

)
, t ∈ (tk, tk+1], k ∈M0,
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where β = sup
k∈M
{βk}.

Now we are ready to state our main results in this section.

Theorem 3.9. Assume that (H1)–(H4) are satisfied. Then the equation (1.6)

is Ulam–Hyers–Rassias stable with respect to (ϕ,ψ).

Proof. Let y ∈ PC(J,D(A)) ∩ C1((si, ti+1], X) be a solution of the in-

equality (3.3). Denote by x the unique mild solution of the impulsive Cauchy

problem

(3.12)


x′(t) = Ax(t) + f(t, x(t)), t ∈ (si, ti+1), i = 0, . . . ,m,

x(t+i ) = gi(ti, x(t−i )), i = 1, . . . ,m,

x(t) = gi(t, x(t−i )), t ∈ (ti, si], i = 1, . . . ,m,

x(0) = y(0).

Then we get

x(t) =



gi(t, x(t−j )), t ∈ (tj , sj ], j = 1, . . . ,m,

T (t)y(0) +

∫ t

0

T (t− s)f(s, x(s)) ds, t ∈ [0, t1],

T (t− si)gi(si, x(t−i )) +

∫ t

si

T (t− s)f(s, x(s)) ds,

t ∈ (si, ti+1], i = 1, . . . ,m.

Keep in mind of (3.8), for each t ∈ (si, ti+1], i = 1, . . . ,m, we have∥∥∥∥y(t)− T (t− si)gi(si, y(t−i ))−
∫ t

si

T (t− s)f(s, y(s)) ds

∥∥∥∥
≤ εMe|ω|T

(
ψ +

∫ t

0

ϕ(s) ds

)
≤ εMe|ω|T (ψ + cϕϕ(t)),

and for t ∈ (tj , sj ], j = 1, . . . ,m, we have

‖y(t)− gi(t, y(ti))‖ ≤ εψ,

and for t ∈ [0, t1], we have∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)f(s, y(s)) ds

∥∥∥∥ ≤ εMe|ω|T cϕϕ(t).

Hence, for each t ∈ (si, ti+1], i = 1, . . . ,m, we get

‖y(t)− x(t)‖ ≤
∥∥∥∥y(t)− T (t− si)gi(si, y(t−i ))−

∫ t

si

T (t− s)f(s, y(s)) ds

∥∥∥∥
+Me|ω|T ‖gi(si, y(t−i ))− gi(si, x(t−i ))‖

+Me|ω|T
∫ t

si

‖f(s, y(s))− f(s, x(s))‖ ds
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≤Me|ω|T
(
ε(1 + cϕ)[ψ + ϕ(t)] + Lgi‖y(t−i )− x(t−i )‖

+ Lf

∫ t

si

‖y(s)− x(s)‖ ds
)

≤Me|ω|T
(
ε(1 + cϕ)[ψ + ϕ(t)] + Lf

∫ t

0

‖y(s)− x(s)‖ ds

+

i∑
j=1

Lgj‖y(t−i )− x(t−i )‖
)
.

Further, for t ∈ (tj , sj ], j = 1, . . . ,m, we have

‖y(t)− x(t)‖ ≤‖y(t)− gi(t, y(t−i ))‖+ ‖gi(t, y(t−i ))− gi(t, x(t−i ))‖

≤ εψ +

i∑
j=1

Lgj‖y(t−j )− x(t−j )‖

≤Me|ω|T
(
ε(1 + cϕ)[ψ + ϕ(t)]

+ Lf

∫ t

0

‖y(s)− x(s)‖ ds+

i∑
j=1

Lgj‖y(t−i )− x(t−i )‖
)
.

Next, for t ∈ [0, t1], we have

‖y(t)− x(t)‖ ≤Me|ω|T
(
εcϕϕ(t) + Lf

∫ t

0

‖y(s)− x(s)‖ ds
)

≤Me|ω|T
(
ε(1 + cϕ)[ψ + ϕ(t)] + Lf

∫ t

0

‖y(s)− x(s)‖ ds
)
.

Consequently, for t ∈ (ti, ti+1], using Lemma 3.8, we derive that

‖y(t)− x(t)‖ ≤Me|ω|T (1 + cϕ)(1 +Me|ω|TLg)
ieMe|ω|TLf tε(ψ + ϕ(t))

≤Me|ω|T (1 + cϕ)(1 +Me|ω|TLg)
meMe|ω|TLfT ε(ψ + ϕ(t))

:= cf,m,g,ϕε(ψ + ϕ(t)),

for Lg := sup
i∈M

Lgi , which implies that the equation (1.6) is Ulam–Hyers–Rassias

stable with respect to (ϕ,ψ). The proof is completed. �

Just repeating the procedure in Theorem 3.9, we establish without proof the

following results.

Remark 3.10. Under the assumptions of Theorem 3.9, we consider the equa-

tion (1.6) and the inequality (3.2). One can repeat the same process to verify

that the equation (1.6) is generalized Ulam–Hyers–Rassias stable with respect

to (ϕ,ψ).
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Remark 3.11. Under the assumptions of Theorem 3.9, we consider the equa-

tion (1.6) and the inequality (3.1). One can repeat the same process to verify

that the equation (1.6) is Ulam-Hyers stable.

To end this section, we give an example to illustrate our abstract results

above.

Example 3.12. We consider one-dimensional diffusion processes with not

instantaneous changes of states. The example can explain either evolution of the

temperature of the rod or the chemical concentration of the substance.

Consider the following impulsive partial differential equation

(3.13)



∂

∂t
x(t, y) =

∂2

∂y2
x(t, y), y ∈ (0, 1), t ∈ [0, 1) ∪ (2, 3],

∂

∂y
x(t, 0) =

∂

∂y
x(t, 1) = 0, t ∈ [0, 1) ∪ (2, 3],

x(t, y) = λx(1−, y), λ ∈ (−1, 1), t ∈ (1, 2], y ∈ (0, 1).

Hence J = [0, 3], 0 = t0 = s0, t1 = 1, s1 = 2 and T = 3. Let X = L2(0, 1).

Define

Ax =
∂2

∂y2
x for x ∈ D(A)

with

D(A) =

{
x ∈ X :

∂x

∂y
,
∂2x

∂y2
∈ X, x(0) = x(1) = 0

}
.

Then, A is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0} in X.

Moreover, ‖T (t)‖ ≤ 1 for all t ≥ 0. So M = 1 and ω = 0.

Denote x(t)(y) = x(t, y), f(t, x)(y) = 0 and g1(t, x)(y) = λx(y), then the

problem (3.13) can be abstracted into

(3.14)

x′(t) = Ax(t), t ∈ (0, 1) ∪ (2, 3),

x(t) = λx(1−), t ∈ (1, 2].

Clearly, (H0)–(H3) are satisfied. Then the equation (3.14) with a given initial

value has a unique solution x ∈ PC(J,X). Moreover, we put ϕ(t) = et and

ψ = 1. Then (H4) holds if cϕ = 1. Thus, by Theorem 3.9, the equation (3.13)

is Ulam–Hyers–Rassias stable with respect to (et, 1) on [0, 3] and cf,ψ,g,ϕ =

2(1 + |λ|).

4. Extension stability results on the unbounded interval

In this section we consider the case J = R+. Then one can replace i =

1, . . . ,m by i ∈ N and i = 0, . . . ,m by i ∈ {0} ∪ N in the inequalities (3.1)–

(3.3) and (3.4)–(3.7), respectively. Then, one can rewrite four parallel stability
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definitions like Definitions 3.1–3.4 when we take

Z := PC(J,X)
⋂
i∈M0

C1((si, ti+1), X)
⋂
i∈M0

C((si, ti+1), D(A))

We state the following assumptions:

(H′0) C0-semigroup {T (t), t ≥ 0} is exponentially stable, that is, ω < 0 in (H0).

(H′1) f ∈ C([0,∞)×X,X).

(H′2) There exists positive constant Lf ∈ C(R+, (0,∞)) such that

‖f(t, u1)− f(t, u2)‖ ≤ Lf‖u1 − u2‖

for each t ∈ [0,∞) and all u1, u2 ∈ X.

(H′3) gi ∈ C([ti, si] ×X,X) and there are positive constants Lgi , i ∈ N such

that

‖gi(t, u1)− gi(t, u2)‖ ≤ Lgi‖u1 − u2‖
for each t ∈ [ti, si] and all u1, u2 ∈ X.

(H′4) There exists cϕ ≥ 1 such that∫ t

si

eω(si−s)ϕ(s) ds ≤ cϕϕ(t)

for any t ∈ [si, ti+1] and i ∈M0.

First we have the following extension of Theorem 2.2.

Theorem 4.1. Assume that (H0), (H′1)–(H′3) are satisfied, then the equation

(1.7) has a unique mild solution x ∈ PC([0,∞), X) with x(0) = x0 ∈ X.

Proof. Take T ∈ R′+ := R+ \M. Then by Theorem 2.2 the equation (1.7)

has a unique mild solution x ∈ PC([0, T ]), X) with x(0) = x0 ∈ X. Taking

T →∞, the proof is finished. �

Now we pass to the stability problem.

Theorem 4.2. Assume that (H′0)–(H′4) are satisfied. Then the equation (1.7)

is Ulam–Hyers–Rassias stable with respect to (ϕ,ψ) provided that

Lg := sup
i∈M

Lgi <∞, α := inf
i∈M

(ti+1 − si) > 0,

ω +MLf < 0, β :=MLge
(ω+MLf )α < 1.

Proof. Let y ∈ Z be a solution of the inequality (3.3). Denote by x the

unique mild solution of

(4.1)


x′(t) = Ax(t) + f(t, x(t)), t ∈ (si, ti+1), i ∈M0,

x(t+i ) = gi(ti, x(t−i )), i ∈M,

x(t) = gi(t, x(t−i )), t ∈ (ti, si], i ∈M,

x(0) = y(0).
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Then we get

x(t) =


gi(t, x(t−i )), t ∈ (ti, si], i ∈M,

T (t)x0 +

∫ t

0

T (t− s)f(s, x(s))ds, t ∈ [0, t1],

T (t− si)gi(si, x(t−i )) +

∫ t

si

T (t− s)f(s, x(s))ds, t ∈ (si, ti+1], i ∈M.

Here we note that we mean [a,∞] = [a,∞) to avoid confusion. By (3.8), for

each t ∈ (si, ti+1], i ∈M, we have∥∥∥∥y(t)− T (t− si)gi(si, y(t−i ))−
∫ t

si

T (t− s)f(s, y(s)) ds

∥∥∥∥
≤ εMeω(t−si)ψ + εM

∫ t

si

eω(t−s)ϕ(s) ds ≤ εMeω(t−si)cϕ(ψ + ϕ(t)),

and for t ∈ (ti, si], i ∈ M, we have ‖y(t)− gi(t, y(t−i ))‖ ≤ εψ, and for t ∈ [0, t1],

we have∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)f(s, y(s))ds

∥∥∥∥ ≤ εM ∫ t

0

eω(t−s)ϕ(s) ds

≤ εMcϕe
ωtϕ(t).

Hence, for each t ∈ (si, ti+1], i ∈M, we get

‖y(t)− x(t)‖ ≤
∥∥∥∥y(t)− T (t− si)gi(si, y(t−i ))−

∫ t

si

T (t− s)f(s, y(s)) ds

∥∥∥∥
+Meω(t−si)‖gi(si, y(t−i ))− gi(si, x(t−i ))‖

+M

∫ t

si

eω(t−s)‖f(s, y(s))− f(s, x(s))‖ ds

≤ εMcϕe
ω(t−si)(ψ + ϕ(t)) +Meω(t−si)Lg‖y(t−i )− x(t−i )‖

+MLf

∫ t

si

eω(t−s)‖y(s)− x(s)‖ ds,

which implies for y(t) := e−ωty(t) and x(t) := e−ωtx(t) that

‖y(t)− x(t)‖ ≤ εMcϕe
−ωsi(ψ + ϕ(t))

+Meω(ti−si)Lg‖y(t−i )− x(t−i )‖+MLf

∫ t

si

‖y(s)− x(s)‖ ds

for t ∈ [si, ti+1], i ∈M. By the Gronwall inequality (note ϕ(t) is nondecreasing),

we derive

‖y(t)−x(t)‖ ≤ (εMcϕe
−ωsi(ψ+ϕ(t))+Meω(ti−si)Lg‖y(t−i )−x(t−i )‖)eMLf (t−si),

which gives back

(4.2) ‖y(t)− x(t)‖ ≤Me(ω+MLf )(t−si)(εcϕ(ψ + ϕ(t)) + Lg‖y(t−i )− x(t−i )‖)
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for t ∈ [si, ti+1], i ∈M, and in particular

‖y(t−i+1) − x(t−i+1)‖(4.3)

≤Me(ω+MLf )(ti+1−si)(εcϕ(ψ + ϕ(t−i+1)) + Lg‖y(t−i )− x(t−i )‖)

≤Mcϕε(ψ + ϕ(t−i+1)) + β‖y(t−i )− x(t−i )‖

for i ∈M when ti+1 <∞. Further, for t ∈ (ti, si], i ∈M, we have

‖y(t)− x(t)‖ ≤‖y(t)− gi(t, y(t−i ))‖+ ‖gi(t, y(t−i ))− gi(t, x(t−i ))‖(4.4)

≤ εψ + Lg‖y(t−i )− x(t−i )‖.

Moreover, for t ∈ [0, t1], we have

‖y(t)− x(t)‖ ≤ εM
∫ t

0

eω(t−s)ϕ(s) ds+M

∫ t

0

eω(t−s)Lf‖y(s)− x(s)‖ ds

≤ εMcϕe
ωtϕ(t) +MLf

∫ t

0

eω(t−s)‖y(s)− x(s)‖ ds

which yields like above that

(4.5) ‖y(t)− x(t)‖ ≤ εMcϕe
(ω+MLf )tϕ(t) ≤ εMcϕϕ(t)

for t ∈ [0, t1], and in particular

(4.6) ‖y(t−1 )− x(t−1 )‖ ≤ εMcϕϕ(t−1 ).

Solving (4.3) and using (4.6) we derive

‖y(t−i )− x(t−i )‖ ≤Mεcϕ

i∑
j=2

(ψ + ϕ(t−j ))βi−j + βi−1‖y(t−1 )− x(t−1 )‖(4.7)

≤ Mεcϕ(ψ + ϕ(t−i ))

1− β
+ εMcϕϕ(t−i ),

since ϕ( · ) is nondecreasing.

Now let t ≥ 0. Then either t ∈ [0, t1] and (4.5) gives

(4.8) ‖y(t)− x(t)‖ ≤ εMcϕϕ(t),

or t ∈ (ti, ti+1] for some i ∈M0. Then either t ∈ (ti, si] and then (4.4) and (4.7)

give

‖y(t)− x(t)‖ ≤ εψ + Lg

(
Mεcϕ(ψ + ϕ(t−i ))

1− β
+ εMcϕϕ(t−i )

)
(4.9)

≤ ε
((

1 +
MLgcϕ
1− β

)
ψ +

(
MLgcϕ
1− β

+Mcϕ

)
ϕ(t)

)
,
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or t ∈ (si, ti+1] and then (4.2) and (4.7) give

‖y(t)− x(t)‖ ≤Me(ω+MLf )(t−si)
(
εcϕ(ψ + ϕ(t))(4.10)

+ Lg

(
Mεcϕ(ψ + ϕ(t−i ))

1− β
+ εMcϕϕ(t−i )

))
≤Mεcϕ

((
1 +

Lg
1− β

)
ψ +

(
2 +

Lg
1− β

)
ϕ(t)

)
.

Using (4.8), (4.9) and (4.10) we have

‖y(t)− x(t)‖ ≤ cf,g,ϕε(ψ + ϕ(t))

for any t ≥ 0, where cf,g,ϕ := Mcϕ(2 + Lg/(1− β)). Summarizing, we see that

the equation (1.7) is Ulam–Hyers–Rassias stable with respect to (ϕ,ψ). �

Remark 4.3. If γ := sup
i∈M0

(ti+1 − si) < ∞, then assumption (H′4) holds for

any ϕ(t) = ceω
′t, c > 0 and ω′ > ω. Indeed, we compute∫ t

si

eω(si−s)ϕ(s) ds = c

∫ t

si

eω(si−s)+ω′s ds ≤ ce
ω(si−t)+ω′t

ω′ − ω
≤ e−ωγ

ω′ − ω
ϕ(t)

for any t ∈ [si, ti+1] and i ∈ M0, so cϕ = e−ωγ/(ω′ − ω). In particular, the

constant function ϕ(t) = ϕ can be also used with ω′ = 0.

Finally, we give an example to illustrate our above results.

Example 4.4. Consider

(4.11)



∂

∂t
x(t, y) = (∆y − 3I)x(t, y), y ∈ Ω,

t ∈ (2i+ 1, 2(i+ 1)], i ∈ {0} ∪ N,
∂

∂y
x(t, y) = 0, y ∈ ∂Ω, t ≥ 0,

x(t, y) = sin i · x(2i−, y), y ∈ Ω, (2i, 2i+ 1], i ∈ N,

where Ω ⊂ R2 is a bounded domain, ∆y is the Laplace operator in R2, and

∂Ω ∈ C2. Note now si = 2i + 1 and ti = 2i, i ∈ {0} ∪ N. Here we consider

infinitely many impulses on infinite time interval R+.

Let X = L2(Ω), D(A) = H2(Ω)∩H1
0 (Ω). Define Ax = (∆y−3I)x, x ∈ D(A).

By Theorem 2.5 of [28], A is just the infinitesimal generator of a contraction C0-

semigroup in L2(Ω), that is, ‖T (t)‖ ≤ e−3t for t ≥ 0, so m = 1 and ω = −3 < 0.

Denote x( · )(y) = x( · , y), f( · , x)(y) = 0 and gi( · , x)(y) = (sin i) ·x(y), then

the problem (4.11) can be abstracted into

(4.12)


x′(t) = Ax(t), t ∈ (2i+ 1, 2(i+ 1)), i ∈ {0} ∪ N,
x(2i+) = x(2i−), i ∈ N,
x(t) = (sin i)x(2i−), t ∈ (2i, 2i+ 1], i ∈ N.
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Clearly, (H′0)–(H′3) are satisfied, and Lg = 1, α = γ = 1, Lf = 0, ω+MLf = −3,

ω = e−3 < 1 and by Remark 4.3, we can take ϕ(t) = eω
′t, ω′ > −3 and ψ = 1.

Then (H′4) holds for cϕ = e3/(ω′ + 3). Thus, applying Theorem 4.2, the equation

(4.11) is Ulam–Hyers–Rassias stable with respect to (eω
′t, 1) on R+ with ω′ > −3

and

cf,N,g,ϕ =
e3

ω′ + 3

(
2 +

1

1− e−3

)
.
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[11] L. Cădariu, Stabilitatea Ulam–Hyers–Bourgin pentru ecuatii functionale, Ed. Univ. Vest
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