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A GENERAL CLASS OF UNSTEADY HEAT FLOW PROBLEMS IN A
FINITE COMPOSITE HOLLOW CIRCULAR CYLINDER*

NURETTIN Y. OLgER
Illinois Institute of Technology

1. Introduction. The solution of boundary-initial value problems in the conduction
of heat in composite circular cylinders is of considerable technological importance,
particularly to the aerospace, nuclear and ordnance industries where concentric hollow
metallic cylinders of finite length are encountered under diverse heating and boundary-
and initial-conditions. These problems have consequently attracted considerable at-
tention and, in the course of time, a number of special solutions have been developed.
Among these, for instance, Penner and Sherman [1] dealt with the problem of radial
flow of heat in a cylindrical solid core surrounded by a cylindrical shell thermally in-
sulated at the outer boundary, the initial temperature in each region being unequal but
uniform. A similar problem, with a convective boundary condition periodic in time, is
discussed by Lowell [2] and by Lowell and Patton [3]. A number of similar radial flow
problems of slightly more general nature are treated by Jaeger [4], Thiruvenkatachar
and Ramakrishna [5] appear to be the first to consider a case of combined radial and
axial flow of heat in a solid core cylinder of two materials under homogeneous boundary
conditions and uniform initial conditions. The same problem where the outer radial
surface instead of being thermally insulated is kept at a temperature varying sinusoidally
with time is discussed by Kumar and Thiruvenkatachar [6] under homogeneous initial
conditions. The problem of radial heat flow in a hollow core circular cylinder of two
materials is studied by Jaeger [4] for the case of constant surface temperatures and
homogeneous initial conditions, and also by Gerhard [7] for the case of constant con-
vective heating on one face and adiabatic conditions on the other, the initial conditions
being homogeneous. More recently, Kumar [8] treated the more general problem of
combined radial and axial conduction of heat in a two material hollow circular cylinder,
with homogeneous initial conditions and under convective type of time-independent
boundary conditions prescribed at the inner and outer radial surfaces when the flat
ends are kept at the zero initial temperature.

It is thus evident that, as far as heat conduction problems in composite hollow
cylinders are concerned, Kumar's study [8] is the most general yet set forth, although
it is restricted to (a) time-independent boundary conditions of a special nature, (b)
cases of circular symmetry, (c) absence of internal heat sources, (d) assumption of
homogeneous initial conditions, and (e) assumption of perfect thermal contact between
the two concentric components of the hollow cylinder. The objective of the present
paper is to solve the composite hollow cylinder problem in a very general form not
subjected to these restrictions and limitations. To this end we first formulate the problem
in its general form.
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2. Statement of the problem. Consider a hollow, right, circular cylinder composed
of two concentric, radial layers, each of finite length 21. We assume that each rigid layer
is homogeneous and isotropic, with thermal properties independent of temperature,
and that the two layers are in imperfect thermal contact at the common interface, which
is characterized by a finite interfacial conductance /ij > 0. The internal heat sources
and the boundary heat sources (i.e., source terms introduced by boundary conditions)
in the two layers are prescribed in terms of arbitrary but integrable functions of space
and time. These are also called volume (bulk) source functions and surface source func-
tions, respectively. Initially, the temperature distribution in each layer is given by
arbitrary but integrable functions of space. These latter are also known as initial ex-
citations or initial source functions. Under these prescribed source conditions and con-
siderably general boundary conditions, we wish to determine the resulting unsteady
temperature field in each layer.

Using cylindrical polar co-ordinates r, <p, z, and choosing the z co-ordinate along the
geometrical axis of the cylinders, we may express the governing differential equations
for the temperature distributions Ti and T2 as

d2 , 1 d . 1 d2 . d2 1 d L, , A , 1 „ , A _
P + r 5? + ? 57 + P " * aiP'(r' »•'■ " + k, «'(r''• '• 0 " 0

(i — 1,2; Ti : a < r < b, 0 < <p < 2r, |z| < Z; / > 0;

T2 : b < r < c, 0 < <p < 2ir, \z\ < I; t > 0) (1)

where a, b, c denote, respectively, inner, interfacial and outer radii; fc; > 0 and /c,- > 0
denote, respectively, thermal conductivity and thermal diffusivity; Q;(r, <p, z, t) represents
the prescribed, arbitrary volume source functions, per unit time and per unit volume,
in the two layers, and t is the time. We specify the initial conditions for the Eqs. (1) as

Ti(r, <p, z, 0) = Fi(r, <p,z) (i = 1, 2; T1 : a < r < b, 0 < <p < 2ir, |z| < I;

T2 : b < r < c, 0 < <p < 2x, |«| < I) (2)

where F^r, <p, z) represents the prescribed, arbitrary initial sources in the layers. In
addition to Eqs. (1) and (2), the temperature distributions 7\(r, (p, z, t) are required to
satisfy the conditions prescribed at the boundaries and at the interface. To unify the
treatment of the most commonly encountered boundary conditions (prescribed surface
temperature, prescribed surface heat flux, and linearized radiation or Newtonian type
of convection), and thus to be readily able to obtain the corresponding results for the
relevant special cases, we express the boundary- and interface-conditions in the following
general form:

(-d/dr + hoyrx(r, <p, z, t) = p,(p, /) (r = a)

ki dTi(r, ip, z, t)/dr = k2 dT2(r, <p, z, t)/dr (r = b)

= hi{T2(r, <p, z, t) - Ti(r, <p, z, t)\

(d/dr + h2)T2(r, <p, z, t) = p2(<p, z, t) (r = c)

(3a)

(0<<p<2t)\z\ <l;t> 0) (3b,c)

(3d)
(4a)

(,d/dz + h'2)rl\(r, <p, z, t) = Xl(r, v, t) (z = I), J (4b)

( d/dz + hOT^r, <p, z, t) fi(r, <p, t) (z (a <r <b\0 <<p <2*; t> 0)^



1968] A GENERAL CLASS OF UNSTEADY HEAT FLOW PROBLEMS 357

{-d/dz + KYUr, <p, z, t) = f2(r, <p, t) (z = -0,1 (6 <r <c; o < ^ < 2.; / > 0).(5a)
(<d/dz + h'2)T2(r, <p, z, t) = x2(r, <p, /) (2=0. J (5b)

In Eqs. (3a) and (3d), h0 > 0 and h2 > 0 are, respectively, given surface coefficients
linearly related to the corresponding heat transfer coefficients at the internal and external
radial surfaces r = a and r — c, and the corresponding surface sources are represented
by the arbitrary functions pi(<^, z, t) and p2{<p, z, t). Equations (3b, c) express the dis-
continuity of the temperature and the discontinuity of the radial gradient of temperature
at the interface r = b. In the event of perfect interfacial thermal contact, we let the
interfacial thermal conductance hi —» oo, in which case Eqs. (3b, c) express the continuity
of thermal flux and the continuity of temperature across the interface r = b. This
simplifying assumption has been employed in all of the references [1]—[8] cited. Similarly,
Eqs. (4) and (5) introduce arbitrary surface sources fi(r, <p, t), f2(r, <p, t) and xi(r, <p, 0>
x2(r, <p, t) at the flat ends z = —I and z = I, respectively, where h'0 > 0 and h'2 > 0 are
the corresponding prescribed surface coefficients proportional to the relevant surface
heat transfer coefficients. By assigning appropriate values to the coefficients h0 , h2 ,
h'0 and h2 , we can realize a wide variety of diverse combinations of Dirichlet, and/or
Neumann, and/or Robin type of boundary conditions at the four boundaries r = a,
r = c, z = ±1. Equations (1), (2), (3), (4) and (5) constitute a general mathematical
formulation of the problem.

3. Method of solution. We note that the technique of solution employed in
[1], [2], [3] and [7] is the method of separation of variables, whereas the procedure followed
in [4], [5], [6] and [8] employs the method of Laplace transform. It is well known that
in the event of general and/or complex problems of heat flow, the application of the
Laplace transform technique generally results in such complicated expressions for the
inverse transform as to render its use prohibitive. This is particularly true in the case
of the general boundary-initial value problem under consideration. Since the use of the
separation of variables technique does not offer any particular advantage either, we
shall utilize a different approach which will greatly facilitate the general solution of the
problem. In order to deal effectively with the general problem at hand, it is, as will be
seen, advantageous to resort to an inverse method of eigenfunction expansion, better
known as the method of finite integral transformation. To this end, we define an auxiliary
problem.

4. Auxiliary problem. Guided by a procedure outlined by Olger [9], we define the
following auxiliary eigenvalue problem associated with the system of Eqs. (1), (3), (4)
and (5).

(j2 + - ~ + Kfi + £ + -W, <p, z) = o\dr r dr r dip dz kJ

(i = 1, 2; 0i : a < r < b, 0 < y < 2ir, \z\ <
<j>2 '■ b < r < c, 0 < <p < 2ir, |g| < I) (6)

( — d/dr + h0)<l>i(r, <p,z) = 0 (r = a),

ki d<f>,(r, <p, z)/dr = k2 d<t>2{r, <p, z)/dr (r = b)

= h,{<t>2(r, >p, z) - <£i(r, <p, z)\,

(d/dr + h2)<t>2(r, <p, z) = 0 (r = c) .

(0 < v < 2tt; |2| < /) (7)
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(-d/dz + W)0i(r, *»,«) = o = -/),] (a < r < ?,. 0 < ^ < 2ir) (8)
(3/52 + h'^^r, <p, z) = 0 (z = 0 J

(b < r < c; 0 < <p < 2ir) (9)(-3/32 + h'0)<t>2(r, <p, z) = 0 (z = — Z),

(3/32 + hOfoir, v, z) = 0 (z=0 J
where

<t>i = <t>i:x = <£ux(r, V, 2) (a < r < b),

= 4>2;x(r, V, 2) (b < r < c)

denotes the real eigenfunctions in the two layers, and corresponds to the real eigenvalue
X. After lengthy manipulations, the solution to the eigenvalue problem is obtained as

<£i(r, <p, 2) = (W^L cos v,(l + z)+ h'0 sin Vj(l + 2)],
[sin (m<p)J ^

<t>i(r, <P, z) = [fcIM,C:,1,Oi1&)Ci,W)]JCOT (m^l[r,. cos „(Z + z) + K sin *,-(/ + 2)]
[sin (w?.^)J

where

Ci'W) = /x.'") - h0Co™o(niCi, Mlr)t (n)

Ci'W) = /fcC&W, M2c) + h2C0*0(1*2?, M*c)

and the primes over and C"' indicate differentiation with respect to their arguments.
The cylinder functions (of two arguments and of order m) appearing in (11) are defined
in terms of the cross products of Bessel functions of order m:

C(oml(x, y) = y) = JJx)YJy) - Y„.(x)JJ,y), (1JJ)
Clvml(x, y) = d^'C^\x, y)/dx° dy° (p, q = 0, 1, 2, • • •)

where Jm(x) is the Bessel function of the first kind of order m, and Ym(x) is the Bessel
function of the second kind of order m. In equation (10), m = 0, 1, 2, • • ■ ; Vj is the ;th
nonnegative root of the axial frequency equation

v,(h'0 + hQ cos (2Vil) + (h'M - ?■) sin (2v,T) = 0. (13)
Hi and Hi are related by the coupling equation

/•§ = (ki/k>)iA + (k,/k2 - l)v) (14)

and are determined, for a given value of m and a given value of vf, as the kth nonnegative
root of the radial frequency equation

hh^C^MC'^^b) = k2fl2C'mm(^b){k^C:r(^b) + htC^fab)}. (15)
The resultant eigenvalues X are obtained as

X = Kltf + ,*) = *04 +,})• (16)
The eigenvalues X and the eigenfunctions <£,(r, <p, 2), (i — 1, 2), each comprise triple
index sets. Thus, in a more explicit form,
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X " X i , k , m ,

<t>< = </>,';X = V, *)>

(j, k, m = 0, 1,2, ...). (17)

An important property of the eigenfunctions (/>i;x is the orthogonality relation ex-
pressed by

-4(X){— f I f <£i;x01;x.r dr d<p dz + — f f f dr dtp tfel = 5U<
Ui J a -0 J-i J b Jo J-i )

where 5XX, is the Kronecker delta. This expression is obtained from the system of Eqs.
(6), (7), (8) and (9). We thus have

1—= ~ f f f {^■.i.k.m(r,<p,z)}2rdrd<pdz
} ,k ,m\^J ^1 ♦'« •'O J — I

+ — [ f f <p, z)\\dr dip dz (18)
K 2 Jb J 0 J-l

where

^,-.t.m(X) = A(\iik,m) m A(\).

Another important relation between the eigenfunctions </>< and the eigenvalues X,
which is obtained from the system of (6), (7), (8) and (9), is the following:

X - I £ [(!') + 4 (g») + ('Jj) ]r'h,l.,,k

[/» 2t f*l rtb /»2t

ah0 / / <j)l(a, <p, z) d<p dz + h'0 / / <j>l(r, <p, — l)r dr d<p
J 0 J-J Ja Jo

/b /*2r "1 r /i2t /»ZJ 4>l(r, <p, l)r dr d<p J + /c2^c/&2 J J <t>l(c, ip, z) d<p dz
r* c r* 2tt /% c /i2t

+ K / / 02 (r, ip, — 0?" dr d<p + h'2 I / $2(r, p, T)r dr d<p
Jb <*0 J b Jo J

+ bhi /; i; [<t>2(b, ip, z) — 0X(6, ip, z)]2 dip cfej-

Since, from (18), A(X) > 0, and since all the parameters appearing in the right-hand side
of the above expression are nonnegative, it follows from this relation that all the eigen-
values X are nonnegative. This expression shows that X = 0 is possible only when h0 =
K = h2 = h'2 = 0, and 4>i = <t>2 — constant ^ 0. Thus, except for the case of prescribed
heat flux conditions over the entire boundary of the composite hollow cylinder, the
eigenvalues X are all positive.

We now use the expressions (10) to carry out the integrations indicated in (18), and
obtain, after lengthy algebra,
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1 7T , . P 2?(fy + h'oWi + ^) + (M + k'Mt + W&TIT^W = 4 (i + °fc,H oTT^j
•[(fc2/K1)M2[C:2,(M26)]2{(62 - mV^fCCM,^]2

+ - (4/7r2)[ 1 + (1/m?)(/*o - m2/a2)]}

- (fc,/«,V?[C,:,)(».,6)]2{(62 - m2/^)[Cl,2>(M2fc)]2

+ 62[C;<2>(M26)]2 - (4/x2)f 1 + (1 /£)(hl - m2/c2)]}] (19)

where we have used the frequency equations (13) and (15), and the Wronskian relations
for the relevant cylinder functions. Finally, we let

(20)RM = k,n2C'mw(^b)Ci: W),

R,M = k^C'm"\n>b)CL2)M,
Zj(z) = Vj cos v,(l + 2) + K sin Vj(l + 2) (21)

from which it follows that

RM = -(2/t)(W a)c:r(n,b),
R-2(h2C) = (2/ir)(/c,jLi|/c)Cl">(Mit),

Z,(D = ft*, ,
Zt(-Q = ,

a, = ((,2 + O/w + «Msin 2vit)/vi)) = ±((,2. + /);2)/(r2 4- />0),/2- (24)

5. Resolution of the problem. We now define a pair of transformations by

(22)

(23)

T*(\, I) =— f f [ <j>, ;x(r, tp, z)rl\(r, tp, z, t)r dr dtp dz,
K, ,ln J-1

7'*(X,/) = ~ f f f <l>2:\(r, <p, z)T.2(r, <p, z, t)r dr dtp dz.
K'2 ''b •'() ''-I

(25)

The inverse transform of (25) is readily obtained if we note that the eigenfunctions
4>i ,\(r, tp, z) form a complete set. I11 view of this and the orthogonality property expressed
by the equation preceding (IS), we have the inversion formula for the transformations
(25):

I\(r, tp, z, I) = YL Atp, z) 7'*(X, I) (i = 1, 2) (26)
X t = 1

where the coefficient ^l(X) is given by (18) or, more explicitly, by (19).
We next apply the transformations (25) to the differential equations (1). To this end

we assume that the two cylindrical layers are independent of time and, bearing in mind
that the eigenfunctions <£i;x satisfy the differential equations (6), apply the Gauss
divergence theorem in each cylindrical layer. In view of the boundary- and interface-
conditions (3), (4), (5) and (7), (8), (9), this transformation finally results in

(d/dl + X) i; 7'*(X, I) = G(\, t) (27)



19681 A GENERAL CLASS OF UNSTEADY HEAT FLOW PROBLEMS 361

where

<?(*, t)

a 2 x /* I 2 x /* I
/ (p, z)Q,(r, <p, z, t)r dr d<f dz + aki / / 4>,.i(a, ip, z)p,(<p, z, t) dip dz

J-l Jo J-Z

n2 x /«fe l»2 x
:x(r, <?, — Z)fi(r, v>, t)rdrd<p + k, I / <£,;X(r, <?, Z)xi(r, V, t)r dr dip

J a J 0

/»e /*2x f* 2x Z

+ / / / <t>2:x(r, ip, z)Q2(r, ip, z, t)r dr dip dz + ck2 / / <t>2,x(c, ip, z)p2(ip, z, t) dip dz
Jh J o J-z t/0 ^-z

n2 x f* e r» 2 x
02:X(r, — Z)f2(r, <p, t)r dr dtp + k,2 I / 02;X(r, <p, Z)xa(r, *>, t)r dr dip.

Jb JO

(28)
Integration of Eq. (27), subject to the initial conditions (2) transformed by (25), leads to

ri!(A, 0 = exP ( — A/) x ^*00 + f exp ( —X(Z - t))G(\, t) dr (29)
» 1 »«1 Jo

where

F*,(\) = — f f [ <f>, ;X(r, (p, z)F,(r, <p, z)r dr d<p dz,
" n 1 (30)

Ft(X) = — [ [ [ <t>2.\(r, <p, z)F2(r, <p, z)r dr dip dz.
K2 Jb Jo J-I

Introducing (29) into (26) we have the formal solution for the temperature distributions
Ti(r, ip, z, t):

Ti(r, ip, z, f) — £ -4(X)^i;X(r, ip, z) exp (—Xm XI + [ exP (Xt)G(X, t) drf
X v t = I Jo J

(i = 1,2). (31)
Substituting (28) and (30) into (31), and recalling the expressions (10) for the eigenfunc-
tions, we may express the general solution in a more explicit form as

Ti(r, ip, z, t) = J2 H Y. Aj,kim(\)Ri(n{r)Z,(z) exp ( — X,
I k m

■Jo {/ ; {71 <p', z)r dr + ^ R2(p.2r)F 2(r, <?', z)r dr^Z,(z) dz

+ J exP (X,.i.mr)| J Ri(i*ir)Q,(r, ip', z, r)r dr + ^ R2(fi2r)Q2(r, ip', z, r)r dr

+ (2/T)k1k2{iilC'mt"(^lb)p.,(ip', z, t) — n.,C'mu\n2b)pi(ip', z, r) jJz.fe) dz

+ "1^1 J Ri(ni>')tti(r, ip', t) + ft,Xi(r, tp', t)\r dr

+ k2 f R2(fi2r) {f2(r, ip', r) + jS,x2(r, #>', r)}r dr
Jb

| f/rj cos m(tp — <p') dip'

(»= 1,2) (32)
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where Ai-k,„ , Rt , Z, , /3; are, respectively, given by (19), (20), (21), (24). The j- and
fc-summations extend, respectively, over the nonnegative roots of the frequency equa-
tions (13) and (15) coupled by (14), the resultant eigenvalues are given by (16),
and m = 0, 1, 2, • • • .

The general solution (32) shows how the two temperature distributions depend on
the thermal properties of and the source functions in the two cylindrical layers. The
initial sources characterized by F,-(r, <p, z) give rise to transient terms only, unless
h0 = h'0 = h2 = h2 = 0, in which case an additional term, steady-state in time, enters
the solution. The volume sources characterized by Q<(r, <p, z, t) and the surface sources
characterized by p,(<p, z, t), (r, <p, t), Xi(r, V, I) (i = 1, 2), even when independent of
time, give rise to both transient terms (which die out exponentially with time) and
steady-state terms. Only in the event that all the time-dependent source functions are
Dirac delta functions in time (i.e., instantaneous pulses at zero time) does the general
expression (32) give rise to entirely transient terms provided, again, that the surface
coefficients h0 , h'0 , h2 and h'2 are not simultaneously zero.

From the general solution (32) numerous particular solutions corresponding to the
very many specialized versions of the general problem defined by the system of equa-
tions (1), (2), (3), (4) and (5) can be readily recovered. For example, if the problem is
one of axial symmetry, that is, if the source functions F, , Qi , p, , f ,• , X,- , (i = 1, 2)
are independent of the polar angle <p, then in the summation over m only the term cor-
responding to m = 0 contributes in (32); integration with respect to <p' gives a factor
of 2ir; (32) reduces to a double infinite series over j, k, and the temperature distributions
become independent of <p. Similarly, in the event of no axial conduction, i.e., in the case
where the source functions F{, Qt, p{ are independent of z and, furthermore, the cylinder
ends 2 = ±1 are insulated (h'0 = h2 = f,- = x.- = 0), the situation reduces to that of
the two-dimensional, unsteady flow of heat in a composite, hollow, circular, thin disk.
In this case the frequency equation (13) reduces to sin (2vsl) = 0, and only the term
corresponding to v0 = 0 contributes to the j-summation appearing in (32) which thus
becomes independent of z, and reduces to a double summation over k and m.

Lastly, it is of interest to note that the general solution (32) can also be specialized
with respect to geometry. Thus, for example, the simpler case of a solid core composite
cylinder problem can be readily obtained from (32) as a limiting case by letting a =
h0 = pi = 0. This simpler problem does not appear to have been previously solved in
complete generality. Another special case which is contained in the solution (32) is the
limiting case of a single component hollow circular cylinder. In this case it is sufficient
to let hi = °o, k2 = fej , k2 = , and c — b in (32) which then becomes the general
solution to the corresponding hollow cylinder problem recently treated in detail by
Olger [10]. The axially symmetric case of a somewhat simpler version of this problem
has been treated previously by Marchi and Zgrablich [11], and the special two-dimen-
sional case of the same problem in a circular ring has been studied by Kleiner [12].

6. Alternative forms of the solution. The general solution as given in the form
(32) does not converge uniformly unless the surface sources p* , and x,- (i = 1, 2)
are all identically zero. It is therefore desirable to convert the solution (32) into uniformly
convergent alternative forms more applicable to detailed computation. In this section
we shall derive two such alternative forms. For this purpose we shall make the additional
assumptions that the time-dependent forcing functions all possess first order partial
derivatives with respect to time, and that the surface coefficients do not all vanish



1968] A GENERAL CLASS OF UNSTEADY HEAT FLOW PROBLEMS 363

simultaneously. In the event that h0 = h'() = h2 = h'2 = 0, the procedure outlined in
this section requires a fundamental modification which will be discussed in a future
study.

We now introduce an associated steady temperature field by T\0)(r, <p, z, t) (i = 1, 2)
in which t is regarded as a parameter. We choose T'f' to satisfy the following system of
equations:

1 3 , 1 32 , 32 A , 1
+ + + dzVTi (r' z't) + ki Qi(r'*> z't) = 0

(i = 1, 2; Tl0):a < r < b, 0 < <p < 2tt, \z\ < Z;

T<0): b <r < c, 0 < <p <2tt,\z\ < 1) (33)

(-d/dr + ho)Tin\r, <p, z, Z) = pi(<p, z, t) (r = a),

A-, dT\a\r, <p, z, t)/dr = k2 dT2\r, <p, z, t)/dr (r = b),

= MTiyr.v.g, t) - T?\r,v,z, 0}
(3/3r + h2)T2\r, <p, z, t) = p2(<p, 2, Z) (r = c) .

(-3/32 + h'0)T[0)(r, <p, z, t) = f,(r, Z) (z = -I),

(d/dz + h'2)Tf\r, <p, z, Z) = Xi(r, v. 0 (2 = 0

(-3/32 + h'0)T2\r, <p, z, t) = f2(r, <?, /) (2 = -Z),

(3/32 + h'2)T2°\r, <p, z, t) = x2(r, <js, 0 (2 = Z) J

The result of transforming this system by the transformation (25) is

(0 < <p < 2ir\ \z\ < Z) (34)

(a < r < b; 0 < <p < 2r) (35)

(6 < r < c; 0 < <p < 2tt). (36)

E ^0)*(X, 0 = J <?(X, 0 (37)
t = 1 A

where G(X, Z) is given by expression (28). In view of (37), equation (27) may be rewritten

(s + >)ST*(\, 0 = X Z T\0)*(\, Z) (38)

the result of integration of which, subject to the initial conditions (2) transformed
by (25), can be expressed in the form of

i: \T*{\, t) - Tir*{X, /)} = exp ( —XZ) £ j^*(X) - 7?'*(x, 0)}
1 = 1 i = 1

- f exp ( —X(Z - t)) f t 2?'*(X. t) dr. (39)
Jo O1" i-l

w e now rewrite the inversion formula (26) in the following form:

T,(r, <p, z, /)

= r<0)(r, v, z, t) + £ ^(x)04;x(r, 2) £ |H(x, z) - t!0)*(x, /)) (i = 1, 2)



364 NURETTIN Y. OLQER [Vol. XXVI, No. 3

which, upon combination with equation (39), becomes

T,(r, v, z, t) = Ti°\r, v, z, I) + £ A(\)<t>,..,(r, v, z)
X

•exp (-A/) ± jf*(X) - 7'<0,*(X, 0) - £ exp (Xr) dT<"*(X<A rfr| (i = 1,2). (40a)

in view of relation (37) we can rewrite the expression (40a) in the form of

Tj(r, <p, z, t) = 7\<0'(r, <p, z, t) + <p, z)
X

•exp (-X/)|£ F*'(V ~ ^ G(x- 0) ~ ^ fo exP (Xr) dG^ T^ (/r} d = I , 2) (40b)

where now the T-0) function does not appear in the summation over X. Expressions
(40a) and (40b) are the two alternative forms of (31). In more explicit forms they are,
respectively,

Ti(r, <p, z, t) = T\"\r, <p, z, 0 + Z) X) X) Aj:k.m{\)R,{n,r)Z,(z) exp (-X,■,*.„/)
i k m

0)

■ L l/, u I RMiF'(r' z) -rr(r' z'o)|r'

+ ^ f R-M\F2{r, <p',z) - no)(r, <p', z, 0)]r dr\z,(z) dz
k2 Jb I

r A X f i/f. f" r ( s dTi0,(r,p',Z. r)- / exp (X,-,*,„,t) / / R,(nir) 
,/0 J-f VAl J a

. r r/r
OT

+ — J R2(n-,r) f^'2 ^ ' z' r dr^Zj(z) dz dr J cos ?«(.£ — ̂ ') (i = 1, 2) (41a)

7',(r, (p, 2, /) = T\"\r, p,2, 0 + Z Z E 4J-,Jt,,„(X)^,(/j,r)Z,(z) exp ( —X,-.*.m0
j A: »n
(j -=fc=m?*0)

w f/c r*
- / K.m.rir ,ir. <£>'. 2)r ar-t- , „v , , ,

*2 J b J
R,(ti,r)F,(r, <p', z)r dr + — f R2(n2r)F2(r, <pf, z)r drfZjiz) dz

*2 Jb )

Ri(jiir)Qi(r, <p', 2, 0)r dr + j R2(n2r)Q2(r, <p', 2, 0)r dr\

+ - , 2,0) - 2,0)

+ "i

Zj(z) dz

A', j" Ri(nir){?i(r, <p', 0) + /3,xi(r, #>', 0)}r dr

A'2 [ RAv-/r) If2(r, </?', 0) + P,x2(r, <p', 0) }r fir
Jb

- r exp<x"-T) |f \\f b,m+ rkm

-j~ A,*



1968] A GENERAL CLASS OF UNSTEADY HEAT FLOW PROBLEMS 365

+ - dp'(V'dTZ' T) ~ ^C'mm(^b) -^^-^}]z,(*) dz
7r

+ „[i, (' + ft *

+ t, £ ' r) + ft 'Jx-(r:i^ " jr.fr } <ir| cm >»(», - «.') <V

(i = 1,2). (41b)

Expressions (41a) and (41b) are the two alternative forms of (32). In the event
that the source functions Qi(r, <p, z, t), p,(^, z, t), f;(r, <p, t), x<(r, V, 0 (i — 1, 2) are all
independent of t, the functions T;°'(r, <p, z, t) become time-independent and represent
the steady-state temperature field. In this case all the terms in the time-integrals ap-
pearing in the general solutions (40) and (41) vanish, and the resulting terms in the
infinite series of (40) and (41) become exponentially decreasing. The solutions (40) and
(41) then take the form of transient terms (which converge uniformly) superimposed
upon steady-state temperatures. Expressions (40) and (41) are, therefore, particularly
well suited for the treatment of cases in which the volume and the surface sources are
in the form of continuous pulses at zero time. On the other hand, expressions (31) and
(32) are especially suitable for treating cases with instantaneous pulses at zero time.

7. Determination of Tf\r, <p, z, t). There remains now the problem of determining
the solution of T|0)(r, <p, z, t), the so-called pseudo-steady temperature distribution of
order zero. In view of (26) and (37), it is possible to write the following eigenfunction
expansion for T<0)(r, <p, z, t):

Ti0)(r, v, z,t)=Z *.-:x(r, <P, z)G(X, I) (i = 1, 2) (42)
x A

where G(X, i) is given by (28). Since the eigenvalues X comprise triple index sets, rep-
resentation (42) for the T'^ functions is in the form of triply infinite series. We can,
however, express the T'-" functions in the form of doubly infinite series. A comparison
of the two equivalent forms will then result in certain summation or expansion formulae.

In order to determine the T?\r, <p, z, t) functions from the system of equations
(33), (34), (35) and (36), it is advantageous to employ a repeated application of one-
dimensional finite integral transforms, either with respect to <p and r, or with respect
to ip and z. For the problem at hand these finite transforms are defined as follows.

(a) Finite cosine transform with respect to <p\

Tin)*(r, m,z, t; <p') = [ T?\r, <p, z, t) cos m(<p — <p') dip (43)
Jo

the inverse transform being

TTV. r.'.0 -'~Z <«>
7T ,„„0 (.i T Oi)r,J

where S0m is the Ivronecker delta, and m = 0, 1, 2, • • • .
(b) Finite Hankel transform with respect to r:
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T[0)*(k, m, z, t; <p') = f T,<0)*(r, m, 2, /; ^')k,Ri(fitr)r dr,
(45)

T2n)*(k, m, z, /; if') = f T2n)*(r, m, z, /; ip')k2R2(nkr)r dr
J b

where

= k2nC'J2\nb)CZ\nr),
R2M = klfiC'mm(nb)C^(ixr)

and n = is the fctli nonnegative root of

MiCi'WJC-'W) = k2 C'S-\^b)[k^C'J:'\nkb) + kCl'W)} (47)
in which the relevant cylinder functions have been defined in (11) and (12). From the
orthogonality relation

pG**)jfc 1 J RiinirfRiink^r dr + k2 R2(nkr)R2(nk.r)r drj = 8kk. (48)

follow, for (45), the inversion formulae

7?>*(r, m, z, t; «>') = E pJtM £ T<n)*(fc, »m, /; ?') (» = 1, 2) (49)
k i = 1

where

— = -7—r = k, f Ri(fikr)r dr + k2 f Rl(p,r)r dr (50a)
Vk P(m*} •>- Jb

or, upon evaluation of the integrals,

l/p„ = (b2/2)kM»l - myb2){k2[CLm(^b)]2[lC^(^b)}2 + {C;(1,fe6)}2]

- ^crM)]2[{ci2W)}2 + {c:(2'w»}2]}
+ (2 /^kMkACL^iuMVinl + (hi - vi /c)}
- k2 {C'J2)(nJ>)}2{m* + (hi - m /a2)) ]. (50b")

We note that the kernels Ri(nr) and R2(/xr) as defined by (46) satisfy the differential
equation

(72 1/7 2
d? r dr ~ + S}R,(nr) = 0 (i = 1, 2; /?, : a < r < b, R2 : b < r < c)

and the boundary- and interface-conditions (7) satisfied by 4>i and <£2 > respectively.
The transform pair of (45) and (49) may be regarded as defining a new and extended
finite Hankel transform suitable for the composite hollow cylinder geometry.

(c) Finite trigonometric transform with respect to z:

T\m*(r, m, v, , /; v') = f' 7T*(r, m, z, t; /)Z,(z) dz (i = 1, 2) (51)

where Z,(z) is given by (21). The inversion formula is

T?'*(r, m, z, /; v') = X L,Z,(ZyiT*(r, m, v, , /; *') (t = 1,2) (52)
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where L, is given by

1 f' „2/ N , 2l(v2j + K2)(v) + h'*) + (h'„ + h'2)(y) + KK)
- = J_t Z,(z) dz = 2(^2 + h?) - (53)

and the summation extends over the nonnegative roots of (13). Again, we note that
the kernel Z,(z) as defined by (21) satisfies the differential equation (d2/dz2 + v2)Zj(z) — 0
(|z| < I) and the boundary conditions (8) and (9).

In the definition of these transforms we have indicated the distinction between single
and double transforms only in the arguments of the transformed functions, and have,
in the interest of not complicating the notation any further, used a single asterisk (as
superscript) to denote both kinds of transforms.

These three sets of transform pairs permit, in a particularly concise manner, the
determination of the T;0)(r, <p, z, t) (i = 1, 2) functions from the system of (33), (34),
(35) and (36). To facilitate the solution of T,-0> it is convenient to split it up into three
simpler parts so that

Tf\r, <p, z, t) = XJi(r, <p, z, t) + F,(r, <p, z, t) + JF,(r, <p, z, t) (i = 1, 2) (54)

where Ui satisfies the system of (33), (34), (35) and (36) in which Q{ = = x« = 0;
Vi satisfies the same system with Qt = p; = 0; and W{ again satisfies the same system
where p{ = = x.- = 0, (i = 1, 2).

In order to determine £/;(r, <p, z, t), we transform the system defining U{ , first by
(43) and then by (51), to get

^2 + - ~ (v) + ^rj\u*i(r, m, v,- , /; <p') = 0dr r dr \ r

(i = 1,2; Uf : a < r < b, U* : b < r < c) (55)

subject to the conditions (34), as applied to <p, z, t), and transformed similarly
by (43) and (51) in succession. Under the restriction that ha , h'n , h2 and h2 are not to
be simultaneously zero, the solution of this system is given by

U*(r, m, v, , f,<p') = p*(m' *' ' t] ^ [hl{k2D^'2)(vjb)D'm\vir, Vjb)

/(2>/- + /4viC'("iP,."!(v,^)]
p%(m., Vj , /; <p')

A. (56a)

VS(r, m, v, , t;v') = [h1{k1D'ma\vjb)D<m\vir, „,6)

- k2DZ\Vib)D(0m\(Vir, Vib)\ - klk2ViD'„m(u,b)Dl0ml(Vir,Vib)}

p%(m, v,- . t; <p')
Au KVfb

where

A. = ~{ht{k2D'J2\Vib)Dir(Vib) - + hk&D'JVfyfbWfab)),

(56b)

(57)
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^1"(",»') = VjD^.oivja, vfr) - huD^,o("ia, vfr),

D„\vjr) = VjD'^vivjT, vfi) + h2I)'o%(vjr, vfi).

The primes over 1)21 and Z)"' indicate differentiation with respect to their arguments.
The modified cylinder functions (of two arguments and of order 7n) appearing in (56)
are defined in terms of cross products of modified Bessel functions of order m:

D»:i(x, y) = y) = Im(x)Km(y) - Km(x)Im(y),

y) = dv*'D(m\x, y)/dxv dy" (p, q = 0, 1, 2, • • •)

where Im{x) is the modified Bessel function of the first kind of order m, and Km(x) is
the modified Bessel function of the second kind of order m.

The combination of (56), (52) and (44) yields the solutions U{(r, <p, z, t):

Ui{r, <p, z, t)

= (f+?tb {/,a)(m' 'r) I' f\0 cos m(<p ~ dv>dz

+ Vi , r) J f ^ p,(<p', z, I) cos m(<p - ip')Zj(z) d<p' (i = 1, 2) (60)

where /"'(m, v, , r) and v, , r) are the coefficients of p*(m, Vj, t; tp') and p^(m, p, , I;
<p') in (56).

Similarly, in order to determine V,(r, <p, z, t), we transform the system defining V, ,
this time first by (43) and then by (45), to get

(5 - ^)i F*(/c- m<*. '■>= ° (w <*) (61)

which is subject to (35) and (36) as applied to V<(r, <p, z, t), and transformed similarly
by (43) and (45) in succession. Under the restriction that h0 , h'„ , h2 and h', are not to
vanish simultaneously, the solution of this system is obtained as

H V*(k, m, z, I; <p') = {[/t* cosh nk(l - z) + hi sinh nt(l - z)] £ m, t; <p')
i-l \ i=1

+ [ju* cosh nk(l + z) + h'„ sinh tJLk(l + 2)) X x*(k, m, t) </)j (62)

where

A, = (nl + h'„h'2) sinh (2pkl) + nk(h'„ + K) cosh (2nkl). (63)

Inverting (62) by (49) and (44) in succession, we have

Vi(r, <p,z, f) = - J2 H a [ HM* cosh nk(l - z) + h'-, sinh nk(l - z)]
ir k m (1 -+- on,„) A„ Jo ^

i* b c

■ I ti(r, <p', 1)kJ{,(nkr)r dr + j ^(r, <p', t)k2R.,(tihr)r dr

+ [mi- cosh Hk(l + z) + K sinh nk(l + 2)] f Xt(r, <p', Okjf^n^r dr

+ ^ Xs(r, <p', t)kjNj(nkr)r dr | cos m(<p — <f') dtp' (■i = 1,2). (64)
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We note that we could have obtained Vi(r, ip, z, t) in another form by using the combina-
tion of transformations (43) and (51), instead of applying (43) and (45). Similarly,
another expression may be obtained for U A r, <p, z, t) in a different form, through an
application of (43) and (45) rather than through the combined use of (43) and (51).
We shall now illustrate this point by determining two equivalent expressions for Wi(r,
<p, z, t). To this end, we first apply, in succession, the transformations (43) and (45) to
the system defining W,• , and obtain

(I? ~ ^ W*^k'm'z'l'>m'z'l' p') = 0 (M < 0 (65)

(- r + w) E W*(k, m, z, t; <p') = 0 (z = -/),
"-1 (66)

(£ + t W%k, m, z, t; v') = 0 (z = I).

Subject to the restriction that h0 , h'0 , h2 and h2 are not simultaneously zero, the solu-
tion to the system of (65) and (66) is obtained as

J2 W*(k, m, z, t; <p') = — [ sinh nk(z' - z) T Q*(k, m, z', t; <p') dz'
»-l Hk J 0 i-1 ICi

+ -V [' 1 £ f Q*'(k' m> z'< '' , *) + H(-z')n„(z, z') J dz' (67)
Ml- j-l \ i-1 Ki J

where

Qk(z, z') = {/z/, cosh nk(l — z) + h2 sinh nk(l - z)}

■ {/x* cosh nk(l + z') + h'0 sinh nk(l + z')}, (68)

H (z) being the Heaviside unit function, and A, is given by (63). Inverting (67) by means
of (49) and (44), we have

Wi{r, <p, z, t)

= - E E f if s'nh ~ ^ f Q'(r' v'' z'' OR i(nk>-)r d?-
IT k m I "0 m/M& "0 x*'0 _*'q

+ [ Q2(r, <p', z', f)R2(nkr)r dr
b

+ J [H(z')Qk(z', z) + H(-z')Uk(z, z')] ^ Qi(r, <p', z', t)R,(ixkr)r dr

+ Q2&, <p',z', t)R2(p.kr)r (/rj dz'j cos m(<p — <p') dtp' (i = 1, 2) (69)

which is the first form of solution for W{ . To obtain a second form of solution, we apply
this time the transformations (43) and (51) to the system defining W> . As a result, we
have

r d~r (r~ ("' + m'"< ''' ^ + £ Q*'(r' m''/; ^ = 0

(i = 1, 2; W* : a < r < b, W% : b < r < c) (70)

dz'
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and the conditions (7) as applied to IF* (r, m, vit t; p'). Excepting again the special case
where h0 = h'0 = h2 = h'2 = 0, the solution of W* may be expressed in the form of

W*(r, m, Vj , t; <p') = /.-"(m, v,- , r) J Q%r, m, v, , t; <p')D^\Vir)r dr

- v, ,r) f ~ Q*(r, m, , t\ <p')D(J](v,r)r dr
Jb & 2

+ Jb y Q*(r', in, Vj , t; ip')D<m)(vy, v>,-r)r' dr' (i = 1, 2) (71)

which, upon inversion successively by (52) and (44), yields

Wt(r,v,2,t) = - Z Z TTmT T r f {?"(*"• -r) f rQi(r, D<" Mr dr
IT | m V.-*- I "Omj " 0 " — Z \ * a

- Vj , r) f —■ Q2(r, <p', z, t)D^\vjr)r dr
J b *^2

+ f Qi(r', <p', z, t)iym\v,r', r,r)r' dr'jz,(z) cos m(<p — <p') tfp' cfe (i = 1,2). (72)

Equation (72) is a second form of the solution for Wj{r, <p, z, t). The first form is given
by (69). Both forms are in terms of doubly infinite summations. For purposes of nu-
merical evaluation we prefer to work with (72) rather than (69), since the computation
of the roots nk from (47) is much harder than that of the roots vt from (13). In addition,
the roots nk are coupled with m, that is, for each value of m, a new set of nk has to be
determined. On the other hand, v,- is determined independently of m. This concludes
the determination of T -0) (r, <p, z, t) expressed by (54).

It should be noted that, if (70) is further transformed by (45), and the conditions
(7) as applied to TF*(r, m, vt, t; <p') utilized, the following equation is obtained:

(y) + /4) Z W*Xk, m, Vj , t; <p') — Y, 7T Q*(k> m,v, , t; <p') (73)
i = i * =1 to i

where

Z 7" Q*(k, m, Vj , t;<p') = [ [ If Q1(r, <p', z, t)Rx(nkr)r dr
t =i 1 A/, J —i Jo a

+ ^ Q2(r, f>', z, t)R2{y.kr)r Jrj cos m(<p — <p')Zj(z) d<p' dz. (74)

Inversion of (73) with respect to r is, by (49),

W%r, m, vj , f, <p') = £ E jr Q*(k, m, v, , /; v') (i = 1, 2) (75)
k Vj I f^k) t=l

where W*(r, m, vt , <; <p') is given by (71). Similarly, inversion of (73) with respect to
2 is, by (52),

1; W*(k, m, z, f, <p') = £ 7^% ± T m' ' l> -p') (76)
i-i i {"i "T .-i K.
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where W* (k, m, z, t; <p') is given by (67). Equations (75) and (76) serve as summa-
tion formulae. Similar formulae may be obtained for U* and F* in the same way.
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