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Several models have been proposed to relax the molecular clock in order to estimate divergence times. However, it is
unclear which model has the best fit to real data and should therefore be used to perform molecular dating. In particular,
we do not know whether rate autocorrelation should be considered or which prior on divergence times should be used. In
this work, we propose a general bench mark of alternative relaxed clock models. We have reimplemented most of the
already existing models, including the popular lognormal model, as well as various prior choices for divergence times
(birth–death, Dirichlet, uniform), in a common Bayesian statistical framework. We also propose a new autocorrelated
model, called the ‘‘CIR’’ process, with well-defined stationary properties. We assess the relative fitness of these models
and priors, when applied to 3 different protein data sets from eukaryotes, vertebrates, and mammals, by computing Bayes
factors using a numerical method called thermodynamic integration. We find that the 2 autocorrelated models, CIR and
lognormal, have a similar fit and clearly outperform uncorrelated models on all 3 data sets. In contrast, the optimal choice
for the divergence time prior is more dependent on the data investigated. Altogether, our results provide useful guidelines
for model choice in the field of molecular dating while opening the way to more extensive model comparisons.

Introduction

The dating of speciation events is one of the major ob-
jectives of evolutionary studies. The molecular clock hy-
pothesis, that is, the constancy of the rate of evolution
with time, when combined with the use of fossil records,
allows the dating of branching events on phylogenetic trees.
However, it has become clear that the strict molecular clock
hypothesis is not biologically realistic and that the rate at
which substitutions accumulate with time is subject to
changes that need to be explicitly accounted for in molec-
ular dating techniques.

Various methods have been proposed to relax the
molecular clock, including nonparametric approaches
(Sanderson 1997, 2002), local clocks (Yoder and Yang
2000), and Bayesian parametric models (Thorne et al.
1998; Huelsenbeck et al. 2000; Kishino et al. 2001; Aris-
Brosou and Yang 2002, 2003; Drummond et al. 2006).
Among these methods, the Bayesian parametric approach
offers the opportunity of exploring a wide diversity of al-
ternative models, each of which corresponds to specific
assumptions concerning the shape of the tree and the
way the rate of substitution changes with time.

In practice, many alternative probabilistic models of
clock relaxation have indeed been proposed in this frame-
work. They differ in various respects: some describe the
rate as a continuous process (Kishino et al. 2001), others
as a piecewise constant function of time (Huelsenbeck et al.
2000), and still others do not explicitly describe the rate pro-
cess itself, but rather directly assign a mean rate parameter
to each branch (Aris-Brosou and Yang 2003; Drummond
et al. 2006). Models also differ in their dynamics: rates
may be autocorrelated (Kishino et al. 2001; Aris-Brosou
and Yang 2003), or not (Drummond et al. 2006). Finally,
different priors have been proposed on the set of divergence

times, including the uniform (Kishino et al. 2001;
Drummond et al. 2006), Dirichlet (Thorne and Kishino
2002), and the birth–death (Aris-Brosou and Yang 2003;
Yang and Rannala 2006) priors.

Which among this variety of available models yield
reliable dates is still an open question. In particular, it is
not totally clear whether autocorrelation is a feature that re-
laxation models should always account for (Drummond
et al. 2006). A few controversies have also been raised
about possible biases in certain cases (Aris-Brosou and
Yang 2003) due to the relaxation model itself or to the prior
on divergence times (Blair and Hedges 2005; Welch et al.
2005). More generally, the model seems to have a nonnegli-
gible influence on the resulting divergence dates (Perez-
Lozada et al. 2004; Smith et al. 2006), a fact that does
not help sorting out the still open controversies raised by
the clashes observed between fossils and molecular datings
(Bromham et al. 1999; Smith and Peterson 2002). As these
controversies sometimes bear on the very choice between
recent and explosive radiation versus ancient and progres-
sive diversification scenarios, for example, in the case of
metazoans (Smith and Peterson 2002; Aris-Brosou and
Yang 2003; Douzery et al. 2004; Peterson et al. 2004;
Blair and Hedges 2005; Welch et al. 2005) or of mammals
(Bromham et al. 1999; Springer et al. 2003), deciding
between alternative models of clock relaxation is obviously
an urgent question to be answered.

Remarkably, there have been few attempts thus far to
compare the performances of available clock models. In
some cases, models were validated by their ability to prop-
erly retrieve already known rates and dates from simulated
data (Thorne and Kishino 2002; Ho et al. 2005; Drummond
et al. 2006). However, the success of a model on simulated
data may not always be representative of the model’s rel-
evance to the analysis of real data, which is more directly
assessed by measuring the statistical fit of the model to the
data at hand.

A common method for measuring the fit of a modelM
in a Bayesian framework consists in computing the mar-
ginal likelihood P(D|M), that is, the marginal probability
of generating the data D under the model of interest M
(Jeffreys 1935). The relative fit of 2 models M1 and M2
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can then be assessed by the ‘‘Bayes factor’’ B12, defined as
the ratio of the marginal likelihoods ofM1 andM2, p(D|M1)/
p(D|M2). Bayes factors present several advantages: they
implicitly penalize models with higher dimensionality;
furthermore, by using one single model as a global refer-
ence, they allow for a general comparison among an arbi-
trary number of models that are not necessarily nested.

Bayes factorcomputation involves the integrationof the
likelihood with respect to the parameters of the model (col-
lectively referred to as h) over the prior distribution P(h|M):

pðDjMÞ5
Z

pðDjh;MÞpðhjMÞdh:

Most of the time, the numerical estimation of this integral
is a time-consuming task. One way to circumvent this
problem is to integrate the likelihood over the posterior
p(h|D,M) instead of the prior distribution, a method called
‘‘posterior Bayes factors’’ (Aitkin 1991). Posterior Bayes
factors have been used for relaxed clock model compar-
isons (Aris-Brosou and Yang 2003). However, they are
regarded as very controversial (see answers to Aitkin
1991). In practice, they lead to an underestimation of the
dimensionality penalty, hence favoring unnecessarily
complex models. Bona fide Bayes factor estimation
techniques require more intensive computations but may
offer more reliable answers. One of these techniques,
called thermodynamic integration (Ogata 1989), has been
recently used in several phylogenetic studies (Lartillot and
Philippe 2004, 2006; Blanquart and Lartillot 2006;
Rodrigue et al. 2006).

In this work, we compare the fit of some of the most
commonly used clock models, including the strict molecu-
lar clock, the lognormal (Thorne et al. 1998; Kishino et al.
2001), and the uncorrelated models (Drummond et al.
2006). The unconstrained model (whose prior is directly
defined on the space of unrooted trees, without any refer-
ence to a global time scale) is used as the reference for our
comparisons. We also introduce 2 new models: the ‘‘white-
noise’’ and the ‘‘CIR’’ processes (Lepage et al. 2006). The
former is a relaxed clock model with no autocorrelation.
The latter, CIR, is similar to the Ornstein–Uhlenbeck
(OU) model (Aris-Brosou and Yang 2003) but without
many of the shortcomings of the OU identified by Welch
et al. (2005). The CIR process mainly differs from the log
normal in the fact that it possesses a stationary distribution.
All these models were reimplemented in a single software
and used with 3 alternative priors on divergence times (uni-
form, Dirichlet, and birth–death), so that the fit of all com-
binations of clock models and priors can be compared by
thermodynamic integration. Our results provide strong ev-
idence in favor of autocorrelated models such as the lognor-
mal and the CIR models, in particular under rich taxonomic
sampling. In contrast, the optimal choice concerning the
prior seems more data set dependent.

Materials and Methods
General Framework for Relaxed Clock Models

Let D be the N # Mmatrix consisting of an alignment
of N amino acid or nucleotide sequences, of length M.

These sequences were obtained from a set of N taxa, which
are related through a phylogenetic tree. The tree topology
will be kept fixed throughout this work, and we will never
explicitly mention it. We denote by T 5 (Ti)i51, . . . ,N–2, the
set of all divergence times on this topology. These diver-
gence times are endowed with a prior p(T|k) (where k is
a hyperparameter), to be specified later.

The evolutionary rate is described as a stochastic pro-
cessR(t) running along the branches of the tree. The behav-
ior ofRwill be described by its probability density function
(pdf) p(R|T,m), where m stands for the set of hyperpara-
meters controlling the process (m can possibly contain more
than one parameter, e.g., decorrelation time and stationary
variance, see below).

Suppose first the ideal case where one considers a com-
pletely specified realization of the rate process R, at all
times and along all the branches of the tree. In particular,
R is specified at any time-point on the lineage between node
i and its parent iup. The ‘‘effective branch length’’ Bi is then
the integral of R between Ti and Tiup :

Bi5Bi

!
R;T

"
5

Z Ti

Tiup

RðsÞds: ð1Þ

In our implementation, the divergence times are parame-
terized as relative times: the time at the root is 1 and that of
the leaves is 0. Likewise, the rate process is defined on
a relative scale (i.e., is constrained to have mean 1). To
convert effective branch lengths B into expected numbers
of substitutions per site, we multiply them by a scale factor
l. This yields the ‘‘absolute’’ effective lengths:

B#
i5lBi

!
R;T

"
5l

Z Ti

Tiup

RðsÞds: ð2Þ

For short, we will denote the absolute effective lengths by
B# 5 lB.

The absolute effective lengths, computed for all the
branches using equation (2), can in turn be used to compute
the likelihood of the alignment p(D|B#) 5 p(D|lB(R)) by
using either the pruning algorithm (Felsenstein 1981) or the
Gaussian multivariate approximation (Kishino et al. 2001).
Combining this likelihood with the probability density of
the realization of the rate process and with the priors on
times and other parameters, and applying Bayes’ theorem,
yields the joint posterior density over the parameters of the
model:

p
!
R;T; k; l; m

##D
"
5

1

pðDÞ
p
!
D
##lBðR;TÞÞ

p
!
RjT; mÞpðT

##k
"
pðkÞpðlÞpðmÞ;

ð3Þ

where

p
!
D
"
5

Z
pðDjlBðR;TÞÞpðRjT; mÞ

pðTjkÞpðkÞpðlÞpðmÞdTdRdkdldm
ð4Þ

is the normalization constant. Note that times (T) and rates
(R) are confounded: they have an influence on the
likelihood only through B 5 B(R,T).
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However, apart from trivial cases, a fully specified
realization ofR along the phylogenetic tree would represent
an uncountably infinite collection of values and is thus im-
possible to manage computationally. In practice, we restrict
the description of R only at the nodes, so that R 5 {Ri}i50,

. . . ,2N–2 is now a discrete collection of rates, with the con-
vention that R0 is the rate at the root. Assuming that the rate
process is Markovian, the joint probability density of the
values of the process at the nodes is given by:

p
$
R
###T; m

%
5p

$
R0

% Y2N$2

i51

p
!
Ri

##Riup ;DTi; mÞ; ð5Þ

where p(R|R#,DT,m) is the finite-time transition probability
density and DTi5Ti $ Tiup is the time interval represented
by the branch. The transition probability function is
determined by the process and is available in closed form
in many cases. Note that the choice of p(R0) is also part of
the model’s definition.

Another consequence of restricting the sampling of
evolutionary rates at nodes is that we now have an incom-
plete account of R(t) throughout the tree, more precisely
between nodes: Bi(R,T) is then no longer unambiguously
defined by R, but is a random variable, whose density is
conditional on the values Ri and Riup (as well as on the time
duration DTi and the hyperparameters m). Finding a closed
form for this density is impossible for most common types
of stochastic processes, but the problem can be circum-
vented in 2 different ways.

First, one can ignore the stochasticity of Bi and approx-
imate it as a deterministic function of Ri, Riup , and DTi (and
possibly also of m). The joint posterior distribution over
rates, times, and hyperparameters then becomes:

prigidðT;R; m; l; kjDÞ5
pðDjlBðR;T; mÞÞpðRjT; mÞpðTjkÞpðlÞpðmÞpðkÞ

pðDÞ
;

ð6Þ

which is similar to equation (3). We will denote this as the
‘‘rigid’’ approach. Kishino et al. (2001) adopted this
strategy and estimated each branch length Bi as

Bi %
!
Riup þ Ri

"!
Ti $ Tiup

"

2
:

A perhaps more robust way of estimating Bi is to make it
equal to its expectation, that is,

Bi % E

"Z Ti

Tiup

R
!
s
"
ds
##Ri;Riup ; m

#

;

provided that this expectation is known or can easily and
efficiently be approximated. This is what we do in the case
of the CIR model (see below).

Alternatively, one can acknowledge the stochasticity
of Bi and approximate its true distribution. The posterior
distribution is then defined over rates, times, effective
branch lengths, and hyperparameters. It reads as:

pflexible
!
B;T;R; m; l; kjD

"
5

pðDjlBÞpðBjR;T; mÞpðRjT; mÞpðTjkÞpðkÞpðlÞpðmÞ
pðDÞ

:

ð7Þ

Models that describe B as a random variable will be called
‘‘flexible’’ because the randomness in B is adding some
flexibility to the model.

In certain cases, the distribution of B does not depend
on the values of R at the nodes of the tree. This may be
a true mathematical independence between the instanta-
neous values taken by the process and its integral over finite
time intervals (e.g., the white-noise model described below)
or, alternatively, just a matter of practical convenience
(Aris-Brosou and Yang 2002; Drummond et al. 2006).
Whatever the reason, in those ‘‘branchwise’’ models, the
rates at nodes R disappear from the model’s definition
and the posterior distribution reduces to:

pbranchwise
!
B;T; m; l; kjD

"
5

pðDjlBÞpðBjT; mÞpðTjkÞpðkÞpðlÞpðmÞ
pðDÞ

:

ð8Þ

Relaxed Clock Models

In this article, we examine 7 different relaxed molec-
ular clock models.

STRICT: The strict molecular clock, defined as R(t) 5 1 for
all t, and Bi5Ti $ Tiup :

UEXP: The ‘‘uncorrelated exponential’’ model (Drummond
et al. 2006), in which branch lengths are distributed
according to an exponential distribution of mean!
Ti $ Tiup

"
: This is a branchwise model, which amounts

to considering branch-specific independent and expo-
nentially distributed multipliers of mean 1. Note that
Drummond et al. (2006) consider this mean as
a parameter of the model, but this is not useful here
as we also have a global scale parameter (l).

UGAM: The ‘‘uncorrelated gamma’’ model (Drummond
et al. 2006) is very similar to the UEXP model, except
that the branches are now distributed according to
a gamma distribution with mean

!
Ti $ Tiup

"
and variance

r
!
Ti $ Tiup

"2
: The UGAM model is also independent of

the rate process and reduces to UEXP when r 5 1.

The 2 models UEXP and UGAM are directly defined in terms
of the average rate over each branch. As such, they do not
explicitly invoke a time process R(t). In fact, the question
of how to define a process R(t) such that the resulting average
rates over the branches of the tree would be distributed ex-
actly as in UEXP or UGAM is not a trivial one. In particular,
such a time process would display autocorrelations within the
time window defined by each branch, so that, strictly speak-
ing, UGAM and UEXP are uncorrelated only between
branches. To make this point more evident, we define another
uncorrelated model, which is totally uncorrelated at all times:

WN: In the white-noise model, the rate process is de-
scribed as a pure white-noise process whose stationary
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distribution is a gamma of mean 1 and variance r. The
probability density p(B|R,T,m) is available analytically:
branch lengths are independent gamma random varia-
bles of mean

!
Ti $ Tiup

"
and variance r

!
Ti $ Tiup

"
:

Thus, even if WN is explicitly defined in terms of real
time, it takes the form of a branchwise model, like UEXP

and UGAM. In practice, the main difference between the
WN model and the UGAM model lies in the variance of
Bi: whereas it is quadratic with time in the UGAM case,
the WN has a linear variance, accounting for the fact that,
by an averaging effect, the mean rate of an uncorrelated
process is expected to have a smaller variance over
longer branches.

LOGN: In the popular lognormal model (Kishino et al.
2001), R(t) varies according to a lognormal distribution
with mean R(0) and variance rt. The ‘‘autocorrelation
parameter’’ r indicates how much R(t) is likely to depart
from its initial value R(0) (thus, here, m 5 r). The
LOGN model is rigid as B(t) is approximated by

Bi5

!
Ri þ Riup

"
#
!
Ti $ Tiup

"

2
: ð9Þ

CIR: This model is based on the CIR process (Cox et al.
1985), which is defined as a mixture of ‘‘squared’’ OU
processes. Note that here, we invoke squared OU pro-
cesses and not directly OU processes as was proposed
previously (Aris-Brosou and Yang 2003). This makes
more sense as it preserves the positivity of the rate process
and avoids the systematic bias (rates tending to be higher
near the root) that had been pointed out in the model of
Aris-Brosou and Yang (2002) by Welch et al. (2005).

The dynamics of the CIR process can be loosely de-
scribed as a Brownian motion to which a spring-like con-
straint has been added: whenever the process, R(t), drifts
away from the mean value (which is here fixed to 1 to avoid
identifiability problems), the spring pulls the process back
towards 1, with a force proportional to the deviation (1 –
R(t)). Hence, when the process is near 1, its behavior is
close to a pure Brownian motion; on the other hand, when
it is far away from 1 (i.e., very large values or close to zero),
the spring effect dominates.

Apart from the stationary mean (of 1), the process has
2 additional parameters, h and r, so that in this case, m 5
{h,r}. Given these 2 parameters, and given the initial value
R(0) of the process, the pdf of R(t) is

pðRðtÞjRð0Þ; h;rÞ5c exp½$cðRðtÞ þ Rð0ÞÞe$ht(

#
&

RðtÞ
Rð0Þe$ht

' h
r2
$1
(
2

I2h
r2
$1ð2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð0ÞRðtÞe$ht

q
Þ;

where c5 2h
r2

!
1$ e$ht

"$1
and Im(x) is the modified Bessel

function of the first kind with parameter m and argument x
(Abramowitz and Stegun 1964). More informative about
the process behavior are the mean and variance of R(t)
conditioned on R(0):

E
*
R
!
t
"+
5R

!
0
"
e$ht þ

!
1$ e$ht"; ð10Þ

Var½RðtÞ(5Rð0Þr
2

h

&
e$ht $ e$2ht

'
þr2

2h

!
1$ e$ht"2: ð11Þ

We see here that the expected value of R(t) tends to 1 for
large values of t. More precisely, it follows an exponential
decay of parameter h; h is, thus, the autocorrelation
parameter of the CIR process (or equivalently, 1/h is the
decorrelation time of the process). In addition, the variance
of the process also converges to a finite value as t becomes
large, namely r2/2h. In fact, as t goes to infinity, the
process has a well-defined stationary distribution, which is
a gamma distribution with mean one and variance r2/2h.
This contrasts with the linearly increasing variance of the
lognormal model, which does not have a stationary
behavior. Finally, for small values of t, the variance of
R(t) is proportional to R(0)r2, so that r will be designated
as the ‘‘short-term’’ variance of the process. Note that, in
order to define a valid CIR process, r and h have to be
positive and such that r ) 2h.

To implement the CIR process, we cannot directly rely
on the pdf of B

!
t
"
5

R t
0 RðsÞds; which is not available in

closed form. One possibility would be to use instead the
approximation proposed for the lognormal model, that is,
(R(0) þ R(t))t/2. However, because of the convexity im-
plied by the exponential decay of the mean value of the
CIR (eq. 10), this estimate does not seem appropriate. In-
stead, we used the expectation of the process conditional on
R(0) and R(t). In the case of the CIR, this expectation is
analytically available and can be obtained as the first deriv-
ative of the moment-generating function (mgf), of B(t):

dMðzÞ
dz

jz505E

,
BðtÞjRð0Þ;RðtÞ

-
;

where

MðzÞ5E
h
ezBðtÞjRð0Þ;RðtÞ

i

is the mgf (see Lepage et al. (2006) for a complete
description and derivation). Note that the mgf of R(t) in the
lognormal case does not have a closed form.

Finally, as a reference model, we considered the un-
constrained model: this model does not distinguish times
from rates, but more simply considers effective branch
lengths as independent exponential variables, of mean b.
This is the most commonly used model in Bayesian phy-
logenetic inference, for example, when the problem is to
estimate the topology (Huelsenbeck and Ronquist 2001).

Prior Choices

We implemented 3 different priors for divergence
times:

The uniform (UNIF) prior: Let Tiup and Tidown be the
divergence times of the parent node and the oldest child
node of Ti, respectively. The uniform prior posits that Ti
is uniformly distributed in the interval

*
Tiup ; Tidown

+
: In

other words, p(T) vanishes from equations (6), (7), and
(10), provided that the order of divergence times con-
forms with the topology, and is otherwise equal to zero.
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The resulting prior can be seen as a joint distribution of
uniform order statistics over a tree of variable (but al-
ways finite) length and is the simplest prior compatible
with a fixed topology.

The Dirichlet (DIR) prior (Kishino et al. 2001; Thorne and
Kishino 2002): Node ages are distributed according to
a single-parameter Dirichlet distribution spanning the
whole tree. The uniform prior is a particular case of the
Dirichlet, with concentration parameter (a) equal to 1.

The birth–death (BD) process (Yang and Rannala 1997,
2006): The birth–death process has 3 hyperparameters:
the birth rate k, death rate l, and sampling fraction q.
There is, however, a lack of identifiability between the 3
parameters, as evaluating the prior at (k, l, q) gives the
same value as if evaluated at

$
kþ k; lþ k; kq

kþk

%
: We

avoid such problems by restraining the parameter
number to 2, with p1 5 k – l and p2 5 kq as our
new parameterization. An exponential prior distribution
of mean one is assigned to p1 and p2.

The prior assigned to hyperparameters h and r is a bi-
variate exponential distribution, with a support truncated by
the condition r , 2h (see the definition of the CIR process).
All hyperparameters are endowed with an exponential prior
of mean 1, except for the scale parameter l, which has a uni-
form prior over [0, 600], and a, the concentration parameter
of the Dirichlet distribution, which is endowed with a uni-
form distribution over [0, 300].

Markov Chain Monte Carlo Sampling

Samples from the posterior distribution under each
model are obtained using the method of Markov chain
Monte Carlo (MCMC). Our implementation is an extension
of a previously described program, PhyloBayes (Lartillot
and Philippe 2004), which has been adapted to work both
using classical pruning-based likelihood (Felsenstein 1981)
or under the normal approximation (Kishino et al. 2001). As
Bayes factors computations are CPU intensive, all results
presented here rely exclusively on the normal approxima-
tion. We used the estbranches program (Thorne et al. 1998)
to estimate the variance covariance matrix, under the JTT
model of amino acid substitution (Jones and Taylor 1992).
We did neither account for heterogeneities across sites nor
across partitions of the data matrix.

The update mechanisms are all based on theMetropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings 1970),
using additive moves to update each parameter in turn (the
Hastings ratio is 1 in all such cases). In the case of flexible
models, effective branch lengths have to be updated as
well, which we do by using multiplicative moves: each
branch is updated separately. The update consists in mul-
tiplying the branch by a random factor m 5 ed[U–0.5],
where d is a tuning parameter and U is a random number
uniformly distributed in [0, 1]. The Hastings ratio of this
move is m.

We also devised a so-called ‘‘identifiability move’’ be-
tween l and R. This move was motivated by the observa-
tion that there is an intrinsic lack of identifiability, in the
likelihood, between rates and the scale factor l. In
such a situation, the posterior distribution over l and over
the rates is still well defined and will be determined by the

joint prior density on those parameters. However, the result-
ing MCMC sampling will be slow, unless specific compen-
satory moves between l and the rates are implemented,
leaving the effective branch lengths invariant. According
to this update mechanism, l is divided by a random factor
m 5 ed[U–0.5] and, concomitantly, all the rates of theR vec-
tor are multiplied by that same factor m. The Hastings ratio
is equal to m2N–3.

A cycle of the MCMC sampler consists of a series of
calls to each of the update mechanisms taken in turn. We
usually let chains complete a burn-in period consisting of
100,000 cycles. When chains reach stationarity, we sample
the posterior distribution every 1,000 cycles for models
with no explicit rate variation (e.g., WN and Strict) and ev-
ery 10,000 cycles for models with higher dimensionality
(CIR and LogN), until a total of 1,000 points have been
obtained.

Model Comparison

Bayes factors were evaluated using thermodynamic
integration (Ogata 1989). In the present work, we follow
the model–switch approach described in Lartillot and Phil-
ippe (2006). In brief, the method consists in defining a path
between the 2 models’ respective posterior distributions:

pbðhÞ5pðhjD;M1Þ1$bpðhjD;M2Þb: ð12Þ

When b runs over [0, 1], the path starts at model M1 and
progressively lands over model M2. Then, integrating ln
p(D|h,M2) – ln p(D|h,M1) over a quasi-static MCMC
realization of such a path yields an estimate of the
logarithm of the Bayes factor between the 2 models.

When performing a model–switch between each re-
laxed clock model and the deconstrained model, the vari-
ation of Eb[ln p(D|h,M2) – ln p(D|h,M1)] can be of several
orders of magnitude, mostly close the boundaries b 5 0 and
1, which results in too large discretization errors under the
model–switch scheme explained in Lartillot and Philippe
(2006). To circumvent this difficulty, we here introduce
a sigmoidal schedule for b. That is, if K is the number
of steps of the integration, we set b0 5 0, bK 5 1, and
for for 0 , k , K:

bk5
eaxk

eaxk þ e$axk
;

where xk 5 k/K – 1/2. In this way, the quasi-static MCMC
spends most of the time in the vicinity of the boundaries,
while making larger steps in the middle of the interval,
where variations are small. We set K 5 10,000, saving
every 100 point.

In addition, to obtain a higher precision in the compar-
isons between the 3 alternative priors on divergence times,
we also devised an additional model–switch scheme be-
tween either the Dirichlet or the birth–death prior and
the uniform prior. These integrations were performed using
a linear schedule, using K 5 10,000, and saving every 100
points.

The error on the estimate includes the discretization
error and the thermic lag but not the sampling error. By re-
peating the experiment 10 times in the case of one of the
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data sets (MOC, see below), and based on a sample size of
K 5 10,000, we could estimate this sampling error to be of
the order of a few units of logarithm (less than 3).

Data

The following data sets were considered:

MOC: A concatenation of 129 genes (30,399 positions),
sampled in 36 eukaryotic species (Douzery et al. 2004).
The slime mold Dictyostelium was taken as the
outgroup.

MAM: A concatenation of 3 nuclear genes (3,700
positions) sampled in 60 mammalian species represent-
ing all mammalian orders, with 2 marsupials taken as
outgroup species (Poux et al. 2006).

MITO: A concatenation of 11 protein-coding genes
(ATP6, CO2, CYTB, ND2, ND4L, ND5, CO1, CO3,
ND1, ND3, ND4) of the vertebrate mitochondrial ge-
nome (3,220 positions). This data set is made of a set of
155 osteichthyans and 5 chondrichthyans. We used the
chondrichthyans as the outgroup and considered 4
different taxon samplings for the ingroup, obtained by
randomly subsampling 10, 50, 100, and 150 os-
teichthyans. In each case, the topology was determined
using the mtREV þ gamma model in TreeFinder (Jobb
et al. 2004).

Results and Discussion
Comparison of Alternative Rate Relaxation Models

We first compared alternative clock relaxations on 6
different data sets, by computing the Bayes factor between
each clock model, that is, the strict clock (STRICT), the un-
correlated exponential (UEXP), gamma (UGAM), and white-
noise (WN), as well as the autocorrelated lognormal (LOGN)
and CIR models. The unconstrained model was used as
a reference, and all comparisons were performed under
a uniform prior on divergence dates. The results are shown
in table 1 on a logarithmic scale. The most striking conclu-
sions obtained from these comparisons are

1. Rejection of the molecular clock: We see that for all
data sets, the molecular clock is overwhelmingly re-
jected in favor of the unconstrained model, with Bayes
factors ranging from $157 to$3,072. This but just con-
firms many previous observations (Takezaki et al.
1995; Suchard et al. 2001; Douzery et al. 2004),
indicating that the strict molecular clock is not adapted
to describing the evolution of real sequences.

2. Presence of autocorrelation: For almost all data sets, the
Bayes factors of the relaxed but completely uncorre-
lated models (WN, UGAM, UEXP) are significantly
inferior to those of the autocorrelated relaxed clock
models (LOGN and CIR), indicating that autocorrelation
is an important feature of the variation of evolutionary
rates across time. Only when the number of taxa is
small (MITO10) are the uncorrelated models compara-
ble to the autocorrelated models. Conversely, under
dense taxonomic sampling (MITO150), the UExp and
the WN models were so bad that they performed even
worse than the unconstrained model. The fact that
dense taxonomic sampling is necessary to discriminate
between autocorrelated and nonautocorrelated models
may explain previous results, in which no significant
rate autocorrelation was detected in real data sets
(Drummond et al. 2006).

3. Equivalence of autocorrelated models: For most data
sets, the 2 autocorrelated models, LOGN and CIR, have
comparable Bayes factors. Some discrimination be-
tween the 2 models seems to be possible at the margin,
however: LogN is slightly favored in all cases, except
on MITO100 (where the 2 models have equivalent
scores) and on MITO150 (where CIR is significantly
preferred over LOGN, table 1, last row). A possible
explanation is that LOGN may perform better on smaller
data sets because it is simpler (it has only one
parameter, controlling the autocorrelation). Conversely,
large taxonomic sampling would make it worth to use
a more complex but also more flexible model such as
the CIR that can capture both a decorrelation time and
a stationary variance from the data. Note that, in the
long term, the CIR has a well-defined behavior, that is,
a stationary distribution, whereas in the LOGN model
the rate has a variance that increases linearly with time.
In general, this absence of stationarity for a stochastic
process is seen as a potential problem (Lepage et al.
2006). Yet, the Bayes factors observed here tend to
indicate that such theoretical shortcomings do not really
affect the LogN model’s performances in practice.

Dispersion Index and Rate Autocorrelation

Interestingly, UGAM, the uncorrelated gamma model
(Drummond et al. 2006), appears to be the best among
the 3 branchwise models, although it is less fit than LOGN
and CIR. To understand why, a connection may be made
between the present model comparisons and more classical
tests of the molecular clock hypothesis, based on the exper-
imental measure of the dispersion index.

Table 1
Natural Logarithm of Bayes Factors for Relaxed Clock Models against the Unconstrained Model

Model MOC MAM MITO10 MITO50 MITO100 MITO150

STRICT [$3,072; $3,068] [$160; $157] [$178; $172] [$517; $500] [$956; $897] [$1,919; $1,825]
UEXP [$1.3; $0.6] [18.8; 20.1] [1.0; 1.3] [$8.0; $6.9] [$9.9; $7.0] [$36.1; $31.8]
UGAM [26.6; 27.2] [53.0; 55.7] [3.9; 4.0] [14.6;16.8] [34.6; 36.2] [4.5; 12.0]
WN [23.9; 24.6] [48.8; 49.3] [1.3; 1.6] [9.0; 9.5] [20.4; 21.3] [$4.3; $3.0]
LOGN [40.8; 43.1] [61.1; 64.1] [3.2; 3.7] [23.5; 26.0] [48.3; 56.8] [36.7; 44.0]
CIR [36.7; 40.5] [58.9; 60.6] [2.5; 3.0] [20.0; 22.8] [51.6; 57.4] [51.4; 60.2]
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The dispersion index I(t) is defined as the ratio be-
tween the variance and the mean of the number of substi-
tutions over a time interval of length t. It is equal to 1 in the
case of a Poisson process of constant rate, which is why its
measure has been used as a test of the molecular clock hy-
pothesis, it considered as a corollary of the neutral theory
(Kimura 1983; Gillespie 1991). Under rate variations, I(t) is
larger than one, being equal to:

IðtÞ51þ Var½BðtÞ(
E½BðtÞ( ;

where B(t) is the integral of the rate over the time interval
(as defined in the Materials and Methods).

When I(t) . 1, the substitution process is said to be
overdispersed (Cutler 2000; Gillespie 1991). Overdispersion
is indeed observed in real sequences (Gillespie 1991): the
dispersion index is significantly greater than 1 in many
cases. Furthermore, is seems to be an increasing function
of t (Ohta 1995), a pattern that can be reproduced only un-
der processes of rate variations having sufficiently long-
range autocorrelations (Bickel and West 1998).

In the present case, the theoretical dispersion index is
equal to 1 þ r for WN and 1 þ rt for UGAM. Thus, unlike
WN, UGAM has a dispersion index increasing with t, which
is a typical feature of autocorrelated models. This illustrates
the point stressed in the methods, namely, that UGam does
indeed imply an autocorrelated rate process R(t) within each
time window defined by the branches of the tree. This also
makes UGam more in accordance with experimentally ob-
served values for the dispersion index (Ohta 1995; Bickel
and West 1998), which may explain the better fit we obtain
for UGAM, compared with WN. Conversely, the fact that
UGAM has a lower fit than LOGN and CIR indicates the pres-
ence of autocorrelation over times spanning several succes-
sive branches, something UGAM is unable to capture.

Altogether, autocorrelation can be detected in 2 different
ways: between branches, it can be directly observed. Within
branches, it can only be indirectly inferred, through its net
effect on the dispersion index. And the relative ordering of
WN, UGAM, and LOGN and CIR in our Bayes factor eval-
uations provides evidence for the presence of autocorrela-
tion at both the small and the large scales.

Comparison of Alternative Priors on Divergence Times

To compare the priors on divergence times, we com-
puted the Bayes factors between either the Dirichlet (DIR) or
the birth–death (BD) priors and the uniform prior, used as a
reference. We performed these computations under the best
2 rate processes found in the previous section, that is, LOGN
and CIR.

For all data sets except MITO150, the Bayes factor
between the DIR and UNIF ranges at most a few natural units
above or below zero, indicating that the Dirichlet is more or
less equivalent to the uniform prior (table 2). In contrast, the
performances of the birth–death prior strongly depend on
the data set: it is rejected in favor of the uniform prior in
all cases (ln BF , –6), except onMITO100 andMITO150,
on which it is strongly favored over the 2 alternatives (ln
BF . 45).

The reasons for such a large variation in the statistical
fit are not totally clear: the lower fit of the birth–death prior
for small data sets may be the result of a dimensional pen-
alty (the birth–death has one more parameter than the Di-
richlet). Alternatively, this could be due to the fact that the
trees of MITO100 and 150 have long basal branches, sep-
arating densely sampled vertebrate classes, a pattern that
may be particularly well fitted by a birth–death process.
In contrast, the other 2 data sets (MOC,MAM) display a tree
shape characterized by an early interphyletic or interordinal
diversification, combined with a low phylogenetic redun-
dancy (few closely related taxa). Additional observations
would probably be needed to settle this issue.

Relative Divergence Times

We also looked at the effect of models on relative di-
vergence dates. An example of chronogram is displayed on
figure 1, using the CIR model on the MITO150 data set. No
fossil records were used in this study, so dates are displayed
on a relative scale where all leaves have an age of zero and
the root an age of 100. As a consequence, this study will not
provide any information on the effect of models on absolute
dates and, in particular, on the root age. On the other hand, it
allows us to investigate the discrepancies between models
(given that large discrepancies in the relative node ages be-
tween 2 models will probably imply large discrepancies in
the absolute dates as well), irrespective of all the issues
raised about the way fossil calibration should be properly
used (Yang and Rannala 2006).

These comparisons are congruent with the observa-
tions made in the previous section, based on Bayes factor
evaluations. First, both the STRICT (fig. 2a) and the WN
models (fig. 2b) seem to yield relative age estimates signif-
icantly at odds with those obtained under the CIR. In con-
trast, relative ages under LOGN and CIR are much more
similar (fig. 2c).

Interestingly, there is a higher discrepancy between
CIR and Strict than between WN and Strict (compare fig.
2a and b). This is particularly true for the nodes closer to
the root (ages . 50), for which there is virtually no agree-
ment between CIR and STRICT (fig. 2a), whereas some

Table 2
Natural Logarithm of Bayes Factors for Models CIR and LOGN, under the Birth–Death (BD) and the Dirichlet (DIR) Prior,
against the Uniform Prior over Divergence Times

Model MOC MAM MITO10 MITO50 MITO100 MITO150

CIR þ DIR [2.0; 2.6] [$7.9; $6.3] [$3.6; $2.3] [$1.4; $1.0] [2.1; 3.1] [7.0; 8.5]
LOGN þ DIR [2.5; 2.6] [$7.6; $6.5] [$5.4; $4.3] [$2.8; $1.7] [5.3; 5.8] [13.4; 16.4]
CIR þ BD [$10.2; $8.1] [$9.6; $6.3] [$13.9; $12.9] [$8.8; $6.9] [13.3; 17.4] [46.4; 53.8]
LOGN þ BD [$20.5; $19.0] [$10.3; $6.2] [$13.9; $13.1] [$8.4; $7.2] [13.3; 17.1] [46.6; 55.0]
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overlap canbe seen in the credibility intervals obtainedunder
Strict and WN (fig. 2d). To get a more quantitative under-
standing, we computed the number of node age estimates
under the STRICT model that were significantly departing
from their counterpart in another given model M (i.e., fell
outside the 95% credibility interval of the corresponding es-
timate under model M). We found only 45, 33, and 53 sig-
nificantly departing nodes between the STRICT and the WN,

UEXP, and UGAM models, respectively. On the other hand,
the number of departing nodes went up to 100 between
STRICT and CIR and to 93 between STRICT and LOGN.

This larger discrepancy between Strict and CIR, com-
pared with WN and CIR, seems to have 2 different causes:
first, WN is closer to the strict molecular clock than CIR in
terms of posterior mean estimates (fig. 2a and b). But also,
the estimates under CIR have a smaller uncertainty, with

FIG. 1.—a) Phylogenetic tree representing the MITO150 data set (150 osteichthyans), with branch lengths determined by maximum likelihood
(hence, measured in expected number of substitutions per site). (b) Relative divergence times under the MITO150 data set, under the CIR process and
a uniform prior on divergence times.
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credibility intervals about twice as small as those obtained
under WN (compare fig. 2a and b) and more comparable to
those obtained under the strict molecular clock (fig. 2a, hor-
izontal bars). This makes some sense: thanks to autocorre-
lation, the rate, and time estimates at each node can rely on
both local and distant information, which may help them to
reduce their variance. Yet, whether such a high confidence
corresponds to a reasonable measure of the uncertainty of
the dating remains to be investigated.

We also investigated the effect of the prior on diver-
gence times. It has been suggested that the birth–death prior
might be too informative, to the point that in some cases
(Aris-Brosou and Yang 2003) it was contributing to a larger
extent to the final age estimates than the signal from the data
(Welch et al. 2005). We therefore compared the prior and
the posterior estimates of relative ages, using either the uni-
form or the birth–death prior (fig. 3a and b). We observe in
both cases that, for most nodes, the posterior standard errors
(SEs) are much smaller than the prior SEs, indicating that
the 2 priors are not excessively informative in general.

Nodes near the root are an exception, however, and
more strikingly so under the uniform prior: for old nodes,
and compared with the birth–death prior, the uniform prior
appears to be both more informative and more in contradic-
tion with posterior intervals. In particular, it tends to push
old nodes further toward the root (fig. 3a). This trend is also
observed under the birth–death prior (fig. 3b) but is less pro-
nounced. This could explain the better fit of the birth–death
prior over the uniform one found in the case of MITO150
(table 2).

In any case, and irrespective of the exact prior used,
the data seem to at least partially override the prior infor-
mation as it provides age estimates that are quite robust (al-
though not totally insensitive) to the exact choice of the
prior (fig. 3c and d). Hence, the prior has an influence,

but this influence is moderate, compared with that of the
rate process (fig. 2).

Note that the birth–death prior appears here less infor-
mative than in Aris-Brosou and Yang (2003), as noted by
Welch et al. (2005). This may be simply due to the fact that
our priors on hyperparameters are more vague. Another
point raised by Welch et al. (2005) is that the OU process,
as implemented in Aris-Brosou and Yang (2003), imposes
a general trend in the rate history. We therefore checked that
the optimal model (CIR þ BD) found under MITO150 (see
fig. 1b) did not produce such patterns (fig. 4). Altogether,
these checks indicate that the use of squared, instead of di-
rect, OU processes and flexible enough hyperpriors on the
parameters of the birth–death process does not seem to
yield an excessively biased model for molecular datings.

Conclusion

In summary, our observations illustrate the high sen-
sitivity of the estimated dates to the relaxation model used
(fig. 2) and to a lesser extent also to the prior on divergence
times (fig. 3). This confirms the need for a global compar-
ison of relaxed clock models, so as to guide model choice in
future molecular dating experiments.

A systematic evaluation of Bayes factors between alter-
native models and priors by practitioners in the field of mo-
lecular dating would, in the long run, yield a much more
comprehensive perspective on the relative merits of these
models and priors. To this end, the software presented in this
article is made freely available (http://www.lirmm.fr/mab).

In this direction, our Bayes factor evaluations offer
a series of indications. Concerning the relaxation process,
our comparisons give a nearly unanimous answer in favor
of autocorrelated models, which should therefore probably

FIG. 2.—Relative node ages according to alternative relaxed clock models inferred in the case of the MITO150 data sets. Error bars represent the
95 credibility intervals. (a) STRICT against CIR, (b) WN against CIR, (c) LOGN against CIR, and (d) STRICT against WN.
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be used on a systematic basis. This conclusion is assuring,
given the current practice prevailing in the field of molec-
ular dating. On the other hand, concerning the choice of the
prior on divergence times, no clear guidelines can be de-
duced from our observations as the Bayes factors turn
out to depend strongly on the data sets. More comparisons
may be needed in this direction. Alternatively, a model av-
eraging device using reversible jump (Green 1995) could be
the most convenient way around the problem.

Our conclusions are exclusively based on relative age
estimates, but they likely transpose to situations where one
tries to estimate absolute ages using fossil calibrations. In

this respect, the lesser variance observed under the autocor-
related models, compared with the uncorrelated ones (fig.
2a and b), will probably also be observed for absolute dates.
The reason is again quite simple: relying on autocorrelation,
at least through a model correctly capturing its properties,
has the advantage of letting calibrations effectively inform
the age estimates across larger distances over the tree. Note
that Bayes factors could also be computed between alterna-
tive calibration settings, allowing one to measure the mu-
tual agreement between multiple calibration points.

Otherwise, there are many other directions that were
not considered in the present work: other models of rate
relaxation can be imagined, among which piecewise con-
stant clocks, which can be modeled using compound pro-
cesses (Huelsenbeck et al. 2000) or fractal processes
(Bickel and West 1998). Finally, the impact of the substi-
tution model has not been investigated here. All these are
important issues, which can all be addressed in the general
framework of Bayesian model comparison that we have
proposed here.
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