
A General Composition Theorem
for Secure Reactive Systems

Michael Backes, Birgit Pfitzmann, and Michael Waidner

IBM Zurich Research Lab
{mbc,bpf,wmi}@zurich.ibm.com

Abstract. We consider compositional properties of reactive systems that are se-
cure in a cryptographic sense. We follow the well-known simulatability approach
of modern cryptography, i.e., the specification is an ideal system and a real system
should in some sense simulate this ideal one. We show that if a system consists
of a polynomial number of arbitrary ideal subsystems such that each of them has
a secure implementation in the sense of blackbox simulatability, then one can
securely replace all ideal subsystems with their respective secure counterparts
without destroying the blackbox simulatability relation. We further prove our the-
orem for universal simulatability by showing that blackbox simulatability implies
universal simulatability under reasonable assumptions. We show all our results
with concrete security.

1 Introduction

In recent times, the analysis of cryptographic protocols has been getting more and more
attention, and thus the demand for general frameworks for representing cryptographic
protocols and their security requirements has been rising. To enable a cryptographically
correct analysis of cryptographic protocols, such frameworks have to capture proba-
bilistic behaviors, complexity-theoretically bounded adversaries as well as a reactive
environment of the protocol, i.e., continuous interaction with users and an adversary,
e.g., in many protocol runs. Clearly, such frameworks further have to be rigorously
defined to avoid ambiguities and to enable convincing proofs. Moreover, it is highly
desirable that such frameworks provide a link to formal methods, i.e., to tool-supported
verification of cryptographic protocols. Tool support can minimize flaws, which occur
quite often if the distributed-systems aspects of cryptographic protocols are analyzed
by hand. One ingredient for this is that the model should contain an abstract machine
model besides Turing machines. The model of Pfitzmann and Waidner [31] is suitable
for all these requirements and we use it as a rigorous foundation of this work.

The model of [31] introduced a notion of security-preserving refinement, called
reactive simulatability. This notion captures the idea of refinement that preserves not
only integrity properties but also confidentiality properties. Intuitively it can be stated
as follows, when applied to the relation between a real and an ideal system:1 Everything
that can happen to users of the real system in the presence of an arbitrary adversary A’
can also happen to the same users with the ideal system, where attack capabilities are

1 Other terms are implementation and specification, or in special cases cryptographic and abstract
system.

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 336–354, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A General Composition Theorem for Secure Reactive Systems 337

usually much more restricted, in the presence of another adversary A. In particular, it
comprises confidentiality because the notion of what happens to users, called their view,
not only includes their in- and outputs to the system, but also their communication with
the adversary. This includes whether the adversary can guess secrets of the users or partial
information about them. As it is often desirable to impose further restrictions on how the
adversary A against the ideal service is constructed, simulatability comes in different
flavors. The two most prominent ones (besides general simulatability as described above,
which does not impose any restriction on A) are universal simulatability, which states
that A has to be independent of the actual users of the protocol, and the (seemingly)
more restrictive notion of black-box simulatability, which states that A consists of the
original adversary A’ and a simulator that may only depend on the protocol itself.

One of the key results in the considered model is a composition theorem [31]. It
states that if a larger system is designed based on a specification of a subsystem, and
the implementation of the subsystem is later plugged in, the entire implementation of
the larger system is as secure as its design in the same sense of reactive simulatability.
This theorem (as well as its predecessor [30] for a synchronous reactive model) holds
for all variants of simulatability (general, universal, and blackbox), but it is restricted to
replacing one system. Obviously, a constant number of systems can then be replaced by
applying the theorem multiple times.

In this work, we present a more comprehensive composition theorem for black-
box simulatability by showing that a polynomial number (in a security parameter) of
arbitrary systems can be composed without destroying the simulatability relation. The
proof relies on what is often called a “standard hybrid argument” as first used in [15].
We further show that universal simulatability implies black-box simulatability under
reasonable assumptions. This is of independent interest, but it in particular allows us to
prove our theorem also for universal simulatability. We show all our results with concrete
security.

Related Literature. Simulatability was first sketched for secure multi-party function
evaluation, i.e., for the computation of one output tuple from one tuple of secret inputs
from each participant in [33] and defined (with different degrees of generality and rig-
orosity) in [14,6,27,9]. While composition theorems for special cases were proven in [6,
27], the first general composition theorem for non-reactive simulatability was proven
in [9].

An important step towards compositionality results of reactive systems was taken
in [19,20], where the cryptographic security of specific systems was directly defined
and verified using a formal language, the π-calculus, and security was expressed using
observational equivalence. This notion is even stronger than reactive simulatability be-
cause the entire environment (corresponding to users and adversary together for reactive
simulatability) must not be able to distinguish the implementation and the specification.
Correspondingly, the concrete specifications used were not abstract; they essentially
comprise the actual protocols including all cryptographic details. Composition was de-
fined in the calculus by defining processes with “holes” for other processes, which then
allows for composing a constant number of systems.

A reactive simulatability definition was first proposed (after some earlier sketches,
in particular in [13,29,9]) in [16]. It is synchronous, covers a restricted class of protocols
(straightline programs with restricted operators, in view of the constructive result of this

338 M. Backes, B. Pfitzmann, and M. Waidner

paper), and simulatability is defined for the information-theoretic case only, where it can
be done with a quantification over input sequences instead of active honest users.

The first composition theorem for reactive simulatability was given in [30] for a
general synchronous reactive model, followed by essentially the same composition the-
orem [31] in the corresponding asynchronous model. Later than [31] but independently,
another model of asynchronous reactive systems together with a composition theorem
for reactive simulatability was developed in [10]. The theorem is specific for univer-
sal simulatability, but for this case it is more general than the ones in [30,31] since it
additionally allows for securely composing a polynomial number of copies of an ideal
service, which naturally correspond to different protocol instances in the real implemen-
tation. We stress that our composition theorem in this paper not only captures secure
composition of a polynomial number of copies of one single ideal system but also of a
polynomial number of truly arbitrary systems. However, our work was inspired by [10].

Besides considering composition as secure refinement, property-based composition
has received interest in the literature: It considers the question whether systems that
individually provide certain security properties still have these properties when they are
run in parallel with other systems. For safety and liveness, general theories of this kind
of compositionality exist [28,32,1], which are sufficient to reason about most functional
system properties. However, many security properties are not safety and liveness prop-
erties, in particular confidentiality. Compositional information flow properties were first
investigated in [23]. After that, much work has been devoted to identifying properties
which are preserved under composition like, e.g., restrictiveness [23,24], forward cor-
rectability [18], or separability [25]. For certain security properties that are in general
not preserved under composition, it is known how to restrict composition in order to
preserve these properties [25,26]. More recent work concentrated on a uniform basis to
reason about property-based composition [22,11].

Somewhere between both notions of composition, so-called preservation theorems
exist, which state that specific properties are preserved under (reactive) simulatability.
Such theorems exist for integrity [2], transitive and non-transitive non-interference [3,
4], i.e., absence of information flow, and a class of liveness properties [5].

Outline. In Section 2 we review the model of reactive systems in asynchronous networks.
Section 3 contains our composition theorem and its proof for black-box simulatability.
In Section 4, we show that universal simulatability implies black-box simulatability and
reasonable assumptions. In particular, this can be used to carry over our composition
theorem for universal simulatability.

2 Asynchronous Reactive Systems

In this section, we review our model for secure reactive systems in an asynchronous
network from [31]. Several definitions are only sketched whereas those that are important
for understanding our results are given in full detail. All other details can be looked up
in the original paper.

2.1 General System Model

Systems mainly consist of several interactive machines. Machines communicate via
ports (local endpoints for different potential channels) and messages are strings over

A General Composition Theorem for Secure Reactive Systems 339

Sending
machine

Receiving
machine

n!

n?

n !

n ?
n~Buffer

n ?

n !
Scheduler for
buffer n~

Fig. 1. Ports and buffers. Specifications only need to spell out the black part

an alphabet Σ. Inspired by the CSP-Notation [17], we write output and input ports as
q! and q? respectively. As in similar models, channels are defined implicitly by naming
convention (and not by a separate graph), that is port q! sends messages to q?. For
asynchronous timing, a message is not immediately delivered to its recipient, but first
stored in a special machine q̃ called a buffer. If a machine wants to schedule the i-th
message of buffer q̃, it must have the unique clock-out port q�!, and it sends i at q�!, see
Figure 1. The buffer then outputs and deletes its i-th message. For a port p, we write pc to
denote the port which it connects to according to Figure 1, i.e., q!c = q↔?, q↔!c = q?,
q�!c = q�? and vice versa. The in- and output ports in a port set or port sequence P are
denoted in(P) and out(P).

Our primary machine model is probabilistic state-transition machines, similar to
probabilistic I/O automata as in Lynch [21] (and also essentially in [6,27]). If a machine
is switched, it receives an input tuple at its input ports and performs its transition function.
This yields a new state and an output tuple in the deterministic case, or a finite distribution
over such pairs in the probabilistic case. Moreover, each machine has a function bounding
the length of the considered inputs; this allows flexible time bounds independent of the
environment.

Definition 1. (Machines) A machine is a tuple

M = (nameM,PortsM,StatesM, δM, lM, IniM,FinM)

of a name nameM ∈ Σ+, a finite sequence PortsM of ports, a set StatesM ⊆ Σ∗ of
states, a probabilistic state-transition function δM, a length function lM : StatesM →
(N ∪ {∞})|in(PortsM)|, and sets IniM,FinM ⊆ StatesM of initial and final states. Its
input set is IM := (Σ∗)|in(PortsM)|; the i-th element of an input tuple denotes the input
at the i-th in-port. Its output set isOM := (Σ∗)|out(PortsM)|. The empty word, ε, denotes
no in- or output at a port. δM probabilistically maps each pair (s, I) ∈ StatesM × IM
to a pair (s′, O) ∈ StatesM ×OM.

Two restrictions apply to δM: Every output distribution has to be finite and if I =
(ε, . . . , ε), then δM(s, I) = (s, (ε, . . . , ε)). Inputs are ignored beyond the length bounds,
i.e., δM(s, I) = δM(s, I�lM(s)) for all I ∈ IM, where r�l for l ∈ N,r ∈ Σ∗ denotes the l-
symbol prefix, and the notation is lifted to tuples. We further demand lM(s) = (0, . . . , 0)
for every s ∈ FinM. �

In the text, we often write “M” for nameM. The set (in contrast to the sequence) of ports
of a machine M is denoted by ports(M), and similar for sets of machines.

340 M. Backes, B. Pfitzmann, and M. Waidner

A collection Ĉ of machines is a set of machines with pairwise different machine
names and disjoint sets of ports. The completion [Ĉ] of a collection Ĉ is the union of all
machines of Ĉ and the buffers needed for every channel. A port of a collection is called
free if its connecting port is not in the collection. These ports will be connected to the
users and the adversary. The free ports of a completion [Ĉ] are denoted as free([Ĉ]).
A collection Ĉ is called closed if its completion [Ĉ] has no free ports except a special
master clock-in port clk�?.

A closed collection represents a “runnable” system and a probability space of runs
(sometimes called traces or executions) is defined for it. Machines switch sequentially,
i.e., we have exactly one active machine M at any time. If this machine has clock out-
ports, it can select the next message to be delivered by scheduling a buffer via one of
these clock out-ports. If the buffer contains a message at the selected position, it delivers
this message, and the receiving machine is the next active machine. If M tries to schedule
multiple messages, only one is taken, and if it schedules none or the message does not
exist, the master scheduler X becomes active. Formally, runs are defined as follows.

Definition 2. (Runs and Views) Let Ĉ be a closed collection with master scheduler X.
Runs and their probability spaces are defined inductively by the following algorithm for
each tuple ini ∈ ×M∈Ĉ IniM of initial states. The algorithm maintains variables for
the state of each machine and treats each port as a variable over Σ∗, initialized with ε
except for clk�? := 1. It further maintains a variable MCS (“current scheduler”) over
machine names, initially MCS := X, for the currently active non-buffer machine, and a
variable r for the resulting run, an initially empty list. The algorithm has five phases.
Probabilistic choices only occur in Phase 1.

1. Switch current scheduler: Switch the current machine MCS, i.e., set (s′, O) ←
δMCS(s, I) for its current state s and in-port values I . Then assign ε to all in-ports
of MCS.

2. Termination: If X is in a final state, the run stops. (As X made no outputs in this
case, this only prevents repeated master clock inputs.)

3. Store outputs: For each simple out-port o! of MCS with o! �= ε, in their given order,
switch buffer õ with input o↔? := o!. Then assign ε to these ports o! and o↔?.

4. Clean up scheduling: If at least one clock out-port of MCS has a value �= ε, let n�!
denote the first such port and assign ε to the others. Otherwise let clk�? := 1 and
MCS := X and go to Phase 1.

5. Deliver scheduled message: Switch buffer ñ with input n�? := n�!, set n? := n↔!
and then assign ε to all ports of ñ and to n�!. If n? = ε let clk�? := 1 and MCS := X.
Else let MCS := M′ for the unique machine M′ with n? ∈ ports(M′). Go to Phase 1.

Whenever a machine (this may be a buffer) M switches from (s, I) to (s′, O), we add a
step (nameM, s, I, s′, O) to the run r with the following two restrictions. First, we cut
each input according to the respective length function, i.e., we replace I by I ′ := I�lM(s).
Secondly, we do not add the step to the run if I ′ = (ε, . . . , ε), i.e., if nothing happens
in reality. This gives a random variable runĈ ,ini for each tuple ini ∈ ×M∈Ĉ of initial
states, and similarly for l-step prefixes runĈ ,ini,l.

The view of a subset M̂ ⊆ Ĉ of machines in a run r is the subsequence of r
consisting of those steps where a machine of M̂ switches. This gives a random vari-
able view Ĉ ,ini(M̂) for each tuple ini of initial states, and similarly for l-step prefixes

A General Composition Theorem for Secure Reactive Systems 341

view Ĉ ,ini,l(M̂) of the view. For a singleton M̂ = {H} we write view Ĉ ,ini(H) for
view Ĉ ,ini({H}). �

2.2 Security-Specific System Model

We now define specific collections for security purposes. We start with the definition of
structures. Intuitively, these are the machines that execute a security protocol. They have
a distinguished set of service ports. This is a subset of the free ports where, intuitively, a
certain service is guaranteed, while remaining free ports are meant only for the adversary.
Typical examples of inputs at service ports are “send message m to participant id” for a
message transmission system or “pay amount x to participant id” for a payment system,
while typical non-service ports are those of insecure network connections in a real
system. For cryptographic purposes, the initial state of all machines in a structure is a
security parameter k in unary representation.

Definition 3. (Structures and Service Ports) A structure is a pair struc = (M̂ ,S) where
M̂ is a collection of simple machines (i.e., with only normal in- and out-ports and clock
out-ports) with {1}∗ ⊆ IniM for all M ∈ M̂ , and S ⊆ free([M̂]). The set S is called
service ports. �

Forbidden ports for users of a structure are those that clash with port names of given
machines and those that would link the user to a non-service port.

Definition 4. (Forbidden Ports) For a structure (M̂ ,S) let S̄M̂ := free([M̂]) \ S . We
call forb(M̂ ,S) := ports(M̂) ∪ S̄ c

M̂
the forbidden ports. �

A system is a set of structures. The idea behind systems is that there may be different
actual structures depending on the set of actually malicious participants.

Definition 5. (Systems) A system Sys is a set of structures. �

A structure can be complemented to a configuration by adding a user machine and
an adversary machine. The user is restricted to connecting to the service ports. The
adversary closes the collection, i.e., it connects to the remaining service ports, the other
free ports S̄M̂ of the collection, and the free ports of the user. Thus, user and adversary
can interact, e.g., for modeling active attacks.

Definition 6. (Configurations) A configuration of a structure (M̂ ,S) is a tuple conf =
(M̂ ,S , H, A) where

– H is a machine called user with ports(H) ∩ forb(M̂ ,S) = ∅ and {1}∗ ⊆ IniH,
– A is a machine called adversary with {1}∗ ⊆ IniA,
– and the completion Ĉ := [M̂ ∪ {H, A}] is a closed collection.

The set of configurations of (M̂ ,S) is written Conf(M̂ ,S). The notation Conf() is lifted
to sets of structures, i.e., systems. We write conf .M̂ for conf [1] (component selection
function) and similarly conf .S , conf .H, and conf .A, and conf .struc for conf [1, 2]. �

342 M. Backes, B. Pfitzmann, and M. Waidner

2.3 Parametrized Systems

In many typical systems, the structures only depend on the trust model, but not on the
security parameter k. In a parametrized system this is different. Hence such a system
is partitioned into different subsystems for different values of k. “Normal” systems can
naturally be identified with parametrized systems where all subsystems are equal.

Definition 7. (Parametrized Systems) A parametrized system is a system Sys together
with a partitioning (Sysk)k∈N, i.e., the elements Sysk are pairwise disjoint systems with
Sys =

⋃

k∈N
Sysk. In slight abuse of notation we also call the sequence of partitions

Sys , and if the system is called Sys , the notation Sysk always refers to the k-th element
in the partition sequence.

A bounding function for a parametrized system is a function P such that for all
k ∈ N and (M̂ ,S) ∈ Sysk we have |M̂ | ≤ P (k) and the runtime of every M ∈ M̂ on
initial input 1k is bounded by P (k) in the sense of circuit complexity (more precisely,
circuit size). A parametrized system is polynomial-time if it has a polynomial bounding
function. �

Circuit complexity, i.e., non-uniform complexity, is natural for this definition because one
can consider every machineM, used only for security parameterk, as a separate circuit.As
we want to bound the overall runtime of a machine with respect to its initial input length,
just as in the uniform case, this can be defined by one normal non-cyclic circuit for
each machine. Meaningful uniform complexity for such a definition requires a universal
machine that simulates all these structures, and a generation algorithm for structures.
However, our results are reductions with concrete security (as first introduced as a general
concept with special notation in [8]), and usable for a wide range of complexity measures.
In those reductions we actually work with Turing complexity because it is defined in full
detail for our interacting machines.

A parametrized system considers the potentially used subsystems as potentially avail-
able from the start. This is also implicitly the case in [10] because although a subsystem
is said to be generated there, it springs up magically in distributed locations by this
operation. This means that all the connections must be assumed to be predefined. A truly
dynamic system would need to distribute port or machine names of new machines, like
the π-calculus does. We do not see any specific reason while our theorem should not
hold for this case but it would require a rigorous definition first.

We now define user and adversary of a parametrized system.

Definition 8. (User and Adversary of a Parametrized System) A user and an adversary
of a parametrized system Sys are families (Hstruc)struc∈Sys , (Astruc)struc∈Sys such that
(M̂ ,S , H(M̂ ,S), A(M̂ ,S)) ∈ Conf(Sys) for all (M̂ ,S) ∈ Sys . �

To reason about the complexity of users and adversaries, or more generally families of
machines, we define the parametrized complexity.

Definition 9. (Parametrized Complexity) Let X =
⋃

k∈N
Xk be a partitioned index set

(with the same conventions as for systems) and let A = (Ax)x∈X be a family of machines
with {1}∗ ⊆ IniAx

for every x ∈ X . We say that A is of complexity t : N→ N if for all
x ∈ Xk, the runtime of Ax on initial input 1k is bounded by t(k) in the sense of circuit
complexity. We sometimes write tA for “the” complexity of A. �

A General Composition Theorem for Secure Reactive Systems 343

HH

A2

A1

S S

M1 M2 THM3

∀
∀ ∃

Real configuration Ideal configuration

Fig. 2. Example of simulatability. The view of H is compared.

2.4 Defining Security with Simulatability

Reactive simulatability essentially means that whatever might happen to an honest user
in a real system Sys1 can also happen in an ideal system Sys2. More precisely, for every
configuration conf 1 of Sys1, there exists a configuration conf 2 of Sys2 with the same
user yielding indistinguishable views for this user. A typical situation is illustrated in
Figure 2.

However, we do not want to compare a structure of Sys1 with arbitrary structures of
Sys2, but only with certain suitable ones. What suitable means in a concrete situation
can be defined by a mapping f from Sys1 to Sys2. The mapping f is called valid if it
maps structures with the same service ports, so that the same user can connect.

Definition 10. (Valid Mappings) A valid mapping between two systems Sys1 and Sys2
is a function f : Sys1 → Sys2 with (M̂2,S2) = f((M̂1,S1)) ⇒ S1 = S2. We call
f((M̂1,S1)) the corresponding structure of (M̂1,S1). If the systems are parametrized,
we also require f(Sys1,k) ⊆ Sys2,k for all k ∈ N. �

A technical problem for reactive simulatability is that a correct user of a structure from
Sys1 might have forbidden ports in the corresponding structure. Configurations where
this does not happen are called suitable; we restrict the simulatability definition to those.
We omit a rigorous definition for brevity. For a valid mapping f : Sys1 → Sys2, let
Conff (Sys1) be the set of suitable configurations.

We present the definition of indistinguishability for two families of random vari-
ables with a common partitioned index set and with versions for concrete security,
following [34,7,12].

Definition 11. (Indistinguishability) Let two families (varx)x∈X and (var′x)x∈X of dis-
crete probability distributions (random variables)

– They are called perfectly indistinguishable iff varx = var′x for all x ∈ X .
– They are called statistically δ-indistinguishable for a function δ : N → R≥0 iff the

statistical distance ∆stat(varx, var′x) := 1
2

∑

d∈Dx
|Pr(varx = d) − Pr(var′x = d)|

is at most δ(k) for all k and all x ∈ Xk.
– An algorithm Dis is called a (t, δ)-distinguisher for varx and var′x for t ∈ N, δ ∈

R≥0, and x ∈ Xk iff its complexity is at most t and

δDis
x := |Pr(Dis(1k, varx) = 1)− Pr(Dis(1k, var′x) = 1)| ≥ δ.

344 M. Backes, B. Pfitzmann, and M. Waidner

– The distributions are called polynomially indistinguishable iff for all polynomials
t and all distinguishers (Disx)x∈X with complexity t in their first parameter, there
exists a negligible function δ such that δDis

x ≤ δ(k) for all k and all x ∈ Xk. �

We write “≈y” for indistinguishability with y = perf, δ, or poly, respectively. We write
“≈” if we want to treat all cases together, and we often write “=” for “≈perf”.

We later need that indistinguishability of families of random variables implies indis-
tinguishability of functions of them, e.g., of “parts” of the random variables.

Lemma 1. (Indistinguishability of Derived Distributions) Let var, var′ be families of
probability distributions with partitioned index set X and a common family of domains
D, and let φ = (φx)x∈X be a family of functions φx on Dx (to strings, but encoding
domains as strings is not made explicit). Then the following holds:

– var ≈y var′ ⇒ φ(var) ≈y φ(var′) if y is perf, or a function δ.
– Every (t, δ)-distinguisher Disφ for φ(varx) and φ(var′x) gives rise to a (t′, δ)-

distinguisher Dis for varx and var′x with t′ = t + tφ(b(k)), where tφ : N → N

denotes the complexity of φ, and b : N → N bounds the length of the random vari-
ables, i.e., |v| ≤ b(k) for all v ∈ Dx and x ∈ Xk.

– var ≈poly var′ ⇒ φ(var) ≈poly φ(var′) if the random variables are of polynomial
length, and φ is of polynomial complexity. �

This is clear for the perfect case, and can be easily shown by computations on statistical
distances for the statistical case. For concrete complexity and the computational case,
the distinguisher family Dis for the original distributions is defined by Disx(1k, v) :=
Disφ,x(1k, φ(v)) for all k and x ∈ Xk, and for v of length at most b(k).

We are now ready to define reactive simulatability for parametrized systems. We re-
quire that there exists an extension fC of the valid structure mapping f to a configuration
mapping that leaves the user unchanged, i.e., we skolemize the existence of correspond-
ing adversaries in Figure 2. We then consider the families of user views viewconf 1

(H) and
viewfC(conf 1)(H) where all machines have initial input 1k for the security parameter k to
which this configuration belongs. Each of these two families contains one well-defined
probability distribution for each configuration conf 1. Overall these are two families of
distributions with the partitioned index set Conff (Sys1) =

⋃

k∈N
Conff (Sys1,k). Sim-

ilarly, we obtain two families viewconf 1,l(H) and viewfC(conf 1),l(H) for l-step prefixes
of user views.

Definition 12. (Reactive Simulatability) Let parametrized systems Sys1 and Sys2 with
a valid mapping f be given. For reactive simulatability, we require that there exists
a function fC : Conff (Sys1) → Conf(Sys2) with fC(conf 1).struc = f(conf 1.struc)
and fC(conf 1).H = conf 1.H for all conf 1 ∈ Conff (Sys1), and with the following
properties.We say that fC is a τ -mapping for a structure struc1 and a function τ : N→ N

if the complexity tfC(conf 1).A is bounded by τ(tconf 1.A) for all conf 1 ∈ Conf(struc1).
The entire fC is a τ -mapping for a function τ : N

2 → N if for all conf 1 ∈ Conff (Sys1)
we have tfC(conf 1).A ≤ τ(k, tconf 1

).
We say that Sys1 ≥f,y

sec Sys2, spoken “y′-at least as secure as”, under the following
conditions for different cases of y and y′, where we abbreviate H := conf 1.H:

A General Composition Theorem for Secure Reactive Systems 345

a) y = perf and y′ = “perfectly” iff viewconf 1
(H) and viewfC(conf 1)(H) are perfectly

indistinguishable for every conf 1 ∈ Conff (Sys1).
b) y = δ and y′ = “δ-statistically” for a function δ : N

2 → R≥0 iff for every conf 1 ∈
Conff (Sys1,k) and every l ∈ N we have viewconf 1,l(H) ≈δ(k,l) viewfC(conf 1),l(H).

c) Concrete security: An algorithm Dis is called a (t, δ)-distinguisher for conf 1 ∈
Conff (Sys1,k) and fC(conf 1) where t ∈ N and δ ∈ R≥0 iff its complexity is at
most t and δDis

conf 1
≥ δ where

δDis
conf 1

:= |Pr(Dis(1k, viewconf 1
(H)) = 1)− Pr(Dis(1k, viewfC(conf 1)(H)) = 1)|.

e) y = poly and y′ = “polynomially” iff for all users H and adversary A of poly-
nomial complexity, the views (view (M̂ ,S ,H(M̂ ,S),A(M̂ ,S))

(H(M̂ ,S)))(M̂ ,S)∈Sys1
and

(viewfC((M̂ ,S ,H(M̂ ,S),A(M̂ ,S)))
(H(M̂ ,S)))(M̂ ,S)∈Sys1

are polynomially indistinguish-

able and fC is a P -mapping for a polynomial P .

Universal simulatability means that fC(conf 1).A (i.e., A2 in Figure 2) for conf 1 =
(M̂1,S , H, A1) only depends on M̂1, S , and A1. We write ≥uni,f,y

sec instead of ≥f,y
sec if we

want to emphasize this case. �

Where the difference between the types of security is irrelevant, we only write≥f
sec, and

we omit the indices f and sec if they are clear from the context.
An essential ingredient in the composition theorem and other uses of the model is a

notion of combining several machines into one, and a lemma that this makes no essential
difference in views. The combination is defined in a canonical way by considering a
combined state space and letting each transition function operate on its respective part.
We omit details for brevity. The combination of a set M̂ of machines is written comb(M̂)
and we sometimes write comb(M1, . . . ,Mj) for comb({M1, . . . ,Mj}).
Lemma 2. (Machine Combination) Let Ĉ be a collection without buffers, and D̂ ⊆ Ĉ .
The view of every set of original machines in (Ĉ \ D̂) ∪ {comb(D̂)} is the same as in
Ĉ . This includes the view of the submachines in comb(D̂), which is well-defined given
Ĉ and D̂ . The Turing complexity of comb(D̂) is the sum of the complexities of the
machines in comb(D̂). �

We can now add the notion of blackbox simulatability to Definition 12. Here A2 is given
as the combination of a fixed “simulator” Sim and a machine A′

1 that is identical to A1
up to port renaming.

Definition 13. (Blackbox Simulatability) With the notation of Definition 12, blackbox
simulatability means that we have functions fSim from Sys1 to machines (the simula-
tors for the structures) and fσ from Sys1 to port renaming functions such that for all
conf 1 = (M̂1,S , H, A1) ∈ Conff (Sys1) we have fC(conf 1) = (M̂2,S , H, A2) with
(M̂2,S) = f((M̂1,S)) and A2 = comb(Sim, A′

1) with Sim := fSim((M̂1,S1)) and
A′

1 := fσ((M̂1,S1))(A1). For computational security, we require thatSim is polynomial-
time, i.e., that the parametrized complexity of (fSim((M̂1,S)))(M̂1,S)∈Sys1

is polynomi-

ally bounded. We write ≥bb
sec instead of ≥sec if we want to emphasize this case (with the

respective superscripts). �

346 M. Backes, B. Pfitzmann, and M. Waidner

2.5 Composition

When composing several systems, one typically does not want to compose every structure
of one system with every structure of the others, but only with certain matching ones.
For instance, if the individual machines of Sys2 are implemented on the same physical
devices as those of Sys1, as usual in a layered distributed system, we only compose
structures corresponding to the same set of corrupted physical devices. However, this is
not the only conceivable situation. Hence we do not define a composition operator that
produces one specific composition, but a set of possible compositions.

Definition 14. (Composability and Composition of Structures) We call structures
(M̂1,S1), . . . , (M̂n,Sn) composable if ports(M̂i) ∩ forb(M̂j ,Sj) = ∅ and Si ∩
free([M̂j]) = Sj ∩ free([M̂i]) for all i �= j.2 We then define their composition
as (M̂1,S1)|| . . . ||(M̂n,Sn) := (M̂ ,S) with M̂ := M̂1 ∪ . . . ∪ M̂n and S :=
(S1 ∪ . . . ∪ Sn) ∩ free([M̂]). �

We now define the composition of variably many systems, i.e., there is a potentially
infinite supply of systems from which a finite number P (k) is chosen for composition
for each security parameter k.

Definition 15. (Parametrized Composition of Systems) Let a sequence Sysseq =
(Sys(i))i∈N be given where each Sys(i) is a parametrized system, and let P : N → N

be a function. Then a P -sized composition of Sysseq is a parametrized system
Sys∗ where for all k ∈ N, every structure (M̂ ∗,S∗) ∈ Sys∗

k has a unique rep-
resentation (M̂ ∗,S∗) = (M̂1,S1)|| . . . ||(M̂P (k),SP (k)) with composable structures

(M̂i,Si) ∈ Sys(i)
k for i = 1, . . . , P (k).We call (M̂i,Si) the restriction of (M̂ ∗,S∗)

to Sys(i) and write (M̂i,Si) = (M̂ ∗,S∗)�Sys(i) . �

If the systems Sys(i) have a joint bounding function Q, then P ·Q is a bounding function
for Sys∗. In particular, if P and Q are polynomials, then Sys∗ is polynomial-time.

3 General Composition Theorem for Blackbox Simulatability

In this section, we show that reactive blackbox simulatability is consistent with the
composition of a parametrized number of systems, in particular polynomially many in
the computational case. The basic idea is the following: Assume that we have proven
that a potentially infinite supply of systems Sys(i) are as secure as systems Sys ′(i) in the
sense of black-box simulatability. Now we want to use Sys(i) as a secure replacement
for Sys ′(i), i.e., as an implementation of the ideal system Sys ′(i). The following theorem
shows that such modular proofs are possible. The situation is shown in the upper part of
Figure 3.

Additional conditions in the theorem are that all corresponding structures are com-
posable and that, for the polynomial case, the security of the system is in certain sense
uniform.

2 The first condition makes one structure a valid user of another. The second one excludes cases
where p ∈ free([M̂i])∩free([M̂j]) (e.g., a clock port for a connection between these structures)
and p ∈ Si but p �∈ Sj .

A General Composition Theorem for Secure Reactive Systems 347

Theorem 1. (Secure Parametrized Composition, Blackbox Case) Let Sysseq =
(Sys(i))i∈N and Sysseq ′ = (Sys ′(i))i∈N be sequences of parametrized systems. Let
f = (f (i))i∈N be a sequence of valid mappings f (i) : Sys(i) → Sys ′(i), and let

Sys(i) ≥bb,f(i),yi
sec Sys ′(i) for all i ∈ N.

Let P : N → N, and let Sys# and Sys∗ denote the P -sized compositions of
Sysseq and Sysseq ′, respectively. Assume that the following structural conditions hold
for all k ∈ N and every structure (M̂ #,S) ∈ Sys#

k : Let its restrictions be (M̂i,Si) :=
(M̂ #,S)�Sys(i) and the corresponding structures (M̂ ′

i ,Si) := f (i)((M̂i,Si)) for all
i ≤ P (k). Then the composition

f#((M̂ #,S)) := (M̂ ′
1,S1) || · · · || (M̂ ′

P (k),SP (k))

exists and lies in Sys∗
k. Furthermore, (M̂i,Si) and (M̂ ′

j ,Sj) must be composable for

j �= i, and ports(M̂ ′
i) ∩ S c

j = ports(M̂i) ∩ S c
j for all j �= i. Then we have

Sys# ≥bb,f#,y
sec Sys∗

a) with y = perf if yi = perf for all i ∈ N.
b) with y = P (k) · δ(k, b(k)) if all yi are bounded by a function δ : N

2 → R≥0, and
where b(k) is the sum of the complexity of the systems, the user, and the simulators.

c) With concrete complexity: For every conf # ∈ Conff#
(Sys#

k), a (t, δ)-distinguisher
for conf # and fC(conf #) gives rise to a (t′, δ′)-distinguisher for conf (i) and

fC(conf (i)) for a conf (i) ∈ Conf(Sys(i)
k) with δ′ = δ

P (k) and t′ = t+ b′(k), where
b′(k) is a polynomial independent of tconf #.A. (Details are given in the proof.)

d) with y = poly if yi = poly for all i ∈ N and under the following conditions: The
function P is polynomially bounded, and the systems Sys(i) have a joint bounding
polynomial Q. The complexities of the simulator families induced by the mappings
f

(i)
Sim are bounded by a joint polynomial QSim. The distinguishing probabilities of

the system pairs (Sys(i),Sys ′(i)) are uniformly bounded, i.e., for all polynomials t
there exists a negligible function δ such that for all distinguishers Dis, all i, k ∈ N,

and all conf = (M̂i,Si, H, A) ∈ Conff(i)
(Sys(i)

k) we have (tDis ≤ t(k) ∧ tH ≤
t(k) ∧ tA ≤ t(k))⇒ δDis

conf ≤ δ(k) (recall Definition 12d). �

The first statement to be proved is extracted into the following lemma.

Lemma 3. Under the conditions of Theorem 1, the mapping f# is a valid mapping
between Sys# and Sys∗. �

The proof is straightforward as in [30], but heavy on notation. Hence we omit it in this
short version. Recall that blackbox simulatability was defined by a function that selects
one fixed simulator for each structure (Definition 13).

Definition 16. (Simulator and Corresponding Configurations) Under the conditions
of Theorem 1 and for all i ∈ N, let f

(i)
Sim and f

(i)
A be the simulator and renaming

functions from which f
(i)
C is composed by blackbox simulatability. We compose them

348 M. Backes, B. Pfitzmann, and M. Waidner

H

M1

M3 M2

A

conf #

H

M’1

M3 M2

A

conf hybi

Sim1

Hhyb
i

H

M’1

M3 M'2

A

conf ' hybi

Sim1

Hhyb
i

Sim2

H

M’1

M’3

A
Sim1

Sim3

M’2 Sim2

conf *

Sim

Fig. 3. Configurations in the composition theorem for blackbox simulatability.

into functions f#
Sim and f#

A on Sys# as follows: Given k ∈ N and (M̂ #,S) ∈ Sys#
k ,

let Simi := f
(i)
Sim((M̂i,Si)) for all i ≤ P (k), and let

f#
Sim((M̂ #,S)) := comb(Sim1, . . . ,SimP (k));

further let f#
A := f

(P (k))
A ◦ · · · ◦ f

(1)
A . Let f#

C be constructed from f#, f#
Sim, and f#

A
by the equations in Definition 13 (blackbox simulatability). �

The complexity tSim of the simulator is tSim(k) =
∑P (k)

i=1 tSimi
(k) by Lemma 2. In the

polynomial case, there exists a polynomial QSim such that tSimi
≤ QSim for all i, hence

tSim(k) is polynomially bounded by P (k) ·QSim(k).
We also omit the technical proof that indeed f#

C : Conff#
(Sys#)→ Conf(Sys∗) in

Definition 16. It is nevertheless interesting that these proof parts that verify the compati-
bility of channels and the difference of service ports and adversary ports in compositions
make up the major part of a rigorous proof, while the cryptographic aspects are shorter
and more standard.

Now we can concentrate on proving that the simulator simulates correctly. The
proof consists of a hybrid argument as first used in [15], i.e., we construct intermediate
configurations that differ only in the machines of one system.

Proof (Theorem 1). Let a configuration conf # = (M̂ #,S , H, A) ∈ Conff#
(Sys#

k) be
given and conf ∗ := f#

C (conf #) the corresponding configuration according to Defini-
tion 16. Let the sub-structures (M̂i,Si) and (M̂ ′

i ,S
′
i), the simulators Simi, and functions

fx
z with various indices be defined as in the formulation of the theorem and Definition 16.

A General Composition Theorem for Secure Reactive Systems 349

Furthermore, let (M̂ ∗,S) := f∗((M̂ #,S)) and Sim := f#
Sim((M̂ #,S)). Then we have

conf ∗ = (M̂ ∗,S , H, comb(Sim, f#
A (A))); recall that f#

A is just a port renaming; hence
Figure 3 simplifies it to A.

The outline of the hybrid argument is as follows.

1. We define hybrid configurations conf hyb
i of Sys(i) and conf ′hyb

i of Sys ′(i) for i =
1, . . . , P (k). In conf hyb

i the first i−1 real structures have already been replaced with
their ideal counterparts, while in conf ′hyb

i also the i-th structure has been replaced.
To make these configurations correct configurations of the respective systems, all
other machines are grouped into an overall hybrid user Hhyb

i as shown at the bottom
of Figure 3 for i = 2 and P (k) = 3.

2. We show that these are correct and corresponding configurations with respect to the
given blackbox simulatability between Sys(i) and Sys ′(i).

3. We show that the views of H in conf ′hyb
i and conf hyb

i+1 are equal for i = 1, . . . , P (k)−
1. Moreover, we show that the views of H are equal in conf # and conf hyb

1 , and
in conf ′hyb

P (k) and conf ∗. This gives a kind of indistinguishability chain (for one
configuration)

viewconf #(H) ≈ viewconf hyb
1

(H) ≈ · · · ≈ viewconf ′hyb
P (k)

(H) ≈ viewconf ∗(H).

4. We show that this implies indistinguishability between first and last elements.

We now explain these steps in more detail.

Step 1: For i = 1, . . . , P (k), let the machine collection for the i-th hybrid user be Ĥi :=
{H} ∪⋃

1≤j<i M̂
′
j ∪ {Simj | 1 ≤ j < i} ∪⋃

i<j≤P (k) M̂j , and let Hhyb
i := comb(Ĥi).

Furthermore let Ai := f
(i−1)
A ◦ · · · ◦ f

(1)
A (A) and A′

i := f
(i)
A (Ai). Then we define the

hybrid configurations as

conf hyb
i := (M̂i,Si, H

hyb
i , Ai);

conf ′hyb
i := (M̂ ′

i ,Si, H
hyb
i , comb(Simi, A′

i)).

For the computational case, we have to show that the family of Hhyb
i is polynomial-time.

This holds since tHhyb
i
≤ tH + tSim + tM̂# + tM̂∗ by Lemma 2, where each addend is

polynomially bounded by assumption.

Step 2: We have to show that conf hyb
i ∈ Conffi(Sysi) and conf ′hyb

i ∈ Conf(Sys ′
i), i.e.,

essentially that the hybrid users do not use non-service ports. In this short version, we
omit this proof. Then the definition of conf hyb

i and conf ′hyb
i immediately implies

conf ′hyb
i = f

(i)
C (conf hyb

i), (1)

i.e., these are indistinguishable configurations under the given blackbox simulatability
between Sys(i) and Sys ′(i).

350 M. Backes, B. Pfitzmann, and M. Waidner

Step 3: The configurations conf ′hyb
i and conf hyb

i+1 consist of the same collection of

machines Ĉi := Ĥi ∪ {M̂ ′
i , Simi, A′

i}. Combining them in different ways does not alter
the view of H by Lemma 2. Thus we have

viewconf ′hyb
i

(H) = viewconf hyb
i+1

(H) (2)

for all i ∈ {1, . . . , P (k)}, and similarly

viewconf #(H) = viewconf hyb
1

(H) ∧ viewconf hyb
P (k)

(H) = viewconf ∗(H). (3)

Step 4:We now distinguish the type of the given simulatability relationsSys(i) ≥bb,f(i),yi
sec

Sys ′(i).
For perfect simulatability, Equation (1) gives us viewconf hyb

i
(H) = viewconf ′hyb

i
(H)

for all i. With Equations (2) and (3) this yields viewconf #(H) = viewconf ∗(H). This

result for an arbitrary fixed configuration conf # implies equality of all families of such
views.

For statistical simulatability, let Sys(i) be δi-statistically at least as secure as Sys ′(i).
Let l ∈ N. For prefixes of length l and v ranging over the potential views of this length,
we abbreviate q#

v := Pr(viewconf #,l(H) = v), and q∗
v := Pr(viewconf ∗,l(H) = v),

and qi,v := Pr(viewconf hyb
i ,l(H) = v) and q′

i,v := Pr(viewconf ′hyb
i ,l(H) = v) for all i.

For all potential views v , we have q′
i,v = qi+1,v and q#

v = q1,v and q′
P (k),v = q∗

v by
Equations (2) and (3). The desired statistical distance is

δstat(conf #) :=
1
2

∑

v

|q#
v − q∗

v |

=
1
2

∑

v

|q1,v − q2,v + q2,v − q3,v + · · ·+ qP (k),v − q′
P (k),v |

≤ 1
2

∑

v

(|q1,v − q2,v |+ |q2,v − q3,v |+ · · ·+ |qP (k),v − q′
P (k),v |)

=
P (k)
∑

i=1

1
2

∑

v

|qi,v − q′
i,v |

=
P (k)
∑

i=1

∆stat(viewconf hyb
i ,l(H), viewconf ′hyb

i ,l(H)).

With Lemma 1 this gives

δstat(conf #) ≤
P (k)
∑

i=1

∆stat(viewconf hyb
i ,li

(Hhyb
i), viewconf ′hyb

i ,li
(Hhyb

i)) ≤
P (k)
∑

i=1

δ(k, li),

where the li are sufficiently large numbers to ensure that the l-step prefix of the view
of H in conf hyb

i is a subsequence of the li-step prefix of the view of Hhyb
i . A general

A General Composition Theorem for Secure Reactive Systems 351

bound is the complexity of Hhyb
i , which is bounded by b := tH + tM̂# + tM̂∗ + tSim.

This implies δstat(conf #) ≤ P (k) · δ(k, b(k)) as desired.
For concrete complexity and for a (t, ∆Dis)-distinguisher Dis, we have by definition

∆Dis ≤ |Pr(Dis(1k, viewconf #(H)) = 1)− Pr(Dis(1k, viewconf ∗(H)) = 1)|.

We abbreviate q# := Pr(Dis(1k, viewconf #(H)) = 1) and q∗ := Pr(Dis(1k,

viewconf ∗(H)) = 1), and qi := Pr(Dis(1k, viewconf hyb
i

(H)) = 1) and q′
i := Pr(Dis(1k,

viewconf ′hyb
i

(H)) = 1) for all i, and ∆i := |qi − q′
i|. Now Equations (2) and (3) yield

∆Dis = |q# − q∗| = |q1 − q2 + q2 − q3 + q3 + · · ·+ qP (k) − q′
P (k)|

≤ |q1 − q2|+ |q2 − q3|+ · · ·+ |qP (k) − q′
P (k)| = ∆1 + ∆2 + · · ·+ ∆P (k).

This implies that there exists some i with ∆i ≥ ∆Dis

P (k) .

We can now consider Dis as a (t, ∆i)-distinguisher Dis(i)φ of a function φ of views of

the actual user Hhyb
i of the i-th hybrid systems. Here φ is defined by φ(v) := v�H, i.e., the

restriction to the view of H. The complexity tφ of φ is linear. Hence Lemma 1 implies that
there exists a (ti, ∆i)-distinguisher Dis(i) for viewconf hyb

i
(Hhyb

i) and viewconf ′hyb
i

(Hhyb
i)

with ti = t+ b′(k), where b′(k) bounds the length of the views of Hhyb
i . The complexity

tHhyb
i

of Hhyb
i is bounded by b = tH + tM̂# + tM̂∗ + tSim, and above we showed tSim ≤

P ·QSim. The length of runs and thus views in our current representation is bounded by
the square of this complexity (but this might be improvable by tighter encoding). This
yields the desired polynomial bound b′(k) independent of the adversary complexity.

For polynomial simulatability, let H, A be a user and an adversary for Sys# of
complexity tH and tA, and let t be a polynomial and Dis a distinguisher family of
complexity t. Then the functions tHhyb

i
, ti, and tAi = tA are polynomials. By assumption,

there exists a negligible function δ that uniformly bounds the advantage of distinguishers
for the given system pairs for the complexity function max(ti, tHhyb

i
, tAi

). Now let a

configuration conf # = (M̂ #,S , H(M̂#,S), A(M̂#,S)) be given. The concrete security

considerations and Equation (1) imply ∆i = δDis(i)

conf hyb
i

≤ δ(k), and therefore δDis
conf # ≤

P (k) · δ(k) is negligible. This proves the desired polynomial indistinguishability of the
families of user views over Sys# and Sys∗.

4 From Black-Box to Universal Simulatability

We now show a relation between universal simulatability and black-box simulatability.
It allows us to apply our general composition theorem to universal simulatability under
reasonable assumptions, but it also is of independent interest. More precisely, we show
that universal simulatability for two parametrized systems Sys1 and Sys2 is equivalent to
black-box simulatability if Sys1 fulfills the following structural requirements: Whenever
a clock-out port of a structure (M̂1,S1) ∈ Sys1 is contained in S̄ c

1 , then so is either the
corresponding input or output port. This means that the adversary is not allowed to

352 M. Backes, B. Pfitzmann, and M. Waidner

schedule messages of a connection where it is neither the sender nor the recipient. This
condition is naturally fulfilled for insecure channels, since the adversary is inserted
between the connections of two machines of the system.

Theorem 2. (Relating Black-box and Universal Simulatability) Let Sys1,Sys2 be two
parametrized systems with a valid mapping f , where for every structure (M̂1,S1) ∈
Sys1, we have p�! ∈ S̄ c

1 ⇒ (p? ∈ S̄ c
1 ∨ p! ∈ S̄ c

1). Then Sys1 ≥bb,f,y
sec Sys2 iff

Sys1 ≥uni,f,y
sec Sys2 for y = perf or a function δ and also for y = poly if Sys1 is

polynomial-time.
For concrete security, if ≥uni,f

sec is given with a τ -mapping fC, then we obtain ≥bb,f
sec

with simulator complexity τ(tSys1
), and a (t, δ)-distinguisher for the views in the black-

box case gives rise to a (t′, δ)-distinguisher for the views in the universal case where t′

is the sum of t and the view length of H and A. �

Proof. The left-to-right direction is clear by definition. The difficult direction is to show
that universal simulatability implies black-box simulatability. Due to lack of space, we
can only present a short sketch. This direction essentially consists of four steps:

1. Let a configuration conf 1 = (M̂1,S , H, A1) of the sub-system Sys1,k be given. We

first derive another configuration conf uni
1 = (M̂1,S , Huni, A′

1) of Sys1 as follows:
We insert a machine TSP,b,k, called transparent scheduler, into the connections
between A1 and the simple ports in S̄1. It forwards messages between machines
of the structure and the adversary. Its parameters P and b correspond to the ports
that the transparent scheduler connects to and a bound on its runtime, which is the
joint runtime of the machines in M̂1. This machine only depends on M̂1, S , and k.
The new user is the combination Huni := comb(H, A1), and the new adversary is
A′

1 := TSP,b,k. We show that the views of both H and A1 are identical in the two
configurations.

2. We now show that conf uni
1 ∈ Conff (Sys1) and apply the precondition Sys1 ≥uni,f

sec
Sys2. This yields an indistinguishable configuration conf uni

2 of Sys2 with a new
adversary A2. By the definition of universal simulatability, A2 only depends on M̂1,
S and on A′

1 = TSP,b,k. Since TSP,b,k only depends on M̂1 and S , the adversary
A2 also only depends on M̂1 and S .

3. We obtain a configuration conf 2 with the original user and a simulator from conf uni
2

by reversing the combination of H and A1 into Huni, and by defining the simulator
as Sim := A2. We show that this does not affect the view of H.

4. Combining several equalities between views of H in different configurations and
one indistinguishability gives the same class of indistinguishability.

Summarized statements follow from this treatment per configuration, i.e., with concrete
security (although details are omitted here), as usual.

Acknowledgments. We thank Anupam Datta, Dennis Hofheinz, Ralf Küsters, John
Mitchell, Jörn Müller-Quade, Dusko Pavlovic and Rainer Steinwandt for interesting
discussions.

A General Composition Theorem for Secure Reactive Systems 353

References

1. M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming
Languages and Systems, 17(3):507–534, 1995.

2. M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verification of
security protocols. In Proc. 20th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), volume 2607 of LNCS, pages 675–686. Springer, 2003.

3. M. Backes and B. Pfitzmann. Computational probabilistic non-interference. In Proc. 7th
European Symposium on Research in Computer Security (ESORICS), volume 2502 of LNCS,
pages 1–23. Springer, 2002.

4. M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic purposes. In
Proc. 24th IEEE Symposium on Security & Privacy, pages 140–152, 2003.

5. M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Polynomial fairness and liveness. In
Proc. 15th IEEE Computer Security Foundations Workshop (CSFW), pages 160–174, 2002.

6. D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, 4(2):75–122, 1991.

7. M. Bellare, J. Killian, and P. Rogaway. The security of cipherblock chaining. In Advances in
Cryptology: CRYPTO ’94, volume 839 of LNCS, pages 341–358. Springer, 1994.

8. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in Cryptology:
EUROCRYPT ’94, volume 950 of LNCS, pages 92–111. Springer, 1994.

9. R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 3(1):143–202, 2000.

10. R. Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 136–145, 2001. Extended version in Cryptology ePrint Archive, Report 2000/67,
http://eprint.iacr.org/.

11. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition (extended
abstract). In Proc. 1st ACM Workshop on Formal Methods in Security Engineering (FMSE),
pages 11–23, 2003.

12. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
13. O. Goldreich, S. Micali, andA.Wigderson. How to play any mental game – or – a completeness

theorem for protocols with honest majority. In Proc. 19th Annual ACM Symposium on Theory
of Computing (STOC), pages 218–229, 1987.

14. S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral
majority. In Advances in Cryptology: CRYPTO ’90, volume 537 of LNCS, pages 77–93.
Springer, 1990.

15. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

16. M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect multi-
party computation. Journal of Cryptology, 13(1):31–60, 2000.

17. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science, Prentice Hall, Hemel Hempstead, 1985.

18. D. M. Johnson and F. Javier Thayer. Security and the composition of machines. In Proc. 1st
IEEE Computer Security Foundations Workshop (CSFW), pages 72–89, 1988.

19. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for
protocol analysis. In Proc. 5th ACM Conference on Computer and Communications Security,
pages 112–121, 1998.

20. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-time equiva-
lence and security analysis. In Proc. 8th Symposium on Formal Methods Europe (FME 1999),
volume 1708 of LNCS, pages 776–793. Springer, 1999.

http://eprint.iacr.org/

354 M. Backes, B. Pfitzmann, and M. Waidner

21. N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco, 1996.
22. H. Mantel. On the composition of secure systems. In Proc. 23rd IEEE Symposium on Security

& Privacy, pages 88–101, 2002.
23. D. McCullough. Specifications for multi-level security and a hook-up property. In Proc. 8th

IEEE Symposium on Security & Privacy, pages 161–166, 1987.
24. D. McCullough. A hookup theorem for multilevel security. IEEE Transactions on Software

Engineering, 16(6):563–568, 1990.
25. J. McLean. A general theory of composition for trace sets closed under selective interleaving

functions. In Proc. 15th IEEE Symposium on Security & Privacy, pages 79–93, 1994.
26. J. McLean. A general theory of composition for a class of "possibilistic" security properties.

IEEE Transactions on Software Engineering, 22(1):53–67, 1996.
27. S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology: CRYPTO ’91,

volume 576 of LNCS, pages 392–404. Springer, 1991.
28. J. Misra and K. M. Chandy. Proofs of network of processes. IEEE Transactions on Software

Engineering, 7(4):417–426, 1981.
29. B. Pfitzmann and M. Waidner. A general framework for formal notions of “secure” systems.

Research Report 11/94, University of Hildesheim, Apr. 1994.
http://www.semper.org/sirene/lit/abstr94.html\#PfWa_94.

30. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. In Proc. 7th ACM Conference on Computer and Communications Security, pages
245–254, 2000. Extended version (with Matthias Schunter) IBM Research Report RZ 3206,
May 2000, http://www.semper.org/sirene/publ/PfSW1_00ReactSimulIBM.ps.gz.

31. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application
to secure message transmission. In Proc. 22nd IEEE Symposium on Security & Privacy,
pages 184–200, 2001. Extended version in Cryptology ePrint Archive, Report 2000/066,
http://eprint.iacr.org/.

32. J. Widom, D. Gries, and F. B. Schneider. Trace-based network proof systems: Expressiveness
and completeness. ACM Transactions on Programming Languages and Systems, 14(3):396–
416, 1992.

33. A. C.Yao. Protocols for secure computations. In Proc. 23rd IEEE Symposium on Foundations
of Computer Science (FOCS), pages 160–164, 1982.

34. A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 80–91, 1982.

http://www.semper.org/sirene/lit/abstr94.html#PfWa_94
http://www.semper.org/sirene/publ/PfSW1_00ReactSimulIBM.ps.gz
http://eprint.iacr.org/

	Introduction
	Asynchronous Reactive Systems
	General System Model
	Security-Specific System Model
	Parametrized Systems
	Defining Security with Simulatability
	Composition

	General Composition Theorem for Blackbox Simulatability
	From Black-Box to Universal Simulatability

