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Synopsis

his paper investigates the mechanism for secondary recirculations in non-Newtonian flows in a
oncircular pipe, and develops a general criterion on the direction of the secondary flow based on
he fluid rheology and the cross-sectional geometry of the pipe. Although the secondary flow is
sually attributed to the second normal stress difference N2, the relationship between the two turns
ut to be more involved than previously assumed. By theoretical analysis and numerical
omputations using the Giesekus model, we show that N2 produces an effective body force that, if
onconservative, gives rise to secondary flows in the transverse direction. From this understanding,
e propose a criterion for the direction of the secondary flow based on the second normal stress

oefficient �2 and the shear viscosity �s: if �2��̇� /�s��̇� is an increasing function of the strain rate
˙ , the fluid flows from high shear regions to low shear regions along the walls and vice versa. This
riterion accounts for all the prior computational work and resolves some inconsistencies in the
iterature. It is also consistent with all experimental observations to date. © 2008 The Society of
heology. �DOI: 10.1122/1.2817674�

. INTRODUCTION

It is well known that non-Newtonian flows in a straight pipe of noncircular cross
ection are subject to secondary recirculations, with velocity components orthogonal to
he primary axial flow. When the non-Newtonian fluid is sheared, it may experience two
ormal stress differences:

N1��̇� = �11 − �22 = �1��̇��̇2, �1�

�
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316 YUE, DOOLEY, AND FENG
N2��̇� = �22 − �33 = �2��̇��̇2, �2�

here �̇ is the shear rate and �1 and �2 are the first and second normal stress coeffi-
ients. Directions 1, 2, and 3 are the flow, velocity gradient and the neutral directions,
espectively �Bird et al. �1987��. The stress components in the transverse plane are ulti-
ately responsible for the secondary flow, but geometry plays a key role as well, and no

econdary flow occurs in a circular pipe. Hereafter, we will loosely speak of the normal
tresses as representing fluid “elasticity”, even though they actually stem from the non-
inearity of the constitutive equation and do not imply an elastic relaxation time. Al-
hough the magnitude of viscoelastic secondary flow is typically orders of magnitude
ower than the primary flow, it may produce significant effects by introducing flow across
he otherwise rectilinear streamlines. For example, it is known to greatly enhance heat
ransfer in pipe flows �Gao and Hartnett �1996�; Syrjälä �1998��. In bicomponent coex-
rusion, secondary flows produce considerable interface deformation over an axial dis-
ance �100D, D being the characteristic dimension of the cross section �Debbaut et al.
1997�; Dooley et al. �1998�; Debbaut and Dooley �1999�; Dooley �2002�; Dooley and
udolph �2003��. In multilayer film extrusion, such interfacial distortion leads to nonuni-

orm layer thickness and poor product quality.
Owing to its fundamental and practical importance, secondary flow of non-Newtonian

uids in noncircular pipes has received numerous investigations since the 1950’s. Despite
he effort, the physical mechanism remains somewhat unclear, and there is no universal
riterion that specifies the direction of the secondary flow based on the fluid rheology and
ow geometry. Experimentally, several groups have observed secondary flows of poly-
er solutions and melts in pipes of elliptic �Giesekus �1965�� and square cross sections

Dodson et al. �1974�; Townsend et al. �1976�; Debbaut et al. �1997�; Dooley et al.
1998�; Dooley �2002�; Dooley and Rudolph �2003��. In all cases, the direction of the
econdary flow is such as to go from areas of high shear to low shear along the wall. For
n elliptic cross section, four recirculating eddies occupy the four symmetric quadrants,
owing from the center toward the wall along the minor axis and back to the center along

he major axis. For a square cross section, eight eddies are demarcated by the symmetry
ines, going from the center of the sides toward the corners. Theoretically and computa-
ionally, a larger number of studies have been devoted to secondary flows in those ge-
metries using different constitutive models, including Reiner–Rivlin �Green and Rivlin
1956�; Gao and Hartnett �1993, 1996�; Hashemabadi and Etemad �2006��, Criminale–
ricksen–Filbey �CEF� �Dodson et al. �1974�; Townsend et al. �1976�; Gervang and
arsen �1991�; Syrjälä �1998�; Mai–Duy and Tanner �2005��, corotational Maxwell

Thangam and Speziale �1987��, Phan–Thien–Tanner �PTT� �Tanoue et al. �2006��, modi-
ed PTT �MPTT� �Xue et al. �1995��, Giesekus �Debbaut et al. �1997�;Debbaut and
ooley �1999��, and Leonov �Siline and Leonov �2001��. For square and elliptic cross

ections, all predict the correct number of eddies and the general flow pattern. However,
here has been much confusion over how the direction of the recirculation depends on
uid rheology.

It can be easily shown that N1 has no contribution to the traction acting in the trans-
erse plane, and N2 is the driving mechanism of secondary flow �see the Appendix for a
roof�. Thus, most prior studies have focused on N2 or �2. Calculations based on the
einer–Rivlin �Gao and Hartnett �1993, 1996�; Hashemabadi and Etemad �2006�� and
EF �Dodson et al. �1974�� models suggest that the correct sense of recirculation can be
roduced only by employing a positive �2. But it is well known that polymer solutions
nd melts possess a negative second normal stress difference with which the secondary

ow would be predicted in the wrong direction, i.e., going from the corner toward the
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317A CRITERION FOR VISCOELASTIC SECONDARY FLOW
enter of the sides in a square pipe. A clue to this puzzle lies in an earlier analysis by
ldroyd �1965�, which showed that for any viscoelastic fluid, no secondary flow can arise

f the ratio between �2 and the steady shear viscosity �s is a constant, independent of the
train rate �̇. In other words, one may add a constant multiple of �s to �2 without
ffecting the secondary flow. Hence, there can be no general correlation between the
econdary flow and the magnitude or sign of �2; an attempt at such a correlation is
ecessarily restricted to the specific model that happens to predict a certain �2. This
nsight was later corroborated by Townsend et al. �1976�, who varied the coefficients of
he CEF model to tune the functional form of �2 and concluded that the direction of
econdary flow does not correlate with the sign of �2. More recent calculations using
EF and rate-type viscoelastic models have also confirmed that no secondary flow occurs

f �2 /�s is a constant �Xue et al. �1995�; Gervang and Larsen �1991�; Syrjälä �1998��.
So far, the most general criterion on the secondary flow in a square pipe is due to

yrjälä �1998� using the CEF model. Assuming power laws for the shear viscosity and
econd normal stress coefficient: �s��̇n−1 and �2=c�̇m, c being a constant, Syrjälä
omputed the secondary flow using series of m, n, and c values. The numerical results are
uch that the secondary flow goes from the center of the sides toward the corners if �m
�n−1��c�0, and in the opposite direction if �m− �n−1��c�0. This empirical criterion

s consistent with Oldroyd’s condition �Oldroyd �1965�� as well as prior computations
ased on power-law functions for �2 and �s �Gao and Hartnett �1993, 1996�; Hashema-
adi and Etemad �2006��. It is unclear whether a similar criterion applies to the CEF
odel with more general material functions, or even to the more general rate-type con-

titutive models. Numerical calculations based on the PTT �Tanoue et al. �2006��, MPTT
Xue et al. �1995�� and Giesekus �Debbaut et al. �1997�; Debbaut and Dooley �1999��
odels predict the correct secondary flow direction using a negative �2. However their

elationship to the Syrjälä criterion cannot be ascertained since �s and �2 cannot be cast
nto power laws. Is there a common principle underlying all the calculations? Is there a
niversal criterion that works for all the viscoelastic models? These questions have mo-
ivated the present work.

We use theoretical analysis and numerical computations to develop a general criterion
or the direction of secondary flows based on the fluid rheology and the cross-sectional
eometry. In this process, we elucidate the mechanism for the secondary flow, which
urns out to be more involved than N2 or �2. The criterion is shown to account for all
rior results and resolves the apparent contradictions in the literature.

I. PROBLEM SETUP AND NUMERICAL METHOD

Following prior work on viscoelastic secondary flows �Xue et al. �1995�; Debbaut et
l. �1997�; Tanoue et al. �2006��, we consider the fully developed flow of a viscoelastic
uid in a conduit of noncircular cross section, schematically shown in Fig. 1. The primary
ow, along the z direction, is driven by a constant pressure gradient, and all the other
ariables do not depend on z. This setup retains three-dimensional �3D� components of
he flow and stress fields, but the solution is done in the two-dimensional �2D� domain �.

The theoretical analysis will be for a general non-Newtonian fluid, but the numerical
omputations are for a Giesekus fluid. In the latter case, the governing equations are

� · � = 0, �3�

	� ��
+ � · ��� = − �p + 
s�

2� + � · �p, �4�

�t
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318 YUE, DOOLEY, AND FENG
�p + �H�p�1� + �
�H


p
��p · �p� = 
p��� + ����T� , �5�

here 
s, 
p, �p, �H, and � are the solvent viscosity, polymer viscosity, polymer stress
ensor, polymer relaxation time, and mobility parameter in the Giesekus model. The
ubscript �1� denotes the upper convected derivative.

The problem is made dimensionless by using the characteristic size of the cross sec-
ion D, the total viscosity of the fluid 
=
s+
p, and the average axial velocity of the
rimary flow W. This leads to the following dimensionless groups:

Re =
	WD



�Reynolds number� ,

De =
�HW

D
�Deborah number� , �6�


 =

s



�retardation − relaxation time ratio� ,

lus the mobility parameter of the Giesekus fluids �, and geometric ratios characterizing
he cross section �. In polymer extrusion experiments, 	�1 g /cm3, 
�104 poise, W

1 cm /s, D�1 cm �Debbaut et al. �1997��. Thus Re�10−4 and inertia is negligible. In
ur simulations, we have set Re to zero.

The governing equations are solved by a finite-element code AMPHI �Yue et al.
2006b��, originally developed for two-component complex fluids but used here for a
ingle fluid. The domain � is discretized by an unstructured triangular mesh; P2 elements
re used for � and P1 elements for p and �p. Second-order implicit schemes are used for
emporal discretization. The code has been extensively validated in the past �Yue et al.
2006b, 2006a��. For the geometry at hand, we have calculated the pressure driven flow

FIG. 1. Schematic of the flow geometry.
f a Newtonian fluid in a rectangular pipe of 4D�1D, and the axial velocity profiles are
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319A CRITERION FOR VISCOELASTIC SECONDARY FLOW
ompared with a finite difference solution to the corresponding Poisson equation on a
ense Cartesian mesh of 800�200. A coarse mesh with grid size h=0.1D already pro-
uces accurate results. However, to guarantee the resolution of the secondary flows in
iscoelastic fluids, we have used a more conservative value h=0.02D for all simulations
n the rest of paper.

II. RESULTS AND DISCUSSION

. Secondary flow in square cross section

The square cross section is the most common geometry in the literature on viscoelastic
econdary flows �Xue et al. �1995�; Debbaut and Dooley �1999�; Tanoue et al. �2006��. In
his subsection, we briefly illustrate the main features of the secondary flow of a Giesekus
uid in a square pipe and point out their apparent connection to N2. This prefaces an
nalysis of the mechanism of the secondary flow in the next subsection, which is the main
esult of the paper.

Figure 2 depicts the velocity and stress fields for the secondary flow. The flow pattern

IG. 2. The secondary flow in the upper right quadrant of the square cross section for a Giesekus fluid. �a�
elocity vectors �u ,v�; �b� contours of the stream function �; �c� contours of the polymer normal stress
ifference �pyy −�pxx. De=1, �=0.5, 
=0.1.
s the same as reported in the literature for other constitutive models �e.g., Townsend et
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320 YUE, DOOLEY, AND FENG
l. �1976�; Xue et al. �1995�; Gao and Hartnett �1996�; Debbaut et al. �1997�; Debbaut
nd Dooley �1999��. Due to symmetry, there are two counter rotating vortices in each
uarter, and near the wall, the fluid flows from the center of the wall to the corner. Based
n the velocity components u and v, we can define a stream function � by u=�� /�y and
=−�� /�x, which is shown in Fig. 2�b�. A positive � value indicates counterclockwise

otation and a negative value denotes the reverse. These are depicted respectively by solid
nd broken contours, and the same convention is used for contour plots hereafter. Figure
�c� shows contours of the polymer normal stress difference �pyy −�pxx. As the direction of
he velocity gradient �w varies over the cross section, �pyy −�pxx does not coincide with

2 as defined in Eq. �2�, except near the upper wall. Nevertheless, it is clear that the
olymer is more severely sheared near the center of the walls �point A� than near the
orner �point B�.

More quantitatively, the magnitude of the recirculation can be represented by the

verage velocity um= 1
A��

	u2+v2d�, A being the area of �. Figure 3 plots um as a
unction of the Deborah number De. For vanishing De, um approaches zero with the
caling um�De4, as has been previously reported �Xue et al. �1995�; Debbaut and Dooley
1999��. As De increases beyond unity, um tends to level off, indicating a finite limiting
alue as De→�. This asymptotic behavior may have interesting practical implications.
he ratio um /W increases with De first, reaches a maximum around De=1, and then
eclines as 1 /De for higher De �Fig. 3�b��. Thus, to strike a balance between raising
roduction rate and minimizing distortion due to secondary flow, faster flows are advan-
ageous over slower ones. We have also explored moderate ranges of the mobility pa-
ameter � and the retardation time via 
. The general trend is that um increases with �
nd decreases with 
, but their effects on um are minor.

The um�De� curves mirror the variation of N2 with the shear rate �̇ for a Giesekus fluid
n simple shear �Isaki and Takahashi �2002��, which is plotted in Fig. 4. The variations
ith respect to � and 
 also show close correspondence between um and N2. In the limits
f small and large De, N2 has the following asymptotic formulas: N2=−��1−
�
�H�̇2

or small De; N2=−�1−
�
 /�H for large De �Bird et al. �1987��. Note that N2 levels off
or large De because of shear thinning in the Giesekus model, and no longer depends on
˙ for sufficiently fast flows. However, for small De, N2�De2 while um�De4. Thus, even

IG. 3. The magnitude of secondary flow as a function of De. um is the average of 	u2+v2 over the cross
ection.
hough N2 is the driving force of the secondary flow, the relationship between the two is
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321A CRITERION FOR VISCOELASTIC SECONDARY FLOW
ot straightforward. This point may be more qualitatively argued using Fig. 2�c�. Near the
pper wall the flow becomes planar shear and �pyy −�pxx approximates N2. The negative

2 may be seen as a tension in the neutral direction �i.e., the x direction�. Since this
ension is higher at point A than B, one might naively expect the fluid to be dragged from
he corner toward the center of the wall. The actual recirculation goes in the opposite
irection, and its genesis requires a more refined explanation, to be sought in the next
ubsection.

. Mechanism of secondary flow

Under the assumptions of fully developed flow and vanishing inertia, the x and y
omponents of the momentum equation �Eq. �4�� can be written as

0 = − �p + 
s�
2� + � · �p, �7�

here �= �� /�x ,� /�y�, and �= �u ,v� and

�p = ��xx �xy

�yx �yy
� �8�

ow denote the 2D velocity vector and polymer stress tensor on the x-y plane. It is clear
hat the polymer stress drives the secondary flow, with the pressure p serving as a
agrange multiplier to satisfy the continuity equation. To estimate the polymer stress �p,

et us temporarily neglect the secondary flow and consider the rectilinear flow w�x ,y�.
his is permissible since u and v are typically much smaller than w and can be treated as
erturbations on the primary flow �Tanner �2000��. Now w�x ,y� constitutes a viscometric
ow whose strain rate and gradient direction vary spatially. At each point �x ,y�, the
irection along �w is designated by coordinate x2 and the orthogonal neutral direction by

3 in keeping with the subscript convention for the normal stress differences in Eqs. �1�
nd �2�. In the local Cartesian frame �x2 ,x3� as shown in Fig. 5, the polymer stress tensor

IG. 4. The second normal stress difference of a Giesekus fluid in simple shear of shear rate �̇. �a� −N2

ormalized by 
 /�H; �b� the function −�2 /�s, normalized by ��1−
��H, which is significant in analyzing the
rigin of the secondary flow in the next subsection. Note that the Deborah number De=�H�̇ is different from
he definition in the pipe flow �Eq. �6��.
s diagonal since in-plane shearing due to �u ,v� is negligible:
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322 YUE, DOOLEY, AND FENG
�p
* = ��22 0

0 �33
� = �33I + ��2��̇��̇2 0

0 0
� . �9�

n the previous I is the 2D isotropic tensor and �̇=	wx
2+wy

2 is the shear rate, with
ubscripts x and y denoting derivatives with respect to x and y. Rotating back to the �x ,y�
rame, the polymer stress is

�p = R · �p
* · RT = �33I + � �2wx

2 �2wxwy

�2wxwy �2wy
2 � , �10�

here the rotation matrix R,

R = �cos � − sin �

sin � cos �
� , �11�

s defined by the angle � between the gradient direction �w and the x axis. In view of Eq.
10�, the momentum equation �Eq. �7�� can be rearranged as

0 = − �p̃ + 
s�
2� + f , �12�

here p̃= p−�33, and f is the body force due to the polymer stress

f = � · ��p − �33I� = � · � �2wx
2 �2wxwy

�2wxwy �2wy
2 � . �13�

he momentum equation in the z direction is

0 = − pz + � · ��s��̇� � w� , �14�

here �s��̇� is the steady shear viscosity measured in simple shear, and pz�0 is the
onstant pressure gradient that drives the axial flow.

Thus the secondary flow �u ,v� can be viewed as a 2D viscous flow driven by f, which

FIG. 5. Schematic of the �x ,y� and �x2 ,x3� coordinate systems.
s due to the second normal stress difference produced by the shear in the axial primary
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323A CRITERION FOR VISCOELASTIC SECONDARY FLOW
ow. If f is conservative, i.e., C=�� f=0, work done by f along any closed loop is nil.
hen no secondary flow could be sustained and will be eventually dissipated. C�0
rives a counterclockwise recirculation and vice versa. Following Oldroyd �1965�, C can
e written as

C = �M � �w , �15�

here M is defined as

M = � · ��2��̇� � w� . �16�

e further define the ratio ���̇�=�2��̇� /�s��̇�, and write

M = ���̇�pz + �s��̇�����̇� � �̇ · �w , �17�

here the prime � denotes derivative and � · ��s��̇��w� has been replaced by the constant
pz by virtue of Eq. �14�. Equation �17� suggests two sufficient conditions for rectilinear

ows in the pipe �that is, without secondary recirculation�. One is ����̇�=0, which is
ldroyd’s condition of �2 being a constant multiple of �s. The other is an axisymmetric

ross section such as a circle or a circular annulus, in which M is a sole function of �̇ and
M, ��̇, and �w are all collinear along the radial direction.
It turns out that the behavior of M can be inferred from the first term on the right hand

ide of the preceding equation: M1=���̇�pz, and that of C from

C1 = �M1 � �w = pz����̇� � �̇ � �w . �18�

irst, consider a cross section that only deviates slightly from circular, with radial coor-
inate r. Then �̇= 
�w 
 �−w��r�, and ��̇ is nearly parallel to �w everywhere. Now the
econd term of M can be estimated as

M2 = �s�� � �̇ · �w � �s���− w�w�� � �s���̇�2w . �19�

f we further assume the weak flow condition �De�1�, �s may be taken to be constant,
nd � can be linearized as ���̇�=�0+����̇��̇, �0 being a constant. Now M2 becomes

M2 = �s����̇� − �0��2w � ����̇� − �0� � · ��s � w� = M1 − pz�0. �20�

hus, in the double limit of slow flow and near-circular cross section, M2 is equal to M1

inus the constant �0pz, and the curl of the viscoelastic body force becomes

C = C1 + C2 = 2C1. �21�

n the general case, the equalities in Eqs. �19� and �20� no longer hold. But a scaling
rgument based on �̇= 
�w 
 �W /D and ����D /W will still show M1 and M2, and
onsequently C1 and C2, to be on the same order of magnitude. This implies that instead
f C, we can study the relatively simple C1 as the driving force of secondary flows.

Figure 6 provides empirical evidence for the correspondence between C and C1. From
ontours of w and �̇ in the square cross section �Figs. 6�a� and 6�b��, it is apparent that
�̇ and �w are no longer parallel in the noncircular geometry. Their cross product ��̇
�w, as appears in C1, is illustrated in �c�, while �d� plots C calculated directly from the

olymer stresses in the finite element solution. Plot �c� displays a clear division of
pposite signs by the diagonal: ��̇��w�0 above the diagonal and ��̇��w�0 below.
rom Fig. 4�b�, which plots a normalized −� against De, the Giesekus model has � as an

ncreasing function of the shear rate: ����̇��0 for all �̇. With pz�0, Eq. �18� gives a
egative C1 above the diagonal and a positive C1 below. Thus, C1 and C have the same
igns and similar contour patterns. Moreover, the magnitudes of those two have a close

˙
orrespondence. For example, at the point where the �=5 contour intersects the upper
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324 YUE, DOOLEY, AND FENG
all �x�0.39 in Fig. 6�b��, ��̇��w�200 in Fig. 6�c�. From Fig. 4�b�, the correspond-
ng ����̇� reads about 0.018 after accounting for the normalizing factors. Along with pz

−6.78, this gives C1�−24, close to C�−30 in Fig. 6�d�. Therefore, although we do not
ave a mathematical proof for the relationship between C1 and C beyond the limiting
onditions of slow flow and near-circular cross sections, the former does seem to be a
eliable indication of the latter, and consequently of the direction of the secondary flow.

Indeed, Fig. 6 highlights ����̇� as the key to the secondary flow. Since ��̇��w
epends mainly on the cross-sectional shape, its contour pattern is a robust kinematic
eature insensitive to fluid rheology. It is ����̇� that determines the direction of viscoelas-
ic forcing in the cross-sectional plane. Based on the previous analysis, we propose the
ollowing criterion on the direction of the secondary recirculation: if ����̇��0, the fluid
ows along the side wall toward the corner and then inward toward the tube center, as is
sually seen experimentally; if ����̇��0, the secondary flow will be in the opposite
irection. Note that the criterion holds for pz�0 as well as pz�0. The sense of the

IG. 6. Kinematics and dynamics of the secondary flow in the square cross section at De=1, �=0.5, 
=0.1,
nd pz=−6.78. �a� Contours of the axial velocity w; �b� contours of the shear rate �̇; �c� contours of ��̇
�w; �d� contours of the curl of extra body force: C=�� f. The numerical noise near the walls in �c� and �d�

rises from differentiating the velocity and stress fields twice.
ecirculation depends on the sign of C, which is, however, independent of the sign of pz
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325A CRITERION FOR VISCOELASTIC SECONDARY FLOW
ecause changing the sign of pz is accompanied by changing the sign of �w. In light of
he previous analysis, the fallacy of the “intuitive” argument given at the end of the last
ubsection lies in taking N2 as the driving force for the recirculation, whereas in reality,
t is C.

All prior computational results are consistent with the �� criterion, as is summarized in
able I. The table includes all the studies that we have found in the literature, with three
xceptions. Wheeler and Wissler �1966� showed a plot of the recirculating streamlines
ut gave no information on the rheological parameters. It is then impossible to determine
hether their result conforms to our criterion. Thangam and Speziale �1987� predicted

econdary flows using a corotational Maxwell model, even though �2 /�s is a constant.
his violates Oldroyd’s condition and may be in error. Gervang and Larsen �1991� seem

o have mispresented their data because of conflicting sign conventions in the stress
ensor, and the correct result was later produced by Mai–Duy and Tanner �2005� using
xactly the same model and parameters. In particular, this criterion reconciles previous
omputations using constitutive models with various forms of �2, and in effect general-
zes Syrjälä’s criterion �Syrjälä �1998�� to one apparently applicable to all viscoelastic

odels. Thus, one is tempted to term it a “universal criterion”. However we have to
emind the reader that the criterion has been derived by approximating the second term in
q. �17� based on asymptotic limits and a scaling argument. This seems to be a reason-
ble assumption for all the popular models and is supported by our numerical results.
onetheless, the claim to universality is subject to the theoretical possibility of a special
uid whose rheology upsets the approximation of M2.

The criterion also seems consistent with experimental observations, although the scar-
ity of N2��̇� data precludes as detailed a comparison as provided in Table I. Because of
he small magnitude of secondary flows, their visualization is no simple task �Tanner
2000��. In all experiments to date �Dodson et al. �1974�; Townsend et al. �1976�; Deb-

ABLE I. A summary of prior computations of the viscoelastic secondary flow in a square pipe. The last
olumn indicates the direction of the secondary flow.

eference
Constitutive

model �2��̇� �s��̇� ����̇�
Toward
corner?

reen and Rivlin �1956� Reiner–Rivlin �2��0 �s�=0 �0 Yes
ao and Hartnett �1993� Reiner–Rivlin �2=0.0031a �s��̇n−1, �0 Yes

�2=−0.0031 n=0.7 �0 No
ashemabadi and Etemad �2006� Reiner–Rivlin �2=0.01a �s��̇n−1,

n=0.8
�0 Yes

odson et al. �1974� CEF �2�0, �2�=0 �s��0 �0 Yes
ownsend et al. �1976� CEF �2=0.001−k�s

b �s��0 �0 Yes
ai–Duy and Tanner �2005� CEF �2=c�̇m c �s��̇n−1 �0 Yes

yrjälä �1998� CEF �2=c�̇m �s��̇n−1 �0 Yes
�0 No

ue et al. �1995� MPTT �2�0 �s��0 �0 Yes
anoue et al. �2006� PTT �2�0 �s��0 �0 Yes
ebbaut and Dooley �1999� Giesekusd �2�0 �s��0 �0 Yes
iline and Leonov �2001� Leonovd �2�0 �s��0 �0 Yes

No units were given for �2 in Gao and Hartnett �1993�; Hashemabadi and Etemad �2006�.
�2, k and �s are in cgs units, with two values of k: k=0.004 and 0.0015.
c�0, m=−1.35, n=0.37.
The analytical formulas for N2 and �s are given in Isaki and Takahashi �2002�.
aut et al. �1997�; Dooley et al. �1998�; Dooley �2002�; Dooley and Rudolph �2003��, the
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econdary flow is from the center of side walls toward the corner. The experimental fluids
nclude polyacrylamide, polyethylene oxide, polyisobutylene, and surfactant solutions
Dodson et al. �1974�; Townsend et al. �1976�� and polystyrene and polyethylene melts
Debbaut et al. �1997�; Dooley et al. �1998�; Dooley �2002�; Dooley and Rudolph
2003��. Unfortunately, none of the authors provided N2��̇� or �2��̇� data for the experi-
ental fluids that would allow the evaluation of ����̇�. From the literature we have found

uch data for fluids very similar to those used in the secondary flow experiments. For
xample, Christiansen and Leppard �1974� reported that for polyacrylamide and polyeth-
lene oxide solutions, N2�0, −N2��̇m with 0�m�1 and �s��̇n with −0.8�n�−0.6.
his means ����̇��0 for these two polymer solutions. The cone-and-plate measurements
f Alvarez et al. �1985� and rod-climbing measurements of Magda et al. �1991b� both
uggest a positive ����̇� for polyisobutylene solutions. For a polystyrene melt, data by
chweizer et al. �2004� also indicate �2�0 and ����̇��0. Incidentally, certain polymer
nd surfactant solutions exhibit a �2 that is positive or changes sign with �̇ �Barnes et al.
1975�; Bird et al. �1987�; Magda et al. �1991a��. Townsend et al. �1976� explored the
mplications of a positive �2 to the secondary flow via computations but apparently the
econdary flow of such “exotic” fluids has not been subject to experimental observation.

. Secondary flow in other cross sections

The insights on the direction and cause of the secondary flow are not specific to square
ucts. When the cross section changes from square to rectangular, the two recirculating
ddies in each quadrant lose symmetry, as shown in Fig. 7. If one measures the strength
f the recirculation by the absolute value of the stream function �, the eddy adjacent to
he longer edge grows in strength at the expense of the other, in qualitative agreement
ith previous computations based on the MPPT model �Xue et al. �1995��. This is

vidently because the primary flow produces stronger shear, and hence stronger polymer
tresses, near the wide sides than the narrow sides. If we take the height of the cross
ection as the characteristic length D, and increase its width �or aspect ratio r� while
eeping all the other conditions unchanged, the size of the major eddy expands with r

IG. 7. Contours of the stream function � in rectangular cross sections with different aspect ratios r. Only the
pper right quarter is shown. The length in the y direction is fixed to 1. De=1, �=0.5 and 
=0.1.
ntil r�6 �Figs. 7�a�–7�c��. For even wider cross sections �r�6�, the two vortices
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327A CRITERION FOR VISCOELASTIC SECONDARY FLOW
aturate in size, leaving a “dead water” zone at the channel center without secondary
ow. This dead water zone may be beneficial to maintaining layer uniformity in coextru-
ion from dies of large aspect ratio, as occurs in film extrusion.

We did further calculations in normal polygons, as shown in Fig. 8. In all the cases,
uid flows from the center of the edges toward the corners, as in the square duct of Fig.
. This is expected since the kinematic features inside the corners in Fig. 6 hold here as
ell. Due to symmetry, each edge accommodates two counter-rotating vortices. With the

ncrease of edge number, the strength of secondary flow decreases and the dead water
one in the tube center expands. From the equilateral triangle �Fig. 8�a�� to the normal
cosagon �Fig. 8�d��, the maximum � drops by two orders of magnitude. This is consis-
ent with our argument based on C1 as ��̇��w is only nonzero in a small region near the
orner. This region shrinks progressively as the angle between adjacent edges increases
oward 180°. Obviously, the secondary flow will completely disappear when the cross
ection becomes circular.

Figure 9 shows the flow pattern in an elliptic cross section. Along the channel wall,
uid flows from the tip of the minor axis to the tip of the major axis where the shear rate

s lower. The flow pattern agrees with the prediction of Green and Rivlin �1956� using the
einer–Rivlin model, and is consistent with the arguments advanced in the square cross

ection. In fact, the tip of the major axis may be likened to a “corner”, and the elliptic

IG. 8. The stream function for secondary flows in normal n-polygonal cross sections. The polygons have a
ommon circumcircle of diameter 1. De=1, �=0.5, 
=0.1. The wiggles in the central area of �d� are a
umerical artifact in contouring small � values.
ross section to a “polygon” with two corners and two sides.
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328 YUE, DOOLEY, AND FENG
The final geometry to be considered is the annulus between a pair of slightly eccentric
ircular cylinders, through which a constant pressure gradient drives the axial primary
ow. The diameters of the inner and outer cylinders are D and 2D, respectively. The
enter of the inner cylinder is raised 0.05D from that of the outer cylinder, producing a
mall eccentricity that makes viscoelastic secondary flow possible. Figure 10 depicts the
rimary and secondary flows in the annulus. In the right half of the annulus, a clockwise
ecirculation occurs in the inner half of the gap, while a counterclockwise one, of weaker
trength, prevails in the outer half. This picture is qualitatively the same as that predicted
y Mollica and Rajagopal �1999� using a third-order fluid model.

This secondary flow can be analyzed by the same argument based on C1= pz��� �̇
�w. The axial velocity w is higher in the wider gap at the bottom than in the narrower

ap on top. Near the cylinder walls, the flow is viscometric and �w is roughly normal to
hese boundaries. In the center of the gap, however, �w is smaller and along the azi-
uthal direction �Fig. 10�a��. The shear rate �̇ is lower in the narrower upper part of the

IG. 9. The stream function in an elliptic cross section with major and minor axes of 2 and 1. De=1, �
0.5 and 
=0.1.

IG. 10. The primary and secondary flows in the annulus between two slightly eccentric cylinders. Because of
ymmetry, only the right half of the cross section is shown. �a� Contours of the axial velocity w, �b� contours of
he shear rate �̇, and �c� contours of the stream function � for the secondary flow. Judging from the � values,

he outer eddy �solid lines� has about half the strength of the inner one �dashed lines�. De=1, �=0.5, 
=0.1.
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329A CRITERION FOR VISCOELASTIC SECONDARY FLOW
nnulus than in the wider lower part. Thus, although the �̇ contours in Fig. 10�b� are
early concentric arcs, ��̇ does have a component ���̇�� normal to �w, which points
ownward, as shown in the plot. Therefore, ��̇��w is positive at point A near the inner
ylinder and negative at B. As pz�0 by convention and ���0 in our Giesekus fluid, a
egative C1 prevails at A, producing a clockwise recirculation, and the opposite is true at
. Along either wall, the secondary flow goes from areas of high �̇ �bottom� toward areas
f low �̇ �top�. In this sense, the top corresponds to the corner of Fig. 6 and the bottom
o the “center of the sides”. As a matter of fact, one may generalize the criterion as
ollows so as to account for more general geometries: if ����̇��0, the secondary flow
oes along solid walls from regions of high shear to low shear and then inward toward
he center of the flow area; if ����̇��0, the secondary flow will be in the opposite
irection.

V. CONCLUSION

We have conducted theoretical analysis and numerical simulations on viscoelastic
econdary flows in pipes of noncircular cross sections. We confirm that the second normal
tress difference N2 is the ultimate cause of secondary flows. However, the connection
etween N2 and the direction of the secondary flow is subtler than often presumed in the
iterature. The main contribution of this study is to clarify that relationship. There are two
ain results:

. A clear understanding of the mechanism for the secondary flow. The secondary
recirculation is driven not by N2 directly, but by the curl of an effective “body force”
arising from N2. For this body force to be nonconservative, two conditions have to be
satisfied: the rheology must be such that the second normal stress coefficient is not a
constant multiple of the shear viscosity, and the cross-section geometry is not axi-
symmetric.

. A general criterion on the direction of the secondary flow, based on the ratio between
the second normal stress coefficient and the shear viscosity ���̇�=�2��̇� /�s��̇�. If
���̇� is an increasing function of �̇, i.e., ����̇��0, the secondary flow is such as to go
along the wall from regions of high shear to regions of low shear. In polygonal cross
sections, the flow is from the center of the sides toward the corners. If ����̇��0, the
secondary flow will be in the opposite direction.

We have compared our results with previous numerical and experimental studies. The
riterion accounts for all previous computations and resolves apparent inconsistencies in
he literature. Prior experimental observations, in pipes of square, rectangular, elliptic,
nd triangular cross sections, show the secondary flow to go from high shear regions to
ow shear regions along the wall. This is consistent with our criterion as available data
uggest ����̇��0 for the polymer solutions and melts used. But the criterion is more than
summary of known results; it will be useful in predicting secondary flows in more

omplex die geometries and rheologically complex fluids. The eccentric annulus com-
uted here may be considered an example of complex geometry, but polymer extrusion
nvolves much more complex dies �Dooley et al. �1998�; Dooley �2002��. Regarding
ovel rheology, a host of complex fluids show unusual normal stress differences, includ-
ng flexible polymer solutions, liquid crystalline polymers and surfactant solutions �Bar-
es et al. �1975�; Bird et al. �1987�; Magda et al. �1991a��. Secondary flows in such
uids, as well as in heterogeneous systems �suspensions, emulsions, and foams�, remain

pen questions.
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PPENDIX

In the literature, secondary flows of a non-Newtonian fluid in a noncircular pipe are
lways attributed to the second normal stress difference N2. We have never seen an
xplicit justification for this, and thus offer the following simple proof.

For an arbitrary point in the pipe, let us denote the primary flow direction by subscript
, and the local velocity gradient and neutral directions by subscripts 2 and 3. The total
tress tensor at that point is

� = − pI + ��11 �12 �13

�12 �22 �23

�13 �23 �33

 = − p̄I + �N1 + N2 �12 0

�12 N2 0

0 0 0

 , �A1�

here p̄= p−�33. In a fully developed pipe flow driven by a constant pressure gradient p1,
he modified pressure can be written as p̄= p̃�x2 ,x3�+ p1x1, and the other variables satisfy
/�x1=0. Now the momentum equations in directions 2 and 3 can be written as

	� �u2

�t
+ u2

�u2

�x2
+ u3

�u2

�x3
� = −

� p̃

�x2
+

�N2

�x2
, �A2�

	� �u3

�t
+ u2

�u3

�x2
+ u3

�u3

�x3
� = −

� p̃

�x3
, �A3�

nd the continuity equation is reduced to

�u2

�x2
+

�u3

�x3
= 0, �A4�

hich determines the pressure p̃ as a Lagrange multiplier. Then it becomes obvious that

1 does not enter the governing equations of u2 and u3 and any secondary flow must be
ue to N2.
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