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The behaviour of a gravity current propagating into a two-layer stratified ambient
fluid is described in detail. A comprehensive description is given of the different flow
regimes, with particular emphasis on the front condition linking the thickness of the
gravity current to its speed of propagation and the transfer of energy to upstream
disturbances in the form of internal bores and nonlinear solitary waves. Hydraulic
theory analogous to that of two-layer flow over topography (Baines, J. Fluid Mech.,
vol. 146, 1984, pp. 127–167) is extended to the gravity current problem to classify
frontal behaviour into the following regimes: Type I, subcritical currents; Type II,
currents that generate upstream undular bores; Type III, currents that generate an
upstream monotonic bore connected by a rarefaction; Type IV, supercritical fronts
with a large-amplitude trapped solitary-wave-like disturbance; and Type V, supercritical
gravity currents. Over 200 two-dimensional Boussinesq–Euler simulations spanning
a range of gravity current properties demonstrate good agreement, for both the
behavioural regime and the front condition Uo(h), with hydraulic theory that extends
original work by Rottman & Simpson (Q. J. R. Meteorol. Soc., vol. 115, 1989,
pp. 941–963) to arbitrary ambient layer thickness, and uses an improved closure for
the upstream bore that correctly predicts the behaviour in the limit of large bore
amplitude. In addition, the energy balance is analysed, and it is shown that the
energy transfer from the gravity current to upstream disturbances is significant, and
consistent with the hydraulic theory. The results demonstrate a clear connection to the
problem of upstream resonance in two-layer flow over topography, and have significant
implications for interpreting field observations of nonlinear internal waves generated
by atmospheric density currents and coastal river plumes.
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1. Introduction

The propagation of a gravity current into a stably stratified ambient is a common
process in the atmosphere and ocean, with implications for mixing and energy
transfer. Ambient stratification may act as a waveguide, supporting the generation
and propagation of internal waves near the gravity current front. Two examples are
the well-known Morning Glory in Australia, an atmospheric undular bore (Rottman
& Simpson 1989), and the Columbia River plume, where observations have shown
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regular generation of large-amplitude waves ahead of the front (Nash & Moum 2005;
Kilcher & Nash 2010). Nash & Moum explained these observations by drawing an
analogy to hydraulic resonance in stratified flow over topography (Grimshaw & Smyth
1986; Melville & Helfrich 1987; Lamb 1994; Farmer & Armi 1999). In support of that
hypothesis, White & Helfrich (2008) demonstrated that a gravity current of thickness h

propagating into ambient stratification can produce upstream-propagating disturbances
in parameter regimes matching hydraulic resonance by topography of an equivalent
height. However, the gravity current problem is even more complex than topography,
because the front is a free boundary which is deformed by the internal wave motion.

At the Columbia plume front, where the freshwater source flows into stratified
shelf waters with a very thin upper layer, a rich set of dynamics has been observed,
including upstream radiation of nonlinear internal waves or a single large-amplitude
head wave trapped at the front. In each case, the amplitudes of these frontal
disturbances are as large as tens of metres, where the average upper-layer thickness is
only of the order of 5 m and very high rates of turbulent kinetic energy dissipation
have been observed (Moum, Nash & Klymak 2008; Nash, Kilcher & Moum 2009;
Kilcher & Nash 2010). Recent work has addressed the influence of waves on the front
evolution, and wave generation (Kilcher & Nash 2010; Stashchuk & Vlasenko 2009).
Pan & Jay (2009) suggested that the nonlinear internal waves may contain as much as
70 % of the energy in the Columbia near-front region.

Nash & Moum (2005) hypothesized that internal waves were generated from the
Columbia plume when the front speed, Uo, which slows on the shelf due to a
combination of rotational, tidal, and spreading effects, becomes subcritical to the
linear long wave speed in the ambient stratification, co, i.e. the Froude number is
less than one, Fr = Uo/co < 1. This approach described their observations fairly well.
Supporting this interpretation is experimental work by Maxworthy et al. (2002), who
studied dense gravity currents generated by lock release in a uniformly stratified
ambient (constant Brunt–Väisälä frequency, N). They found that a critical Froude
number based on the gravity current speed, Uo, of Fr = Uo/(NH/π) = 1 described a
transition from a supercritical current with constant front speed to a subcritical regime
in which internal waves were generated at the front and carried dense fluid ahead of
the current.

However, a wide body of work on hydraulic control and resonance in stratified
flow over topography (see Baines 1995) has shown that in general there is a range
of Fr = Uo/co � 1 for which upstream disturbances may be generated. Within this
transcritical band, there can be a resonant transfer of energy from the barotropic
flow over the topography into the ambient waveguide, producing nonlinear internal
waves and upstream bores (Grimshaw & Smyth 1986; Melville & Helfrich 1987). One
approach to the transcritical resonance problem uses weakly nonlinear theory, either
the forced KdV or extended KdV equation to predict the transcritical Fr range in
which upstream resonance is expected (Grimshaw & Smyth 1986; Melville & Helfrich
1987; Grimshaw, Chan & Chow 2002). These approaches include dispersion, but not
the full nonlinearity. This contrasts, for example, with the approach of Baines (1984),
which uses hydraulic theory to connect regions of uniform flow over topography,
capturing the full nonlinearity but not dispersion.

Rottman & Simpson (1989) studied gravity currents propagating into two-layer
stratification and found that some solutions generated an upstream undular bore,
characterized by a wave train near the front, while others were supercritical. They
interpreted their results in terms of hydraulic resonance by topography, in the
same manner as Baines (1984). This allowed a prediction of the transition between
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gravity currents that were subcritical, supercritical, or generated undular bores. They
also used a theory first proposed by Crook (1983), to connect the speed of the
upstream propagating bore with that of the gravity current front in a two-layer
fluid with infinitely thick upper layer. However, the limited data did not allow a
full exploration of the transitions between gravity current regimes that were either
subcritical, supercritical, or generated undular bores.

In this paper, we take a similar approach to Baines (1984) and Rottman & Simpson
(1989) to describe gravity currents in two-layer stratification using fully nonlinear
hydraulic theory. We present a new theory for the gravity current front speed in sub-,
super-, and transcritical resonant regimes by developing an improved jump condition
linking the gravity current front to an upstream undular bore, and we generalize the
results to arbitrary ambient layer thicknesses. A substantial set of two-dimensional
Boussinesq–Euler simulations demonstrates the validity of the approach and its ability
to delineate between frontal regimes. Finally, we explore the energy exchange between
the gravity current front and the upstream waves. Ungarish & Huppert (2006), in
an analysis for uniform stratification, suggested that the exchange between a gravity
current and upstream waves should be small, but the energy flux estimates for the
Columbia plume (Pan & Jay 2009) contradict this hypothesis. We show that there
is in fact an appreciable energy exchange between the front and the waves in the
transcritical regime.

We begin in § 2 by summarizing the existing theory that links steady hydraulic
solutions of gravity currents in stratification to the theory of nonlinear internal waves
and resonance by topography. In § 3 we develop a new theory that predicts the
gravity current front speed in the regime where an upstream bore is generated. In
§ 4 we describe two-dimensional numerical simulations of gravity currents generated
by a dam-break, and describe five regimes of frontal behaviour exhibited. In § 6 we
compare the hydraulic theory with the numerical results and find that the theory
predicts both the observed frontal regime and front speed relationship, Uo(h). Finally,
in § 7 we analyse the energy transfer between the gravity current and the upstream
bore, and demonstrate that the hydraulic theory and simulation results agree quite well.
The results suggest that the energy transfer to upstream disturbances can require a
significant fraction of the total gravity current energy flux.

2. Gravity currents in a stratified ambient: problem description and existing

theory

The presence of ambient stratification modifies the classic problem of a gravity
current produced by lock-exchange (Benjamin 1968; Simpson 1997), in which a
mass of dense (or light) fluid propagates into a lighter (heavier) ambient fluid
until arrested by friction or boundaries. Benjamin (1968) found steady solutions to
the lock-exchange problem without ambient stratification, including a special energy-
conserving solution when the gravity current occupies exactly half the total fluid depth.
Stratification produces a richer set of behaviours because long internal waves can
propagate in the ambient waveguide ahead of the current and exchange energy with
the current.

2.1. Problem set-up

A depiction of the problem considered is shown in figure 1. A volume (lock) of
fluid with height hd, length Ld and density ⇢c collapses into a two-layer ambient of
uniform depth H and densities ⇢1,2 in the lower and upper layers, respectively, of
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FIGURE 1. Description of gravity current problem. (a) Steady gravity current with height h,
initial dam height hd, length Ld, and density ⇢c. The bottom and top layer densities are ⇢1

and ⇢2 in a layer of total depth H and bottom layer thickness do. The layer depths over the
gravity current are d1c and d2c and the velocities are U1c and U2c. A, B, C and D are points
on the control volume used for momentum and energy conservation. (b) Gravity current with
upstream bore. The bore speed is Cb in a frame moving with the current speed Uo, the bore
amplitude is d11 and the velocities through the bore are U11 and U21.

thickness do and H � do. The release produces a gravity current with thickness h

and speed Uo which may also excite waves in the ambient ahead. The strength of
the gravity current relative to the ambient stratification is described by the parameter
S⌃ (⇢1 � ⇢2)/(⇢c � ⇢2). Throughout the paper we apply the Boussinesq approximation,
define a reference density ⇢o ⌃ ⇢2 and define the reduced gravity g↵ = g(⇢1 � ⇢2)/⇢2.
Note that for a free-slip bottom and in the Boussinesq limit, the dense current is
identical to a surface current with an equivalent buoyancy deficit (the river plume
case).

2.2. Gravity currents in a continuously stratified ambient

Ungarish (2006) developed a theory for the steady front speed of a gravity current
propagating in a uniform (constant N) ambient by treating the dense current, with
thickness h, as topography of equivalent height. The displacement of the ambient
density field was calculated using Long’s method (see Baines 1995). White & Helfrich
(2008) developed a general theory for steady gravity currents in arbitrary stratification.
They used a one-dimensional version of the nonlinear Dubriel–Jacotin–Long (DJL)
equation, applied to nonlinear internal waves with trapped cores by Lamb & Wilkie
(2004). The solutions, which link the uniform hydrostatic regions above the current
and in the undisturbed ambient by a jump condition, can be found only for certain
combinations of the current thickness, front speed, and ambient stratification. Given
the ambient density profile, there also exists a unique solution in (h, Uo), termed the
conjugate state, that is energy-preserving. In general, solutions break down, implying
upstream wave generation, when the front speed, Uo, is less than the long wave speed
in the stratified ambient above the dividing gravity current streamline, cl. For non-
uniform N, cl > co, which means that a critical Froude number for wave generation
Uo/cl = 1 is preferable to the often-cited Fr = Uo/co = 1 condition. In fact, there is
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a transcritical resonant band around Fr = 1 in which waves are generated, as we will
show in this paper for two-layer stratification.

2.3. Connection between conjugate gravity currents, nonlinear internal waves and internal
bores

Because there is a strong connection between the conjugate state gravity current
solutions and nonlinear internal waves, some background on the latter is appropriate.
Using DJL theory, Stastna & Lamb (2002) found solutions for mode-one solitary
waves in continuous stratification, steady in a frame of reference moving with the
wave speed c. Lamb (2002) showed that the wave amplitude increases with c until
one of three limiting outcomes is realized (depending on the ambient stratification and
background shear). The first is the development of a shear instability as the Richardson
number in the wave frame drops below a critical value. A second possibility is a
breaking limit, the onset of which occurs when the the local velocity within the wave
matches the speed of wave propagation, i.e. u = 0 in the wave frame (u = c in the
laboratory frame) at z = 0 (z = 1) for waves of elevation (depression). A necessary
condition for this overturning limit is that N be non-zero at the boundary, i.e. z = 0
(z = 1) for waves of elevation (depression) (Lamb 2002). In the third limit, if N = 0 at
the boundary, solutions may instead reach a limiting flat-top internal wave, termed the
conjugate state by Lamb (2002). This solution is an energy-conserving internal bore
that links the upstream and downstream flow. In the two-layer Boussinesq limit, Lamb

(2000) showed that the conjugate state speed is Ccs = 0.5 (g↵H)
1/2

, and the upstream
pycnocline depth is found at mid-depth hcs = H/2, both independent of the undisturbed
layer depth, do. This theory is particularly relevant to gravity currents in two-layer
ambients because the condition N = 0 at the boundaries implies that the conjugate
state is the limiting large-amplitude wave, and the overturning limit is not reached.

If N �= 0 near the boundary, internal waves reach the breaking limit, eventually
producing a wave with a trapped core of recirculating fluid. Models have been
suggested for waves with trapped cores (Derzho & Grimshaw 1997; Brown & Christie
1998; Helfrich & White 2010; King, Carr & Dritschel 2010). Lamb & Wilkie (2004)
found conjugate flow solutions for waves with a trapped core of uniform density
and arbitrary uniform vorticity, applying the DJL equation outside the core. These
solutions, like the conjugate bore, are energy-conserving, and can be viewed as
conjugate states with the inclusion of trapped fluid with density equal to the density
on the boundary (equivalent to S = 1). White & Helfrich (2008) showed that these
solutions provide the link to gravity currents in ambient stratification. They extended
the theory to arbitrary core density (S �= 1) and showed that the resulting conjugate
state solutions described the large-lock-height upper limit for steady gravity currents.
In the limit S⌦ 0, the conjugate state recovers Benjamin’s energy-conserving half-
depth gravity current solution.

2.4. Gravity currents in two-layer stratification

An important result of the theory of White & Helfrich (2008) is that gravity current
solutions with arbitrary core density ⇢c exist even for ambient density profiles with
N = 0 at the boundary. In the limit of two-layer stratification, gravity current solutions
exist if the core density is below a critical value, such that S < Sc, where the critical
value of the stratification parameter, Sc, depends on the lower-layer depth, do. For
S > Sc, however, there are no steady gravity current solutions, and the monotonic
conjugate bore corresponding to the two-layer stratification, with speed Ccs (Lamb
2002, described in § 2.3), is the fastest wave in the system. As a result, this bore
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would be expected to travel faster than and extract energy from a trailing gravity
current. For S < Sc, steady gravity current solutions exist with propagation speeds
faster than the conjugate bore, and no upstream energy flux is possible. On this basis,
Stastna & Peltier (2005) argued that Ccs is the appropriate upper limit for resonance in
two-layer flow over topography, which our results will also confirm for resonance at a
gravity current front.

In seminal work, Holyer & Huppert (1980) presented a theory for gravity current
propagation speed in a two-layer stratified ambient, which provides a direct link to
the generalized conjugate gravity current theory. They found solutions for front speed
given the upstream layer depths, and for currents that are either energy-conserving or
dissipative. Their energy-conserving solutions correspond to the two-layer conjugate
state gravity current solutions. Here their theory is briefly reviewed. First, assume the
gravity current is steady in a reference frame moving with speed Uo. Further, assume
that the flow is uniform and the pressure hydrostatic in the region behind the gravity
current front and in the ambient region upstream (these vertical sections are denoted
1 and 2, respectively, in figure 1). Applying conservation of mass, momentum, and
energy yields the gravity current speed, Uo, as a function of h. Here we assume the
Boussinesq limit for simplicity, although the more general Holyer & Huppert theory
does not have such a restriction.

First, conservation of mass between the upstream and the flow over the current gives

U1c = Uodo/d1c (2.1)

and

U2c = Uo(H � do)/(H � d1c � h). (2.2)

The Bernoulli equation along the interface between the lower and upper ambient
layers, respectively, (referring to the points A, B, C and D in figure 1a) gives

pA + 1

2
⇢oU2

o + ⇢1gdo = pB + 1

2
⇢oU2

1c + ⇢1g(d1c + h) + �1, (2.3)

pA + 1

2
⇢oU2

o + ⇢2gdo = pB + 1

2
⇢oU2

2c + ⇢2g(d1c + h) + �2, (2.4)

where �1,2 are energy losses in the lower and upper layers. In addition, the Bernoulli
equation in the lower layer through the bottom of the gravity current gives

pC � pD = 1

2
⇢oU2

o . (2.5)

Holyer & Huppert (1980) found both energy-conserving solutions as well as
dissipative solutions using an energy closure that maximized the dissipation subject
to a constant gravity current mass flux. Tan et al. (2011) also presented a steady
theory for the gravity current front speed in a two-layer ambient, instead closing the
problem with an ad hoc approximation to the interface displacement over the current,
d2c = (1/2)(H � do).

The theories for conjugate flows across a horizontal jump discontinuity require an
assumption about the form of the energy dissipation. The one-dimensional conjugate
form of the DJL equation that has been applied to limiting nonlinear internal waves
(Lamb 2000, 2002; Stastna & Lamb 2002; Lamb & Wilkie 2004) assumes energy-
conservation, but it can be shown that the DJL equation is also consistent with finite
spatially uniform (z-independent) dissipation, and it has been applied in this form to
gravity currents in continuous stratification (Ungarish 2006; White & Helfrich 2008).
Flynn, Ungarish & Tan (2012), in their study of two-layer gravity currents, the Holyer
& Huppert system, assumed vertically uniform dissipation, consistent with the gravity
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current theory of White & Helfrich (2008). They found a relation for the steady front

speed that showed reasonable agreement with numerical and experimental results in

the limit of large h, but deviated for thin currents, most likely due to the generation of

upstream internal waves. Consistent with the theories for gravity currents in continuous

stratification, we also apply an assumption of spatially uniform dissipation to the

Holyer & Huppert system to find steady solutions which apply in the subcritical and

supercritical limits, before treating upstream disturbances in § 3.

Assuming uniform dissipation gives �1 = �2 ⌃ �. We have also made some

calculations assuming either �1 = 0 or �2 = 0, and the steady gravity current solutions

show only very subtle differences. Applying the Bernoulli equation in the ambient

lower layer along the gravity current dividing streamline gives an explicit expression

for the energy loss:

� = (⇢c � ⇢1)gh� 1

2
⇢oU2

1c. (2.6)

From here on we scale all lengths by H, setting H = 1, and scale all velocities by

(g↵H)
1/2

. Subtracting (2.4) from (2.3) and substituting (2.1) and (2.2) gives

do � d1c � h =
1

2
U2

o



d2
o

d2
1c

�
(1� do)

2

(1� d1c � h)2

�

. (2.7)

Further, conservation of momentum, which requires
R

[p(z) + ⇢(z)U2(z)] dz =

constant through sections 1 and 2, together with the hydrostatic pressure

approximation in each section and (2.5), results in the additional constraint

h2

2S
�

h

S
+

1

2
d2

1c �
1

2
d2

o + do � d1c + d1ch + U2
0



�
1

2
+

d2
o

d1c

+
(1� do)

2

1� d1c � h

�

= 0. (2.8)

Equations (2.7) and (2.8) are two equations for two unknowns, Uo and d1c, as a

function of the current thickness h. These solutions in general do not conserve energy,

and the head loss is given by

� =
h(1� S)

S
�

1

2
U2

o

d2
o

d2
1c

. (2.9)

Only solutions with � > 0 are physically relevant, as � < 0 implies an external

energy source. Energy-conserving gravity currents are important special solutions, and

these are found by setting � = 0 and solving (2.7)–(2.9) for Uo, h and d1c. The

energy-conserving gravity current solutions are identical in the two-layer limit to the

conjugate state solutions discussed in White & Helfrich (2008).

Figure 2 shows steady gravity current solutions for a range of do and S. In

figure 2(a,b) energy-conserving solutions are shown for do = 0.1, 0.3, 0.45. For a given

do there are two branches, one fast and one slow. It will later be shown that the slow

branch is always subcritical with respect to upstream-propagating disturbances, while

the other is most often, although not always, supercritical. The slower branch is a

single-valued function of S. The faster branch has two energy-conserving solutions for

each S up to a critical value, Sc, beyond which these ‘supercritical’ solutions no longer

exist (see also Flynn et al. 2012). For S = Sc the curves coalesce, and there is exactly

one conjugate state solution. This is consistent with the Sc bound for trapped-core

conjugate state solutions in the theory of White & Helfrich (2008).
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FIGURE 2. Steady gravity current solutions for a range of lower-layer thickness do and
stratification parameter S. (a) Energy-conserving conjugate state solutions for thickness h
versus S, and (b) conjugate state solutions for front speed Uo versus S: solid lines, do = 0.1;
dashed lines, do = 0.3; dot-dashed lines, do = 0.45. Both subcritical and ‘supercritical’
solution branches are shown. (c,d) Front speed versus thickness for (c) do = 0.1 and
(d) do = 0.3 for S = 0.25, 0.5 and 0.75 (non-physical regions with � < 0 shown by dashed
lines). Boundary curves for critical flow over topography (2.12) shown by thick lines.

Figures 2(c) and 2(d) show solutions for do = 0.1 and do = 0.3 respectively, for
S = 0.25, 0.5 and 0.75. Solutions that transition between � > 0 (solid lines) and
� < 0 (dashed lines) are the energy-conserving solutions, and it is apparent that the
subcritical branch has only one such transition and the ‘supercritical’ branch has two.
Also shown are the subcritical and supercritical limiting curves for two-layer flow over
topography (Baines 1984), which are discussed in the next section.

2.5. Resonant generation by topography in 2-layer stratification

We have idealized a gravity current as being equivalent to finite-height topography
subject to an additional momentum constraint, such that their behaviour should be
governed by the general theory of two-layered hydrostatic flow over topography
(Baines 1984). Although this generalized theory does not include the non-hydrostatic
effects responsible for solitary waves and undular bores, it can be used as a framework
for understanding regimes of gravity current behaviour, including those which generate
upstream internal waves, and has the advantage of being fully nonlinear. Baines
(1984) used hydraulic theory to describe various regimes including subcritical flow,
supercritical flow, blocking, and upstream generation of undular bores and rarefaction
waves. Upstream disturbances are generated for parameters (Uo, do, h) in which the
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linear long-wave speed over the topography is critical,

cl =
Uo

1� h
+ (U1c � U2c)

1� h� 2d1c

1� h
�

✓

1�
(U1c � U2c)

2

1� h

◆

d1c(1� h� d1c)

1� h

�1/2

= 0, (2.10)

in the frame translating with the gravity current. Here U1c,2c and d1c,2c are the speeds
and thicknesses of the respective layers over the obstacle crest. The bounding curves in
(h, Uo) parameter space for critical flow can be found explicitly by solving

do(1� do)

✓

Uo

co

◆2 

d2
o

d3
1c

+
(1� do)

2

(1� d1c � doh)3

�

� 1 = 0, (2.11)

1

2
do(1� do)

✓

Uo

co

◆2 

d2
o

d2
1c

+
(1� do)

2

(1� d1c � doh)2

�

+ d1c + do(h� 1) = 0, (2.12)

where

co =
p

do(1� do) (2.13)

is the linear long-wave speed in the two-layer ambient; see Baines (1995), in
which (3.6.7) corresponds to (2.10) and (3.6.5) corresponds to (2.11)–(2.12). In
figure 2(c,d), the boundary curves corresponding to the onset of critical flow over
topography of height h are shown for do = 0.1 and 0.3. It can be seen that the slower
Holyer–Huppert solution branch always falls below the lower boundary of the critical
regime from Baines’ theory. The Holyer–Huppert upper branch is for the most part
above the bounding supercritical curve, except for S⌦ 1 where these solutions are
found below Baines’ limit. Note that Baines’ supercritical curve is, like the subcritical
curve, parabolic for small h, but becomes flat when h is beyond a critical value. Baines
(1984) explains that the parabolic branch terminates at a specific h (which depends on
do) and is met by a spurious branch, so that the supercritical boundary to the right is
constant and equal to the value of Uo at the termination point. This value of Uo is
very close but not equal to Ccs (and also varies slightly with do). However, since Ccs

is the fastest wave supported by the ambient waveguide, and consistent with Stastna
& Peltier (2005), we argue that Ccs is the appropriate upper limit for critical flow in
the flat region and we terminate the upper parabolic curve at Uo = Ccs. The subtle
distinction between Ccs and the Baines upper limit is not explored further.

3. Incorporation of an upstream bore into conjugate flow theory

For combinations of (h, Uo) between the subcritical and supercritical boundaries,
Baines (1984) showed that the flow over the obstacle crest must be critical, and
disturbances will propagate upstream in the form of internal bores, which have been
observed in experiments (Baines 1984; Melville & Helfrich 1987). These upstream
bores may be undular trains of large-amplitude internal waves due to non-hydrostatic
dispersion (Grimshaw & Smyth 1986; Melville & Helfrich 1987) and in the extended
KdV model the upstream disturbance can be a monotonic, or conjugate, bore (Melville
& Helfrich 1987). Recall that non-hydrostatic effects are included in these models, but
are not present in Baines’ hydrostatic theory. In the critical flow regime, Baines (1984)
introduced an upstream bore connected to the flow near the region of topography.
Rottman & Simpson (1989) extended this framework to gravity currents in the
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limit do  1 by treating the current as topography. A schematic of this approach

is shown in figure 1(b). The region immediately upstream of the current has layer

thicknesses d11,21 and speeds U11,21 in the lower and upper layers, respectively. These

are connected to the upstream ambient by a bore which moves with speed Cb in the

moving frame. (In the laboratory frame the bore speed is Cb + Uo.) Here we extend the

approach of Baines (1984) and Rottman & Simpson (1989) to arbitrary do by using the

gravity current theory described in the previous section together with a jump closure

for the upstream bore.

Several models have been proposed for two-layer internal jumps which connect

regions of uniform upstream and downstream conditions. Jump conditions must

conserve mass and momentum but require an additional assumption about energy

dissipation, and several models have been proposed for this closure, with those of Yih

& Guha (1955), Chu & Baddour (1977) and Wood & Simpson (1984) cited frequently

(see Baines 1995). More recently, Klemp, Rotunno & Skamarock (1997) proposed a

jump condition that conserves energy only in the expanding layer, and gives

Uo + Cb =



d2
11(1� d11)(2� d11 � do)

d11 + do + d2
11 � 3dod11

�1/2

. (3.1)

We remind the reader that Cb is the bore speed in the frame moving with Uo and

hence Uo + Cb is the bore speed in the laboratory frame.

Klemp et al. (1997) showed by comparison with numerical solutions to the

Navier–Stokes equations that energy conservation in the expanding layer is a good

approximation for flows upstream of the bore with no vertical shear, the case here.

This closure reproduces the Benjamin (1968) gravity current front condition in the

limit do ⌦ 0, and is thus preferable to earlier closures. In addition, the Klemp et al.

solution reproduces the Boussinesq energy-conserving conjugate bore derived by Lamb

(2000), Cb = 0.5, d11 = 0.5, independent of do. This can be verified from Klemp

et al.’s relationship for the rate of total energy dissipation (in the frame moving

with Cb)

Db =
(Uo + Cb)

3(1� do)(1� 2d11) (d11 � do)
3

2d2
11 (1� d11)

2(2� d11 � do)
. (3.2)

The relation (3.2) shows that the conjugate bore, with speed Uo + Cb = 0.5, d11 = 0.5

and Db = 0, is the largest-amplitude bore which is energetically favourable (i.e.

Db > 0). For d11 > 0.5, the speed decreases and Db is negative, suggesting that an

external energy source is required. This range, as discussed later, is still relevant to the

gravity current problem, as the dense front can act as a source of energy to the bore.

The bore closure (3.1) connects the upstream ambient with the region ahead of

the gravity current (sections 2 and 3, respectively, from figure 1b). In addition, mass

conservation between sections 2 and 3 gives

(U11 + Cb)d11 = (Uo + Cb)do, (3.3)

(U21 + Cb)(1� d11) = (Uo + Cb)(1� do). (3.4)

The Bernoulli equation is then applied along the dividing ambient streamline between

the sections behind and ahead of the gravity current front, 1 and 3 respectively, as
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in (2.7) for a steady gravity current, which gives

d11 � d1c � h =
1

2
U2

11



d2
11

d2
1c

� 1

�

+
1

2
U2

21



1�
(1� d11)

2

(1� d1c � h)2

�

. (3.5)

Finally, applying conservation of momentum between sections 1 and 3 (in figure 1a),
as in (2.8) for a steady current, yields

h2

2S
�

h

S
+

1

2
d2

1c �
1

2
d2

o + do � d1c + d1ch + U2
11



1

2
+

d2
11

d1c

� d11

�

+ U2
21



(1� d11)
2

1� d1c � h
+ d11 � 1

�

= 0. (3.6)

Equations (3.1) and (3.3)–(3.6) constitute five equations in six unknowns: Uo, Cb, U11,
U21, d11 and d1c. An additional equation is needed. Baines (1984) showed that for
solid topography the critical flow condition (2.10) must be satisfied over the obstacle
crest, i.e. the location at which dh(x)/dx = 0, where h(x) is the obstacle boundary.
It is tempting to apply this constraint here to close the system, but because the
gravity current is a free boundary, the hydraulic control point where dh/dx = 0 may
not correspond to the uniform gravity current region. Rottman & Simpson (1989),
rather than using the critical flow condition, imposed energy conservation along the
streamline separating the gravity current from the ambient. Analogous to (2.9) for
steady currents, the head loss across the current front is

� =
h(1� S)

S
�

1

2
U2

11

d2
11

d2
1c

, (3.7)

and there is a corresponding rate of energy dissipation,

Dc = Uo� = Uo

h(1� S)

S
�

1

2
UoU2

11

d2
11

d2
1c

. (3.8)

Setting Dc = 0 provides a final constraint.
However, to explore the sensitivity of the gravity current/bore solutions (3.1)–(3.6)

to dissipation, we systematically vary the dissipation, Dc, and plot corresponding
solutions for (h, Uo). These are shown in figure 3 for do = 0.1 and do = 0.3 over a
range of S values. Solutions are shown only for � > 0, and it can be seen that the
solutions take the form of a wedge within the critical flow envelope. For a given
h, an increase in gravity current front speed, Uo, corresponds to an increase in bore
amplitude d11. The energy-conserving solution (� = 0) forms a rightward boundary in
(h, Uo), with dissipative solutions to the left. For do = 0.1 (figure 3a), solutions are
found up to the supercritical boundary, and the maximum amplitude is smaller than
the conjugate bore d11 < 0.5. For do = 0.3 (figure 3b), solutions terminate within the
critical flow envelope.

The wedge-shaped region in which the bore solutions exist can be interpreted as the
resonant band. In figure 3(c,d) the wedges are shown for various values of S. It can be
seen that for a given value of h, there is a larger resonant band in Uo for do = 0.1 as
compared with do = 0.3. This suggests that a thinner bottom layer is more favourable
for resonance.

In some cases the wedge in which bore solutions are found extends to the
supercritical boundary (e.g. do = 0.1, S = 0.75, figure 3a). Otherwise the bore solutions
terminate when the flow becomes critical through the bore region upstream of the
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FIGURE 3. (a,b) Gravity current solutions with an upstream-propagating bore, for (a) do =
0.1, S = 0.75 and (b) do = 0.3, S = 0.75. Contours of constant bore amplitude d11 (solid lines)
and gravity current front dissipation Dc (dashed lines). The energy-conserving (Dc = 0) curve
is shown in bold. The subcritical solution curve, and sub- and supercritical boundaries from
Baines (1984) are also shown as in figure 2 (only where Dc > 0). (c,d) Bounding curves for
solutions with upstream bores for (c) do = 0.1 and (d) do = 0.3, for S = 0.25, 0.5, 0.75, 0.9
and 0.99. The thick line again indicates the Dc = 0 curve.

gravity current front, such that

cl = Uo + (U11 � U21)(1� 2d11)� [(1� (U11 � U21)
2)d11(1� d11)]

1/2
= 0 (3.9)

(e.g. do = 0.3, S = 0.75, figure 3b). This limit is analogous to the transition to critical
flow immediately in front of solid topography, which was shown by Baines (1984)
to correspond to the maximum possible upstream disturbance. Baines showed that
beyond this transition (corresponding to his region 4E) upstream rarefactions were
produced. Lawrence (1993) also experimentally studied this region, which he termed
approach control, and also observed rarefactions. Thus beyond the resonant wedge, but
within the critical flow region, rarefactions can be expected. Our numerical simulations,
discussed in § 4, demonstrate this behaviour, and the details of the rarefactions are
discussed in that section. For now we remark that the upper limit to the bore solutions,
and the transition to rarefactions, is sensitive to the bore jump condition. Since the
Klemp et al. condition produces the correct upper bound, it is preferred to that used
in Rottman & Simpson (1989), which does not predict an upper bound on the bore
amplitude.

The results of the theory, shown in figure 3(a,b), suggest that solutions are sensitive
to Dc, the gravity current dissipation. For a given current thickness h, allowing a
small change in Dc will significantly change the solution, i.e. Uo, d11, Cb. However,
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FIGURE 4. Regime diagrams summarizing the hydraulic theories, Fr = Uo/co versus h/do,
for (a) do = 0.1, (b) do = 0.3 and (c) do = 0.45.

the results of numerical simulations, discussed in § 4, suggest that the gravity current
dissipation is small compared with the energy transferred to the upstream bore, and we
find that the solution for Dc = 0 compares favourably with numerical results.

3.1. Summary of hydraulic theories

Given the complexity of the theories just presented, we summarize them here while
drawing comparison to Baines’ topographic theory. For reference see figure 4, which
shows regions of behaviour in h � Fr space, where Fr = Uo/co is the Froude number.
Within region I, gravity currents are subcritical and the front speed Uo(h) is given
by the lower branch of solutions given by solving (2.7) and (2.8). This corresponds
to Baines’ region 1A. The upper limit for subcritical solutions is given by the lower
solution branch of (2.12). In region II, there is an upstream bore and solutions for Uo

and Cb are obtained by solving (3.1) and (3.3)–(3.6) as a function of h and the frontal
dissipation Dc. This region corresponds to Baines’ region 3C (and also includes his
region 4C where d11 > 0.5). Setting Dc = 0 provides the energy-conserving solution.
The upper limit for region II is given either by supercritical flow (see below) or where
the flow becomes critical through the bore (3.9). Beyond this point, in region III,
a rarefaction links the leading conjugate bore to the gravity current front. This
corresponds to Baines’ region 4E. The transition to supercritical flow is given by
the upper branch of (2.12) or the limit Uo = Ccs. In the supercritical region, IV–V,
solutions for Uo(h) are given by the upper solution branch of (2.7) and (2.8). This
region corresponds to Baines’ region 2B.

Figure 4 allows direct comparison with the familiar regime diagrams for two-layer
topographic flow first developed in Baines (1984, figure 8 for example). The regions of
subcritical and supercritical flow and the generation of upstream bores are quite similar
for gravity currents and solid topography. As with topography, the size of region II,
the resonant band, decreases with increasing do. Note that for gravity currents there
is no possibility of blocking, which can occur for solid topography. In addition, the
Baines theory relies on a different closure for upstream bores (see also Klemp et al.

1997). A third difference is that the connection between the gravity current and the
bore, as discussed, uses an energy conservation condition for the gravity current (3.8),
rather than the critical flow condition (2.10) as for topography.

4. Numerical simulations

To provide a comparison with the steady gravity current theory, two-dimensional
numerical simulations were performed for a large parameter range in S, do, and
reservoir height, hd.
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4.1. Numerical method

We solve the two-dimensional Boussinesq–Euler equations,

Du

Dt
=�rp� bk̂, r ·u = 0,

Db

Dt
= 0,

D

Dt
=

@

@t
+ u ·r, (4.1)

where p is the pressure (less the hydrostatic component from ⇢2), b = (⇢ � ⇢2)/�⇢

is the dimensionless buoyancy, and k̂ is the unit vector in the positive z-direction.
Velocities are scaled by

◆
g↵H, lengths by H, and time by H/

◆
g↵H.

The numerical model employs a second-order projection method based on that of
Bell & Marcus (1992). The method uses a Godunov-type evaluation of the nonlinear
terms (a non-oscillatory finite volume formulation) and is ideally suited to gravity
current flows where sharp gradients of density and velocity naturally develop. The
Euler equations (4.1) are solved with no explicit dissipation or diffusivity, but the
numerical method does introduce some numerical dissipation. However, an important
property of the advection scheme is that the numerical diffusion is significant only
where large gradients (e.g. shocks) occur on the grid scale. This numerical method has
been used successfully for studies of large-amplitude internal solitary waves (cf. Lamb
2002) and tests of the code show that large internal solitary waves can propagate
distances of ⌥100H with the correct phase speed, form, and minimal loss of energy
(<1 %). The scheme was also used in White & Helfrich (2008) for gravity current
simulations, where it was found that the front propagation speed compared favourably
with experiments, such as those of Maxworthy et al. (2002). In addition, calculations
have been done with both a small uniform viscosity and a Smagorinsky LES closure,
and very little dependence of gravity current properties on the dissipation scheme are
observed.

Most of the calculations were carried out in a rectangular domain with length
L = 64 and height H = 1, and a resolution (x ⇥ z) of 2048⇥ 256. A few were done in
a domain with length L = 50 and resolution 3000⇥ 150. All boundary conditions were
free-slip. Each run was started from a stagnant, u = 0, dam-break initial condition,
with a lock of height hd and length Ld, and the initial buoyancy field given by

b(x, z, t = 0) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1/S z 6 hd, x 6 Ld,

1 hd < z 6 do, x 6 Ld,

0 do < z 6 1, x 6 Ld,

1 z 6 do, x > Ld,

0 do < z 6 1, x > Ld.

(4.2)

In all cases Ld was sufficiently long that the finite size of the reservoir did not
influence the gravity current.

4.2. Results and classification of regimes

We have conducted over 200 simulations, varying hd, S, and do in order to explore
the full range of behaviour and validate the regimes suggested by the steady theory.
Results of the numerical simulations are shown in figures 5–9, which show buoyancy
fields at various times, and the position of the gravity current and leading wave fronts
with time. From these results, we have classified five characteristic behaviours.

(i) Type I is classified as a subcritical gravity current front. In this case, a
localized disturbance is generated around the gravity current front, but there is
no appreciable upstream disturbance. The gravity current front typically exhibits
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FIGURE 5. Type I behaviour, subcritical front: do = 0.45, S = 0.75 and hd = 0.1. Buoyancy
field at (a) t = 24, (b) t = 36, (c) t = 48 and (d) t = 60. Upper right inset: position of wave
front (blue squares) and gravity current front (red circles).
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FIGURE 6. Type II behaviour, with resonant generation of nonlinear internal waves: do = 0.1,
S = 0.9 and hd = 0.45. Buoyancy field at (a) t = 12, (b) t = 24, (c) t = 36, (d) t = 48 and
(e) t = 60. Upper right inset: position of wave front (blue squares) and gravity current front
(red circles).
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FIGURE 7. Type III behaviour, with upstream rarefaction wave: do = 0.3, S = 0.9 and
hd = 0.7. Buoyancy field at (a) t = 12, (b) t = 24, (c) t = 36, (d) t = 48 and (e) t = 60.
Upper right inset: position of wave front (blue squares) and gravity current front (red circles).

a distinct bump, sometimes called a head wave. The dividing ambient streamline
exhibits a depression immediately above the bump, travelling at the same speed
as the front (see figure 5). In this regard, this regime is very similar to subcritical
flow over a solid topographic bump (Long 1954; Baines 1984). Note that in
figure 5 the leading wave, with very small amplitude, travels at a speed close
to the linear long wave speed co =

◆
do(1� do) and is outside the region shown

in the figure. This is consistent with hydraulic theory, which predicts a transient
disturbance with speed co following the introduction of a bump at t = 0 for a
subcritical flow.

(ii) The Type II regime exhibits resonant generation of nonlinear internal waves
(figure 6). The disturbance takes the form of an undular bore, which moves
upstream at a speed faster than the gravity current front. The gravity current
front itself develops wave-like oscillations, and for larger disturbances, dense
gravity current fluid periodically detaches and propagates upstream with the
leading waves. It is important to note that these waves are not generated with the
initial dam break collapse, but are continuously initiated at the front, undergoing
a growth sequence that begins with the wave locked to the front, growing
in amplitude and increasing in speed, before finally detaching when its speed
exceeds the speed of the gravity current. This can be seen in figure 6 (do = 0.1,
S = 0.9, hd = 0.45), where the number of waves evolves from one at t = 12 to
as many as six by t = 60. This process is consistent with a resonance whereby
energy is transferred from the front to the waves. Note that the case shown is an
example of a large-amplitude bore, and the gravity current fluid detaches and is
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FIGURE 8. Type IV behaviour, with a single trapped wave at the front: do = 0.1, S = 0.5
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carried in the core of the waves. In this case the speed of the gravity current front
and the leading bore are nearly equal. This condition is the most favourable for
resonance.

(iii) The Type III regime exhibits an upstream monotonic bore connected to the gravity
current front by an expanding rarefaction. The rarefaction connects the faster-
moving bore to the slower gravity current front. Baines (1984) observed a very
similar regime in two-layer topographic flow, which can be explained in terms of
the bore characteristics. The conjugate bore found by Lamb (2002) and also in
the Klemp et al. closure (3.1) is the largest-amplitude bore that is energetically
favourable. Beyond the conjugate bore, an increase in amplitude corresponds to
decreasing bore speed (from (3.1)), suggesting that an expanding rarefaction wave
will connect the leading conjugate bore to the region near the gravity current front.
The Type III simulations, for example do = 0.3, S = 0.9 and hd = 0.7, shown in
figure 7, illustrate this phenomenon.

(iv) The Type IV regime exhibits an interesting, single large-amplitude solitary wave-
like disturbance that is locked to the gravity current front. An example is shown
for do = 0.1, S = 0.5, hd = 0.35 in figure 8. In this regime, the speed of the
disturbance and the current front are in the supercritical region of (h, Uo) space.
This is consistent with their increased speed relative to, for example, Type III
waves. Over the duration of the numerical solution the disturbance is not quite
steady, and grows slowly by entraining dense fluid from the gravity current into a
recirculating, turbulent core. We note that after an initial development period, the
speed and amplitude of both the leading disturbance and the gravity current front
remain approximately constant until the end of the simulation time.

(v) Type V is classified as a supercritical gravity current. This case is the limit in
which there is a uniform current thickness (on average) behind the front, and
the displacement of the ambient interface is uniform and monotonic over the
current front. For these cases, the flow over the front is smooth, but there is
substantial turbulent mixing behind the front, as is typical of gravity currents. It
should be noted that the numerical simulations are two-dimensional and these
Kelvin–Helmholtz structures (which are also evident behind the rarefaction wave
in the Type III simulation in figure 7) would break down in three-dimensional
turbulence. As a result, while the gravity current and wave fronts are accurately
captured, the model does not resolve the characteristics of the mixing behind the
fronts.

Later we will show that in the limit of hd ⌦ 1, Type V gravity currents approach
the energy-conserving conjugate states from Holyer & Huppert (1980) and White
& Helfrich (2008) (shown in figure 2a,b). We also note that, with the exception
of the Type IV response, the disturbances to the ambient stratification discussed
above have direct analogues in the problem of transcritical stratified flow over
topography where upstream propagating undular and monotonic bores, along with
both localized subcritical and supercritical responses over the topography have been
found in extended-KdV models (Melville & Helfrich 1987; Grimshaw et al. 2002),
laboratory experiments (Melville & Helfrich 1987) and full Navier–Stokes numerical
solutions (Stastna & Peltier 2005).

5. Gravity current properties

In order to quantitatively compare the gravity current theory with the numerical
simulations, the gravity current speed Uo and thickness h, as well as the characteristics
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of the upstream bores, were extracted from the results. Note that while the numerical
simulations varied the lock height hd, the current thickness, h, is part of the solution
and must be determined a posteriori. In an ideal three-layer system, the current
thickness would be defined by the contour of b = 1/S (the non-dimensional gravity
current buoyancy). However, because the simulations are turbulent, this contour is
highly irregular and an integral measure is preferable. For example, Marino, Thomas
& Linden (2005, see their (3.1)) give an estimate of the thickness of gravity current
based on the equivalent hydrostatic pressure. We adapt the concept of an integral
measure, but instead estimate the thickness, h(x, t), based on the potential energy of
the gravity current. Behind the front, the available potential energy relative to the
upstream ambient, up to the level z⇤ at which ⇢(x, z⇤) = ⇢1, is

PE⇤ =

Z z⇤

0

(⇢(x, z, t)� ⇢1)gz dz (5.1)

(see e.g. Cheong, Kuenen & Linden 2006). In an ideal, sharp three-layer system,
z⇤ = h(x, t), and the excess potential energy would be

PE⇤ = 1

2
(⇢c � ⇢1)h (x, t)2 . (5.2)

Setting these expressions equal defines h(x, t).
The gravity current front, xf , is defined as the most forward point at which

h(x) > 0.005 (a reasonable threshold value). The front speed, Uo, can then be
calculated by linear regression of xf versus t over the duration of the simulation.
The regressions are highly linear, as seen in figures 5–9, with R2 > 0.999 in most
cases.

Because there is considerable variability in h(x, t) (in space, time and, particularly,
between regimes), we define two measures of the mean gravity current thickness. The
first, ho, is the largest local maximum of h(x) within the region two units behind the
front: max(h(x)), xf � 2 6 x 6 xf . This definition captures the very distinct maximum
immediately behind the front in the Type I, Type IV and, to some extent, Type V
cases (see figure 10a,b). However, by using a two-unit window behind the front,
smaller maxima near xf , which occur in the oscillatory Type II cases, are rejected (see

figure 11a). A second measure, h, is defined as the average of h over the region two
units behind the first local maximum (see figures 10–11). To get a single value for
both ho and h for each simulation, a time average is taken for each one between t = 30
and the final state, t = 60. It was found that t = 30 was sufficient for the average
current thickness near the front to stabilize following the initial dam break.

The characteristics of the upstream disturbances have also been measured. First, the
amplitude of the upstream bore, d11, is measured as the mean height of the b = 0.5
contour over the region from the gravity current head (where h(x) = ho) forward to
the point at which its displacement is midway between do and its first maximum
(see figure 11). This averages over the upstream waves. The wave amplitudes are of
interest, but are not discussed since the focus is on the properties of the gravity current.
However, in the weakly nonlinear KdV model the amplitude of the leading wave in an
undular bore is twice the bore amplitude d11 � d0 (see Whitham 1974). Esler & Pearce
(2011) have studied the development and properties of two-layer undular bores using
an extension of the modulation theory of Whitham (1974) applied to a fully nonlinear,
weakly dispersive internal wave model.

In § 7, the energy exchange between the gravity current and the bore is analysed.
For this purpose we take a control volume between the undisturbed upstream ambient
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FIGURE 11. Upstream bore characteristics for (a) do = 0.1, S = 0.9 and hd = 0.35 (Type II)
and (b) do = 0.3, S = 0.9 and hd = 0.7 (Type III). Average height, d11, taken through the
region between the gravity current head and the point where the b = 0.5 contour is midway
between do and its first maximum. Vertical lines show the regions in the upstream ambient

and behind the head where energy fluxes are calculated. Estimates for ho and h also shown, as
in figure 10.

and the uniform region behind the gravity current head. The boundaries of the control

volume are shown in the vertical lines in figure 11. In addition, the speed of the

upstream bore, Cw, is calculated by linear regression of xw versus t, where xw is the

point at which the b = 0.5 contour exceeds a threshold value (5 % of the maximum

displacement). From figures 5–9 it can be seen that the regression is highly linear,

and the uncertainty in Cw, like Uo, is very small (generally less than 1 % of their

mean value). The uncertainties in ho and h are substantially higher, particularly for the

oscillatory Type II cases, but usually less than 10 % of their mean.
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FIGURE 12. Gravity current solutions Uo versus h for a range of layer depth do and
stratification parameter S: (a–c) do = 0.1, (d–f ) do = 0.3, (g–i) do = 0.45; (a,d,g) S = 0.5,
(b,e,h) S = 0.75, (c,f,i) S = 0.9. Subcritical and supercritical gravity current solutions shown
by thick lines. Boundary curves for critical flow over topography (2.12) shown by thin black
lines. The resonant wedge in which gravity current/bore solutions exist is also shown, where
the rightmost thick curve represents the energy-conserving solution (� = 0). Symbols show
numerical results: Type I (red), Type II (blue), Type III (green), Type IV (magenta), and

Type V (black). The two estimates for current thickness are also shown, h (circles) and ho

(squares). Error bars in Uo, ho, and h are shown for each point (the uncertainty range in Uo is
smaller than the symbol size).

6. Comparison of simulations with hydraulic theory

6.1. Gravity current front speed versus thickness

Having extracted measures of h and Uo from the simulations, we can compare the
results with the hydraulic theory of §§ 2 and 3. In figure 12, predictions of the
steady theory are shown for do = 0.1, 0.3 and 0.45 for S = 0.5, 0.75 and 0.9 along
with the numerical results (Uo, h, and regime type). The boundaries of the critical
flow region from (2.12) are shown along with both the subcritical and ‘supercritical’
branches of the gravity current solutions for each (do, S) combination. Note that only
energetically favourable solutions (� > 0) are shown. The fast branch is not strictly
supercritical, sometimes falling partially (or completely) within the critical flow region,
and occupying more of the critical flow region as do and S increase. This is expected,
since as do⌦ 0 or S⌦ 0 the Benjamin gravity current limit is approached, for which
there are no upstream disturbances.

First, consider the subcritical regime, for which the numerical results compare quite
favourably with the theory. We plot both ho and h (in addition to horizontal error bars
for each) in order to convey the variability in the numerical current thickness (which
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is of course assumed constant in the theory). For all do, S combinations, the theory
captures both the Uo versus h behaviour as well as the region in (h, Uo) space in
which subcritical, Type I behaviour is observed in the simulations. The front speed,
Uo, initially increases for small h before reaching a local maximum, very close to the
lower critical boundary curve. The numerical results follow the subcritical curve and
approach the local maximum in Uo predicted by theory just before the transition to
critical flow.

The hydraulic theory predicts a transition to Type II behaviour (upstream-
propagating internal waves/bores) where Uo(h) exceeds the lower critical flow
boundary. This transition from Type I to Type II behaviour in the numerical results
is captured quite well by the theoretical bounds. There is some ‘fuzziness’ of the
boundary for a few cases, but in general the transition is quite robust for all (do, S).
Within the critical flow region, the Type II numerical results nearly always fall within
the resonant wedge predicted by the theory of § 3, even allowing for the variability
between ho and h (which can be significant for Type II cases). In addition, the
numerical results show very good agreement with the theoretical zero dissipation curve
(the rightmost boundary curve of the resonant wedge). See in particular do = 0.1,
S = 0.75 and S = 0.9 (figure 12b,c). In general, the size of the resonant wedge
increases for smaller do and larger S, meaning a larger range of parameter space
generates upstream disturbances.

Within the resonant wedge, the theory predicts undular bores up to a limiting
amplitude. This maximum amplitude may be larger than the conjugate bore, d11 = 0.5,
as we discuss further in § 7. This is true in particular for do = 0.45, where the majority
of the bore solutions have d11 > 0.5. Outside region II (where the transition is due to
the onset of critical flow through the bore region), there is a rarefaction connecting the
gravity current front to the faster maximum-amplitude bore. The numerical simulations
clearly demonstrate this Type III behaviour. For the most part, Type III rarefactions lie
between the resonant wedge and the upper limit for critical flow (the conjugate bore
speed, Ccs = 0.5).

Where Uo > Ccs, the gravity current front speed is supercritical and rarefactions
are no longer observed. Rather, we see Type IV (single forced waves) and Type V
(conjugate gravity currents) supercritical behaviour. For these cases, the numerical
gravity current front speed always equals that of the leading wave, Uo = Cw, consistent
with critical flow theory. For most do, S combinations there is a fast gravity current
solution branch that is, for the most part, supercritical. Examples are do = 0.1, S = 0.5
(figure 12a), do = 0.1, S = 0.75 (figure 12b) and do = 0.3, S = 0.5 (figure 12d). There
is reasonably good qualitative agreement between the steady supercritical solutions for
Uo versus h and the numerical results. However, the numerical results consistently fall
below the theoretical curve in each of these cases. The reason is not immediately clear,
but there is considerable spread in the estimates of gravity current thickness for these
cases, which contributes uncertainty to the comparison. There is also a small amount
of numerical dissipation.

For two cases, do = 0.1, S = 0.9 (figure 12c) and do = 0.3, S = 0.75 (figure 12e),
the faster gravity current solution branch falls completely within the critical flow
region. In this region, since Uo < Ccs, theory would predict an upstream conjugate
bore with a rarefaction, which the occurrence of Type III simulation results confirm.
Nonetheless, the steady gravity current solution (neglecting an upstream disturbance)
still predicts the Uo versus h behaviour of these Type III gravity currents quite well, in
fact arguably better than comparison between the supercritical curves and the Type IV
and V curves. This suggests that, at least for these two cases, the upstream wave does
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FIGURE 13. Regime diagrams in (h, Uo) for (a) do = 0.1, (b) do = 0.3 and (c) do = 0.45; only

ho (not h) is shown for visual clarity. Symbols: C, Type I; �, Type II; ⌅, Type III; ⇧, Type IV;
⇤, Type V.

not substantially affect the gravity current front. For these two cases, Uo is just below
Ccs = 0.5, suggesting the upstream disturbance is only slightly faster than the gravity
current front, and the upstream energy transfer is weak. We comment further on this
issue in § 7.

For some combinations of (do, S), the fast gravity current branch ceases to exist. See
for example figure 12(f ) (do = 0.3, S = 0.9), figure 12(h) (do = 0.45, S = 0.75), and
figure 12(i) (do = 0.45, S = 0.9). As shown in figure 3 and discussed in § 2.4, for
S > Sc (for a given do), there are no energetically favourable gravity current solutions,
but instead only an upstream conjugate bore is expected. Indeed the numerical results
corresponding to these cases show a Type III conjugate bore with rarefaction. However,
a prediction for the upper Uo limit is not available for these cases.

6.2. Regime diagrams

From the union of the resonant wedges for all S, a regime diagram can be constructed
for each do in (h, Uo) space. These are shown in figure 13. As before, boundaries from
(2.12) separate subcritical, supercritical, and critical flow regions, and the boundaries
of the gravity current/bore solutions form an additional region, in which upstream
undular bores can be expected (Type II). Outside this region, rarefactions are expected
(Type III). The numerical results are plotted with these bounding curves. These regions
describe the transition between regimes quite well for each of do = 0.1, 0.3 and
0.45. The lower critical flow boundary is quite robust in separating subcritical, Type I
currents from Type II resonant currents. In addition, the Type II cases fall within
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FIGURE 14. Regime diagrams plotted as Uo versus S for (a) do = 0.1, (b) do = 0.3 and
(c) do = 0.45. Curves show the subcritical energy-conserving gravity current (red line), the
maximum-amplitude gravity current/bore (blue line), the line Uo = Ccs (black dashed line),
and the conjugate state gravity current (black solid line). Symbols show numerical results by
regime type, as in figure 13.

the resonant band predicted by the gravity current/bore theory. Type III rarefactions
fall for the most part between the resonant band and the upper limit for critical
flow (Uo = Ccs). Type IV and V gravity currents fall within the supercritical region
Uo > Ccs. There is some ‘fuzziness’ in the bounding curves. For example, some
undular bore solutions lie outside the boundary of the resonant band for do = 0.1 and
some rarefactions lie within the resonant band for do = 0.3 and do = 0.45. Some of
this variability is probably due to uncertainty in estimating h in the simulations. In
addition, the precise transition between Type II and Type III behaviour is difficult to
distinguish in the numerical results. Nonetheless, the general trends are captured for
each do. The resonant band is largest for do = 0.1 and decreases for increasing do.
Consequently, the region in which rarefactions are found is largest for do = 0.45 and
decreases with decreasing do.

It is also informative to plot the regime diagrams as Uo versus S, as this removes the
uncertainty in the estimates of h. These plots are shown in figure 14. Here the lower
(red) and upper (black) curves are the subcritical and fastest energy-conserving gravity
current solutions, respectively, first derived by Holyer & Huppert (1980) and plotted in
figure 2(b). The upper curve corresponds to the conjugate state gravity currents found
in White & Helfrich (2008) for arbitrary stratification. First notice that the subcritical
energy-conserving curve is a good approximation to the transition between Type I
(subcritical) and Type II (resonant) behaviour. This energy-conserving gravity current
is the largest-amplitude subcritical solution. Beyond this solution, upstream bores are
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found, as consistently shown in figure 14 for each do. The upper limit of the resonant
wedge (the maximum amplitude bore solution) is shown in blue. This curve divides
the Type II (undular bore) and Type III (rarefaction) simulations quite well. As shown
in the (h, Uo) plots, this dividing line is not perfectly sharp, but is quite consistent
across changes in do. For example, as predicted, the resonant band in Uo is smallest
for do = 0.45 and largest for do = 0.1. It is clear that rarefactions occupy the space
between the maximum bore solution and the Uo = Ccs = 0.5 horizontal line, the upper
boundary for critical flow. This region is largest for do = 0.45, but for do = 0.1 it
shrinks to a small range near S = 1. Despite being quite small for do = 0.1 (and very
few rarefactions being observed in the numerical results), the theoretical curve predicts
the transition from Type II to Type III quite well even for this case. Beyond Uo = Ccs,
only supercritical Type IV and V solutions are found, as theory predicts.

Finally, the supercritical Type V gravity currents approach the energy-conserving
conjugate state gravity current (the upper black line) in the limit of large lock height
(hd). The same result was found for gravity currents in arbitrary stratification in White
& Helfrich (2008), and the two-layer cases show this as well. However, as seen in
figure 14, and discussed in § 2.4, the conjugate state curve exists only for a limited
range S < Sc. Above it, there are no energy-conserving gravity currents of finite h,
only the conjugate bore, with speed Ccs. In addition, as the figure shows, there is a
small range for which the conjugate state speed is less than Ccs (for example do = 0.45
between S = 0.6 and 0.75). In this range, since the fastest gravity current has Uo < Ccs,
only rarefactions are found. However, the conjugate state solution still predicts the
upper bound on Uo quite well, as was also shown in figure 12(c,e). For S > Sc, there
is no theory available for the large-lock-height limit for Uo, which corresponds to a
rarefaction.

7. Energetics

An important question about gravity current propagation in stratification is how
much energy is transferred from the density front to the upstream internal waves/bores.
This has significant implications for wave generation, energy fluxes, and mixing in
ocean and atmosphere environments. It has been hypothesized (Ungarish & Huppert
2006, for constant N) that the energy transfer from a gravity current to upstream waves
should be small. The hydraulic theory we have presented allows for an estimate to be
made of the energy transfer between the current and the upstream two-layer system.

We take a control volume that encompasses the region behind the current front to
the undisturbed upstream ambient (between sections 1 and 2 in figure 1b; see also
figure 11) in a frame of reference moving with the front speed Uo. The total energy
balance

@

@t

Z

V

E dV =�
Z

V

r · (uE) dV � D, (7.1)

where E = (1/2)u · u + p + bz is the total energy and D is the total viscous dissipation
within the control volume V . Because the control volume is fixed and encompasses the
full depth, (7.1) simplifies to
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E dV =

Z

2

UoEo(z) dz�
Z

1

u1(z)E1(z) dz� D, (7.2)

where the subscripts 1 and 2 denote that quantities are evaluated through the vertical
cross-sections behind the current and through the ambient, respectively. Note that in
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the moving frame of reference the ambient speed is Uo toward the current (taken
here as the positive x-direction). In this frame of reference the energy in the upstream
ambient is Eo = (1/2)U2

o + p + bz = (1/2)U2
o + do for z 6 do and (1/2)U2

o for z > do.
The total energy flux through the cross-section is Efo =

R

2
UoEo dz = (1/2)U3

o + Uod2
o,

which may be interpreted as the energy flux required to hold the gravity current fixed,
or the total energy flux. The total rate of energy lost from the current, relative to the
total Efo, is the difference in energy flux between the ambient and the region behind
the gravity current,

1Ef = Efo �
Z

1

u1(z)E1(z) dz =
@

@t

Z

V

E dV + D, (7.3)

where a positive value of 1Ef represents a net rate of loss (and for a steady, energy-
conserving gravity current 1Ef = 0). Note that even though the control volume is
constant and the front is steady, the time-dependent term is appreciable due to the
propagation of the upstream bore within the control volume. In the hydraulic theory,
the dissipation D can be decomposed into the loss across the gravity current front Dc,
from (3.8), and the dissipation across the bore Db, from (3.2),

1Ef =
@

@t

Z

V

E dV + Dc + Db. (7.4)

This shows that the total energy transferred from the gravity current to the upstream
flow is the sum of (a) the inviscid transfer to the propagating bore/internal waves, (b)
the dissipation over the gravity current front and (c) the dissipation across the bore.

The total flux can be calculated directly by substituting u1(z) and E1(z) =

(1/2)u1 (z)2 +p1(z) + bz, evaluated through the cross-section 1, behind the gravity
current front, into (7.3). To obtain the pressure at z = 0 below the gravity current,
the Bernoulli equation is applied twice, first between sections 2 and 3 in the bore
reference frame and then between sections 1 and 3 in the gravity current frame (refer
to figure 1), to yield

pC = pD + 1

2
(Uo + Cb)

2� 1

2
(U11 + Cb)

2 + 1

2
U2

11. (7.5)

With the hydrostatic pressure, p1(z) = pC � bz, and using pD = do, the energy flux
through the current can be integrated,
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to yield the total rate of energy loss, 1Ef = Efo �
R

1
u1(z)E1(z) dz. As a result, each of

the three terms in (7.4) can be evaluated.
We calculate 1Ef from the numerical simulations by integrating the energy flux

through the cross-sections 1 and 2 (as shown in figure 11). The integral through
section 1 is an average in x over the region in which h is calculated (bounded by, say,
x1 and x2) and in time (from t1 = 30 to t2 = 60), so that the total energy loss in the
simulations is

1Ef = Efo �
1

(t2 � t1)

1

(x2 � x1)

Z t2

t1

Z x2

x1

Z 1

0

u(x, z, t)E(x, z, t) dz dx dt, (7.7)
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FIGURE 15. Energy transfer from the gravity current 1Ef , normalized by its total energy flux
Efo, versus bore amplitude d11. (a–c) do = 0.1, (d–f ) do = 0.3, (g–i) do = 0.45; (a,d,g) S = 0.5,
(b,e,h) S = 0.75, (c,f,i) S = 0.9. Hydraulic theory (solid black line) and numerical results
(solid symbols, where shape corresponds to regime type as in figure 13). Also shown are the
hydraulic theory for Dc (dotted line) and Db (dot-dashed line). Bore speed, Uo + Cb, in the
laboratory frame versus d11 is also shown (dashed line, Klemp et al. (1997) closure; open
symbols, numerical results).

where u(x, z, t) and E(x, z, t) are both calculated in the frame of reference moving

with gravity current speed Uo. This expression can be directly compared with the

hydraulic theory. However, it is difficult to decompose the numerical results into the

three components of (7.4), so we calculate only the total energy transfer, 1Ef .

The results for the total rate of energy transfer from the gravity current to the

upstream flow is shown in figure 15, where the numerical results for 1Ef are shown

as a function of bore amplitude d11, for a range of do and S. For comparison the

predictions from hydraulic theory are shown for 1Ef , Db, and Dc. For 1Ef and Db

the curves corresponding to the energy-conserving gravity current front, Dc = 0, are

shown, whereas to give an upper bound for the gravity current dissipation, the Dc

curve that maximizes the function Dc(d11) is shown (cf. figure 3a,b). The energy

transfer is normalized by Efo in order to show the fraction of total energy lost from the

gravity current. Also shown is the bore speed in the laboratory frame, Uo + Cb, versus

d11 with the Klemp et al. closure (3.1) for comparison.
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The comparison between the theory and simulations is quite favourable across the
(do, S) parameter space. The results show that the energy loss increases with bore
amplitude before reaching a maximum and subsequently decreasing. The maximum
value of 1Ef /Efo is well predicted by the theory for each case. The maximum fraction
of the gravity current energy lost ranges from less than 10 % for do = 0.1, S = 0.5,
to over 40 % for do = 0.3, S = 0.9. In general the energy transfer increases as S⌦ 1
but is maximized at an intermediate value of do. This maximum in the 1E/Efo curve
occurs because the energy transfer depends not just on the bore amplitude but also
on Cb (the difference in the resting frame between the gravity current front speed
and the bore speed). A large disturbance moving much faster than the gravity current
will maximize 1Ef , but 1Ef decreases for large d11 as Uo approaches the bore speed
Uo + Cb.

It is perhaps surprising how well the simulations match the hydraulic theory, given
the assumptions of uniform layer thickness and neglect of non-hydrostatic effects
associated with the undular bore. The success is likely due in part to the fact that
the Klemp et al. (1997) closure successfully captures the properties of the numerical
bores, as seen in the comparison of Uo + Cb versus d11 between the theory and
numerics in figure 15. The closure matches the simulated bore speeds across all
cases where upstream undular bores are observed (and even some rarefaction and
subcritical cases, which are also shown for comparison). As discussed previously, the
large-amplitude limit of the gravity current/bore solutions can exceed the conjugate
bore, d11 = 0.5, Ccs = 0.5. The jump condition continues for d11 > 0.5, and this region
continues to show good agreement with the numerical results, in particular for larger
do. For do = 0.45 the majority of the bore solutions have d11 > 0.5. Even though
for d11 > 0.5, Db < 0 (implying energy is required rather than dissipated), the gravity
current provides the required energy transfer, as shown by the fact that 1Ef > 0 for
these cases. These results support the use of the energy-conserving closure. This is
perhaps not surprising in the present problem, where the upstream disturbance consists
of waves.

The success of the hydraulic theory suggests that energy transfer is largely inviscid.
This is verified by comparing Db and Dc with the total energy loss. In all cases,
the gravity current dissipation, Dc, is insignificant, at least two orders of magnitude
smaller than 1Ef . This explains why the � = 0 assumption matches the upstream
bore results so well (as in figure 12). It appears that dissipation over the front is a
negligible component of the energy transfer. The bore dissipation, Db, is significant for
do = 0.1, but not for do = 0.3 or 0.45. This suggests that the dominant component of
the energy transfer is the term @/@t

R

V
E dV , which is largely inviscid and represents

the energy required to change the upstream state ahead of the gravity current and drive
the undular bore. The theory and numerical results verify that this energy transfer is
significant, requiring as much as 40 % of the total energy of the gravity current to
sustain the bore. Capturing this transfer is necessary to the prediction of the gravity
current front speed relationship, Uo versus h, in the resonant regime, and it has
been demonstrated that the hydraulic theory accomplishes both tasks quite well. The
significant energy transfer to waves in the two-layer case is in contrast to the results
of Ungarish & Huppert (2006), who found negligible transfer in uniform stratification.
A possible explanation for this distinction is that a Boussinesq fluid with uniform
stratification does not support internal solitary waves of the classic KdV type; however,
nonlinear internal waves governed by a related equation are possible (Grimshaw & Yi
1991). This seems consistent with Munroe et al. (2009), who found significant energy
transfers (up to 22 %) to upstream disturbances in a linearly stratified system.
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8. Discussion and summary

The hydraulic theory and simulations described here illustrate the complexity of
frontal dynamics for a gravity current propagating into a two-layer stratified ambient.
The regimes, organized by their Froude number Fr = Uo/co and thickness, are shown
to be analogous to critical flow over solid topography, but are more complex because
the front is a free boundary. As a result, the gravity current is subject to an additional
momentum constraint. By imposing this constraint as well as closures on energy
dissipation over the gravity current front and modelling the connection to an upstream
undular bore, we have found that the theory is robust in predicting the occurrence
of the various frontal regimes observed in numerical simulations as a function of Fr

and h.
A second result of the theory is the prediction of a relationship between the front

speed Uo and thickness h across the full range of regime types. The theory builds, in
particular, on that of Holyer & Huppert (1980), Rottman & Simpson (1989) and White
& Helfrich (2008) to yield predictions for gravity current front speed in subcritical
and supercritical regimes, as well as the resonant regime in which an upstream bore
is generated by the current. The energy and internal bore closures give the correct
behaviour in the large-amplitude bore limit. Moreover, the results show that the upper
limit separating resonant generation from supercritical flow is the conjugate bore,
Ccs = 0.5, d11 = 0.5, as demonstrated by Stastna & Peltier (2005) for solid topography.

An analysis of the energy budget for the hydraulic theory and numerical results
shows that for a two-layer ambient, a substantial fraction of the energy flux of
the gravity current can be transferred to the upstream bore. This has significant
implications for the generation of nonlinear internal waves in the atmosphere and
coastal river plumes. Questions remain about dissipation due to turbulent mixing,
for which very high rates have been observed in the ocean near river plume fronts.
Neither the hydraulic theory nor the numerical simulations capture this process, which
requires some combination of careful laboratory experiments and three-dimensional
direct numerical simulation to understand.

The results confirm that the generation of nonlinear internal waves at the gravity
current front is due to transcritical resonance, which is well predicted by the hydraulic
theory. The implications are that there is a distinct band of Fr for a given h, S, do for
which upstream internal waves are generated. This is in contrast to the hypothesis that
waves are generated when Fr < 1 and the front is supercritical for Fr > 1. As we have
seen, the fairly simple criterion Uo/Ccs > 1 controls the transition to supercritical flow,
but the finite resonant band in Uo requires linking the gravity current to the upstream
bore.

While the present theory is limited to two-layer stratification, we remark that recent
results (Camassa & Tiron 2011) have shown that some properties of internal wave
propagation in continuous stratification can be well approximated by an equivalent
two-layer system optimally matched in terms of long-wave charactertics such as the
phase speed. This opens the possibility of applying the present theory as a more
general framework in continuously stratified fluids, particularly in the coastal ocean,
where a very thin surface layer typically exists. However, the existence of breaking
and trapped core formation where there is appreciable near-surface stratification, in
addition to higher vertical wave modes, may in some cases substantially alter the
behaviour.

As an example, the observations by Nash & Moum (2005) of nonlinear internal
waves at the Columbia front were made in approximately 40 m of water where
the plume thickness was of the order 5 m, roughly corresponding to h � 0.1 in
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non-dimensional units. Based on their figure 3(a), near the front the ambient density

difference from top to bottom was approximately 5 psu. They calculated a wave

speed of approximately co � 0.4 m s�1, which corresponds to co/
◆

g↵H � 0.3, or an

equivalent two-layer system with do � 0.1. The density difference between the plume

and the bottom was about 13 psu, yielding a value of S� 0.4. They observed the onset

of wave generation when Uo was less than �0.5 m s�1, or �0.35 in non-dimensional

units. This is certainly within the resonant band shown in figure 14. It may be

possible to improve the prediction for the precise onset of wave generation by more

precise matching of the ambient density profile to its optimal two-layer counterpart.

We also remark that the possibility remains to extend the full two-layer theory with an

upstream bore to continuous profiles as well to incorporate ambient velocity shear.
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