
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

12-1986

A General Design Tool for Computer Directories A General Design Tool for Computer Directories

Edward J. Peeler

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

Peeler, Edward J., "A General Design Tool for Computer Directories" (1986). Master's Theses. 1317.

https://scholarworks.wmich.edu/masters_theses/1317

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1317&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1317&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/1317?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1317&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A GENERAL DESIGN TOOL FOR COMPUTER DIRECTORIES

by
Edward J. Peeler

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fufillment of the

requirements for the
Degree of Master of Science

Department of Computer Science

Western Michigan University
Kalamazoo, Michigan

December 1986

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A GENERAL DESIGN TOOL FOR COMPUTER DIRECTORIES

Edward J. Peeler, M.S.
Western Michigan University, 1986

The primary objective of a directory is to organize
information for efficient retrieval. There are many
techniques that can be applied to the design of a
directory. One particularly useful technique employs the
use of inverted files on range attributes. The technique
provides an effective directory for a variety of
applications and for very large databases. This paper
examines the technique and describes the implementation
of a general design tool based on these principles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. I f it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. I f necessary,
sectioning is continued again-beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
Micrc5nlms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1329836

Peeler, Edward Jay

A GENERAL DESIGN TOOL FOR COMPUTER DIRECTORIES

Western Michigan University M.S.

University
Microfilms

International 300N.ZeebRoad,AnnArbor,M I48106

1986

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

LIST OF FIGURES iv
CHAPTERI. INTRODUCTION.1

Fundamental Concepts......................... 1
II. INVERTED FILES.......... . 9

Review of Literature. 9
Description of Inverted File............... 12
Retrieving Information With Inverted Files.13
Updating Inverted Files.....................14

III. VARIATIONS ON INVERTED FILES..................22
Determining Range Boundaries................24
Operations on Range Attribute Inverted

Files................. 26
IV. A GENERAL DESIGN TOOL FOR RANGE INVERTED

FILES. 29
System Description..................... .30
Design Options.............................. 30
User Specified Intervals....................31
Number of .intervals Specified.............. 31
Auto Specification......................... 32
Standard Inverted File..................... 33
Other Options.................... 34
Files Created......................... 34
Support Modules............................. 35

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS— CONTINUED

CHAPTER
V. PERFORMANCE ANALYSIS...... 38

Space Requirements......... 38
Value File.......................... 39
Address File...........................39
Differential File........................... 40
Characteristic File......................... 40
Total Space Requirements....................41
Retrieval Time.......... ...42
Time to Search Value File

.

 42
Time to Access Address List.........43
Time to Access Differential File......44
Time to Access Source File Records.. 44
Total Time to Satisfy Query................ 44
Example............. 45
Index Creation......... 48
Conclusion...................... 48

APPENDICES
A. Algorithms 50
B. Sample Run..................... 57

BIBLIOGRAPHY........ 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

1. Sample File....... 3
2. Inverted File on Employee Salary................. 12
3. Linked List Differential File.....................16
4. Pile Differentail File.............. 17
5. New Entry Update of Differential File............ 19
6. Existing Entry Update of Differenticil File.......20
7. User Specified Intervals on Salary............... 31
8. Number of Intervals Specified on Salary..........32
9. Auto Specified Index on Salary....................33

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

A significant amount of computer time is engaged in
retrieving information from databases. It is important
that this task be carried out as efficiently as possible.
There are a number of approaches to achieving this goal.
Some approaches concentrate on performance increases in
the hardware components of a computer system. Others
concentrate on devising structures that accomodate
efficient retrieval and effective update.

This paper describes a class of structures that
provide an effective means for retrieval and update.
Algorithms are developed and characterized that provide
the file designer with an environment allowing the
creation of directories that can accomodate a broad range
of requirements.

Fundamental Concepts

Information can be logically divided into
components. The most fundamental component is the
attribute. An attribute, or field, is an atomic piece of
information. It is atomic in the sense that it cannot be
divided any further without losing meaning. Examples of

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attributes include first name, last name, city, state,
social security number, etc.

Attributes possess characteristics. Characteristics
are used to describe the information being represented by
the attribute. Characteristics of attributes include
data type, maximum number of characters, data domain, and
integrity rules.

Data type describes what kind of information is
being represented. Some examples of data type include
integer, real number, monetary value, etc. The data
domain of an attribute refers to the range of legal
values that an attribute value can assume. Integrity
rules for an attribute describe what checks are made on
the value to determine whether or not an instance of the
attribute value is possible.

It usually requires several attributes to describe a
real world object. For example, to describe a student,
it might be necessary to use the attributes last name,
first name, street address, city, state, zip, age, date
of birth, etc. When attributes are grouped together, a
structure called a record is created. Each attribute
value in a record is related to other attribute values in
the sense that their combined values describe a single
real world object.

It is often desirable to store related records
together on the basis of some common characteristic. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example, it might be advantageous to store student
records together by year of admittance. Storing records
together creates a structure called a file. A file has
several characteristics. It typically has a file name,
which is used to differentiate it from other files, a
location on secondary storage. For example, suppose we
wished to describe the real world object employees by
storing their employee number , salary, and the
department number of the department they were associated
with.

Employee ID_____ Salary Department
85-100 20000 101
85-110 16000 105
85-120 16000 101
85-130 16000 104
85-140 16000 105
85-150 15000 102
85-160 21000 107
85-170 22000 109
85-180 21000 104
85-190 40000 107
85-200 45000 102
85-210 50000 109
85-220 16000 106
85-230 15000 103
85-240 16000 103
85-250 16000 106

Figure 1. Sample File

A database is a collection of related files. A
database can contain the descriptions of many real world
objects and their relationships to one another. Each
object and relationship may be represented by one or more
files. The retrieval of information from a database

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consists of retrieving records from one or more files.
This process requires the use of a mechanism that
describes where the desired information resides on some
storage device and a procedure for the presentation of
the information.

Each record in a file can have an associated record
number. This number describes a record's relative
position in a file. Thus, retrieval typically involves
retrieving lists of addresses corresponding to records in
files that satisfy some request for information.

A request for information consists of specifying a
predicate or statement about the desired records. There
are four basic types of requests or queries (Horowitz,
Sahni, 1976):

(1) Simple: the value of a single attribute is
specified.
(2) Range; a range of values for a single attribute
is specified.
(3) Functional; some function of the attribute
values is specified such as average or median.
(4) Boolean: a boolean combination of the first
three query types using logical operators, [p. 479]
There are a number of strategies that can be

employed to satisfy queries. One of the simplest
strategies is to examine each record in the appropriate
files to determine whether or not it satisfies the query,
i.e., does the record possess the desired attribute
values. While this strategy is simple and easy to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5implement, it is not efficient. For example, to search a
file with 2000000 records with a computer that could
access and examine 1000 records per second, it would take
approximately 33 minutes to satisfy the simplest query.

Another strategy would be to organize the file and
take advantage of the organization when searching for
information. One possible organizational strategy would
be to linearly order the records of the file based on the
value of a particular attribute or group of attributes.
This would result in a significant reduction of the
number of records that would have to be examined. On the
average, the time required to honor a query would be
proportional to log n, where n is the number of records
in the file and log is base 2.

While this strategy provides a marked improvement
over an unorganized file, it does harbor some drawbacks.
The most notable drawback involves updating the file. If
new records are added to the file or if any of the
attribute values used to control the organization change,
the file must be reorganized. The reorganization
involves reordering the file which requires time
proportional to n log n for most files. If the file were
very large, the amount of time required to reorganize the
file would extend into hours.

Another strategy involves identifying attributes
that are important to the retrieval process. Once these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6
fields have been identified for a file, auxiliary files
are created based on the values of these fields . These
files are called indices. In most files and databases,
there will be several attributes that will aid the
retreival process. A collection of indices based on
these fields is called a directory (Horowitz, Sahni,
1976) .

An index may be dense or nondense. A dense index
has an entry for every distinct value of the attribute in
the source file. If an index is nondense, only certain
attribute values are represented in the index. In both
cases, an index is generally a collection of pairs of the
form: (Field value,Address). The ordered pairs are
stored in a separate file with their own organization.

An effective index can be characterized by its
behavior. An effective index will provide rapid access
to information. It will also provide a convenient and
relatively efficient method for maintaining the index
should new records be added or existing field values
change.

One important component influencing the
effectiveness of an index is its structure. The choice
of an appropriate structure depends upon many diverse
factors. Some important factors include retrieval
patterns, frequency of update, and distribution of field
values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the retrieval patterns are known, structures can
be employed that optimize access to frequently specified
values. If it is known that only a few values are
specified in queries, an index containing only those
values used in the retrieval process might prove more
effective.

Frequency of update of indexed field values is
important when striking a balance between efficiency of
retrieval and efficiency of update. Often, a structure
optimizing retrieval is difficult to maintain in a
dynamic database. If an indexed field value never
changes once it has been assigned to a record, it would
be proper to employ a structure optimizing retrieval.
However, most databases are dynamic and retrieval
efficiency must be balanced with update efficiency.

Distribution of indexed field values is important.
If each record possesses a unique indexed field value, a
structure including field value and address would be
appropriate. If an indexed field value is common to
several records, a framework providing separate
structures for indexed field values and addresses would
be more appropriate.

There are many factors that determine the best
structure to employ for an index. Unfortunately, there
is no one best general structure for an index that
accomodates all the factors that influence the structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8
of an index. However, there is a class of structures
based on inverted files that does provide file designers
with tools that can take advantage of special a priori
knowledge about retrieval patterns as well as when very
little is known about retrieval patterns. This paper
concentrates on these structures and develops techniques
that will in effect create a general directory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

INVERTED FILES

Inverted files have found widespread use in
databases and file systems for many years. The
literature review presented here is a general survey of
the applications and modifications that have been applied
to inverted files.

Review of Literature

Descriptions of inverted files can be found in most
textbooks concentrating on data structures and
algorithms. Horowitz and Sahni (1976) provide a
fundamental description of the technique and Knuth (1973)
describes their efficiency in the processing of boolean
queries. Efficient use of inverted files in query
optimization has been shown by Lie (1976), Putkanen
(1980), and Schkolnick (1978).

Many recent publications describe systems utilizing
inverted files. Tuttle, Sheretz, Bloise, and Nelson
(1983) use inverted files in an interactive diagnositic
program called RECONSIDER. Patient findings and their
synonyms are matched against inverted files of terms from
disease descriptions. The number of matching terms

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determines a disease score. Sorted scores are used to
form a differential diagnosis. Gersting, Conneally,
Rogers, and Blum (1982) use inverted files for efficient
retrieval from a human pedigree database.

Harding and Willet (1980) show how inverted files
provide an efficient tool for automatic document
classification. Schultheisz, Walker, and Kanaan (1981)
use inverted files in a chemical dictionary. Schulthiesz
(1981) uses inverted files to retrieve data from TOXLINE,
a bibliographic and toxicology composed of 11 different
files from different sources. He found inverted files to
be an effective tool in handling data from differently
structured source files with many replications of
bibliographic records. Conrad, Bloom, Cooper, Cannon,
Friedman, Horowitz, Krikorian, and Lopez (1980) utilized
inverted files in a statistical package with a cancer
database at Boston University Hospital. This includes
only a small sample of the application areas for inverted
files.

A number of modifications to inverted files have
been developed. Most modifications address the issues of
excessive space requirements and access times.
Compression techniques which improve space utilization
have been developed by Schulthiesz (1981) Jakobsson
(1980,1982) and by Jakobsson and Nevalainen (1980).
Combinations of clustering records together with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compression techniques have been suggested by Navalainen,
Jakobsson, and Berg (1978). This techniuqe improves
space utilization and also reduces access time. Motzkin
(1979) incorporated inverted files into Normal
Multiplication Table directories. In Normal
Multiplication Tables, the attribute values and address
lists are organized in clusters. Several attributes can
be stored in the same table. This technique provides
rapid access to single as well as multiple attributes
while exhibiting economy of space. Hoffer (1980)
concentrates on the process of selecting attributes to be
inverted. Cardenas (1975) provides ways to measure the
performance of inverted files and suggests that attribute
values may be kept in a separate, hierarchical structure
with pointers to the address lists. Johnson and Webster
(1982) propose an efficient way to update an inverted
file. Federowics (1982) developed techniques to model
term dispersion in inverted files. This model has been
applied to the National Library of Medicine's MEDLINE
system. Additional references, especailly regarding
early development, can be found in the extensive
bibliography compiled by Schkolnick (1978). Uniform
organization of inverted files has been proposed by
Motzkin, Williams, and Chang (1984).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Description of Inverted File

An index is generally a collection of pairs of the
form (Attribute value, Address) where the address
corresponds to the relative address of the record in the
source file possessing the companion attribute value.
Additionally, we assume that all attribute values are
distinct in the index. In the event that several records
possess the same attribute value, the address component
of the index pair is a pointer to another address where a
list of addresses of all records possessing the attribute
value is maintained. It may also be desirable to store
the number of records possessing the attribute value in
the index.

Value File Address File
Value Count Address Address
15000 2 1 6
16000 7 3 14
20000 1 10 2
21000 2 11 3
22000 1 13 4
40000 1 14 5
45000 1 15 13
50000 1 16 15

16
1
7
9
8
10
11
12

Figure 2. Inverted File on Employee Salary From File in
Figure 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this fashion, two files have been created. One
file, the value file, contains the attribute value, a
count of records possessing the field value, and the
beginning address in the address file of the list of
addresses corresponding to the records possessing the
indicated attribute value. The second file, the address
file, is responsible for maintaining the lists of
addresses. Note that the addresses corresponding to the
same field value are clustered together in the address
file.

Retrieving Information With Inverted Files

Retrieving information with inverted files involves
accessing three files. (Note that all references to
retrievals refer to simple queries.) First, the value
file must be accessed to determine whether or not the
desired attribute value exists in any of the records in
the source file. If the attribute value exists, the
system extracts the count of records possessing this
value and the pointer to the address file. Next, the
system accesses the address file. The pointer extracted
from the value file indicates the beginning position of
the list of addresses of records possessing the desired
attribute value. The system then gathers the list of
addresses from the address file. Once the addresses have
been gathered, the system can then access the indicated
records from the source file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the retrieval involves a boolean query, the
system can determine the records that satisfy the query
without having to examine the records in the source file.
(This assumes that the boolean query is based on indexed
fields.) The manipulations to satisfy the query can be
performed on the record addresses gathered from the
address files. If the query involves the OR operator,
the system would merely perform a union of the
corresponding address lists and eliminate any duplicates.
I'f the query involves the AND operator, the system would
perform an intersection of the corresponding address
lists.

Updating Inverted Files

Updating an inverted file can be a complex
operation. There are two basic update operations; add
and delete. Note that a change is a combination of the
add and delete operations. The addition of values to an
inverted file often introduces another file called a
differential file. The purpose of the differential file
is to house the addresses of new records. At some
specific point in time, the information contained in the
differential file is incorporated into the address file.
Typically, this is done when noticeable performance
degradation occurs in retrieval operations.

There are two possible organizations for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

differential file. One organization utilizes a linked
list. This organization is suitable for environments
where the amount of storage space is limited. The other
organization is an unorganized pile file. This
organization results in processing savings when the
differential file is incorporated into the standard
address file. However, it does requires more space and
can cause performance degradation when honoring queries.

The introduction of a differential file requires a
modification of the value file. A pointer to the
differential file must be included, if the linked list
version is used, or a flag indicating values reside in
the differential file for the unorganized version It is
also desirable to store the count of entries in the
differential file for determining when the differential
file should be incorporated into the address file.

The linked list form of the differential file is a
pair of the form (Address, Pointer to next address) where
Address corresponds to the address of the record
possessing the value and the Pointer to next address is
the address of the next record in the differential file
possessing the same value. The last entry in the linked
list for a given value is a 0 in the pointer to next
address. Additionally, the first record of the
differential file houses the address of the first
available record for the addition of new information to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16
the differential file.

For example, suppose that three records are added to
the employee file. Two of the records have a salary
field of 16000 and one record has a salary field of
21000. Further, assume that the record numbers
corresponding to the records with 16000 as their salary
field are 17 and 18. The record number associated with
the salary field of 21000 is 19. Figure 3 provides an
illustration of the resulting value file and differential
file.

Value File ____ Address File
Value Count Address Diff Ptr Address
15000 2 1 0 6
16000 7 3 2 14
20000 1 10 0 2
21000 2 11 4 3
22000 1 13 0 4
40000 1 14 0 5
45000 1 15 0 13
50000 1 1 0 15

16
1

Differential File 7
9

Source Record Number Next 8
10

0 5 11
17 3 12
18 0
19 0

Figure 3. Linked List Differential File

The unorganized differential file consists of
records of the form (Value, Address of Source Record).
This form consumes more space and requires more time to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

search since each record in the file must be examined.
However, the incorporation of the differential file into
the standard address file can be accomplished in much
less time since the values are present with the
addresses.

Value File______________ Address File
Value Count Address' Diff Flag Address
15000 2 1 no 6
16000 7 3 yes 14
20000 1 10 no 2
21000 2 11 yes 3
22000 1 13 no 4
40000 1 14 no 5
45000 1 15 no 13
50000 1 16 no 15

16
1

Differential File 7
9Value Source Record Number 8

• 16000 17 10
16000 18 11
21000 19 12

Figure 4. Pile Differential File

When adding new entries to the inverted file, there
are two scenarios that can develop. The first is
encountered when the attribute value being added to the
structure exist in the value file. In this case, the
address corresponding to the record being added must be
placed in the differential file. While it is possible to
add the address to the address file, the amount of
processing required to accomplish this is expensive.

The second is encountered when the value being added

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
does not have an entry in the inverted file. In this
case, a new value entry must be created and inserted in
the value file. It is important that the insertion of
the new value preserve the organization of the value
file.

There are two situations that develop when adding
information to the linked list differential file. The
first is encountered when the value does not have any
addresses in the differential file, i.e., all
corresponding addresses reside in the address file. In
this situation, the system must first access the fisrt
record of the differential file to determine where the
first free record is located in the differential file.
This address is placed in the value files's pointer to
the differential file. The first record of the
differential file is updated to point to the next free
record in the differential file. The address of the
record possessing the value is placed in the differential
file and its pointer to next address is set to zero.For
example, suppose we now add a fourth record to our file,
with a salary field of 20000, and a record number of 20.
Figure 5 illustrates the resulting differential file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Value File Address File
Value Count Address Diff Pt Address
15000 2 1 0 6
16000 7 3 2 14
20000 1 10 5 2
21000 2 11 4 3
22000 1 13 0 4
40000 1 14 0 5
45000 1 15 0 13
50000 1 16 0 15

16
1

Differential File 7
9

Source Record Number Next 8
0 6 10
17 3 11
18 0 12
19 0
20 0

.gure 5. New Entry Update of Differential File

The second situation arises when the value has
address entries in the differential file. Again, the
first record of the differential file must be accessed to
determine where the first available record in the
differential file is located. This record is updated to
point to the next available record. The first available
record will become the new differential pointer in the
value file. The address is then placed in this record
and its pointer to next address is set to address that
was housed in the value file's differential pointer.
Figure 6 illustrates the resulting files if we were to
add a record with a salary of 16000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Value File Address File
Value Count Address Diff Ptr Address
15000 2 1 0 6
16000 7 3 5 14
20000 1 10 0 2
21000 2 11 4 3
22000 1 13 0 4
40000 1 14 0 5
45000 1 15 0 13
50000 1 16 0 15

16
1

Differential File 7
9Source Record Number Next 8

0 6 10
17 3 11
18 0 12
19 0
20 2

Figure 6. Existing Entry Update of Differential File

Adding information to the differential file when
using the unorganized version is very simple. The system
must first determine if the value already has an entry in
the differential file. If it does not, the system must
set the differential flag and add one to the count of the
entries in the differential file. Next, the value and
the address of the source record are placed in the free
position indicated by the first record in the
differential file. The first record of the differential
file is then updated to reflect the next free position in
the file.

Deleting information from an inverted file involves
locating the address of the record being deleted from the
source file in the inverted structure. Once the address

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is located, it is replaced with some out of range value.
It should be noted that the system may have to search
both the address and differential files for the address.
It may be desirable to track the number of deletions.
When the number of deletions reaches a threshold value,
the entire inverted file could be reorganized, adding new
entries from the differential file and removing deleted
addresses from the address list.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER III

VARIATIONS ON INVERTED FILES

A number of modifications to inverted files have
been suggested. Chapter II discussed some of those
modifications in the survey of the literature. For
example, a balanced tree structure could be utilized as a
structure for the value file. The advantage of this
organization would be to decrease the amount of time
required to search the value file. Another technique for
organizing the value file would be hashing. Hashing
involves the use of a function called a a hashing
function. The hashing function is designed to provide
unique or nearly unique addresses for given values. The
addresses produced by the hashing function would
correspond to the records of the value file.

Another modification is the introduction of range
attributes for the values in the value file. This
organization would not include a separate value entry for
every value that existed in the source file, but would
consist of ranges of values. This organization is
particularly useful if the domain of possible attribute
values is large and the retrieval patterns of the
attribute typically involves range queries.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A range can be defined as follows:
Given:
n elements drawn from a domain D.
Domain D is a partially ordered set.
ni represents the ith element from domain D.
A range is a subset of the domain such that
[nl,n2,..., ni] such that i <= j and nl <= ni.
Further, given two successive ranges:
[nl,n2,...,nk-1] [nk,nk+l,...,nj] then
nk-1 <= nk <= nk+1.

Partition domain D into R ranges
0 < R <= n.

The boundaries of range r, are the endpoints of the
range, i.e., nl,nk-l.

A restriction on successive ranges can be imposed
Given the ranges define above, a restriction is
defined as:
nk-1 < nk <= nk+1.

For example, given the. following domain:
(1,2,2,3,4,5,6,7,7,8,9,10)

we might choose to create the following ranges:
(1,2,2,3) (4,5,6) (7,7,8,9,10).

The boundaries of the above ranges are:
(1,3) (4,6) (7,10).

Further note that the ranges are restricted.
The representation of range attributes in inverted

files depends upon the organization of the differential
file. When the differential file utilizes a linked list,
the inverted file consists of value file of the form (Low
range value, High range value, Count, Pointer to address
file, Differential count, Pointer to differential file).
The organization of the address file does not change. It
should be noted that the operations on this form of an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24
inverted file may retrieve records that do not satisfy
the query, i.e., superfluous records may be retreived.
The rest of this paper examines in detail this variation
of inverted files and describes a general design tool
based on the above technique.

Determining Range Boundaries

One of the more important tasks in creating an
inverted file with range attributes is determining the
boundaries of the ranges. The primary objective of
determining the boundaries is to choose them in such a
way that when a user requests records with a specific
attribute value or a group of attribute values, a minimum
number of excess records is retrieved. There are four
basic approaches to achieving this goal.

Suppose the values in the source file are evenly
distributed and the probability of using any particular
value or range of values is equal. The choice of
boundaries would consist of dividing the elements into r
ranges. If we had n elements in the source file, each
range would consist of ceil(n/r) addresses except for the
last range which would contain mod r(n), where ceil is
the ceiling function and mod is the modulo function for
r.

Suppose the file designer possesses knowledge about
the intended retrieval patterns on the attribute values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this situation, the choice of boundaries would be
based on these patterns. Each range might possess an
unique number of addresses and there might be no
uniformity to how the ranges are constructed.

Suppose a computer system imposes certain
constraints about the amount of information that can be
processed at any given moment. In this situation, the
file designer might wish to define a minimum, average,
and maximum number of addresses that are to be placed in
each range.

If the file designer possesses little or no knowlege
about the intended retrieval patterns or the distribution
of attribute values, a variation of the last method might
be appropriate. Under these circumstances, the system
could analyze the attribute values and determine the
minimum, average, and maximum number of addresses that
should be associated with each range. The average value
could be determined by taking the square root of the
number of distinct attribute values that exist in the
file. This forces the number of intervals to be the same
as the average number of records to be placed in each
interval. The minimum could then be determined by taking
half of the average and the maximum could be twice the
average.

The last two methods harbor some problems. Suppose
a particular attribute value has more records possessing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a value than is allowed by the constraints. One
possibility would be to eliminate the attribute value.
This would be feasible if the cost of maintaining the
address list is high for the attribute value in relation
to other attributes and the relative usefulness of the
attribute in honoring requests. Another possibility
would be to allow the range to exist, but to redistribute
the previous ranges. The goal of this redistribution is
to possibly reduce the number of ranges in the value
file. This would occur if the two previous interval
could be combined into a single range without violating
the maximum number of elements per range and the
restriction criteria. If the two intervals could not be
combined, then perhaps their addresses can be
redistributed to provide two ranges of approximately
equal size.

Operations on Range Attribute Inverted Files

The creation of a range attribute inverted file can
be accomplished in 3 steps. First, the values and their
associated record numbers must be extracted from the
source file. Next, the file is sorted so the values are
in lexicographic order. This step may be omitted if the
source file was already ordered on the values or the
desired order was other than lexicographic. For example,
the source file values may have been ordered by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

geographic region rather than lexicographic order.
The next step determines the range boundaries for

each of the ranges to be included in the structure. The
method employed to accomplish this task is dependent upon
the method chosen by the file designer. The basic
process involves determining the range boundaries and
transferring the appropriate addresses to the address
file, making the appropriate entries in the value file,
and initializing the differential file.

Satisfying queries with range attribute inverted
files is slightly different than searching a standard
inverted file. While a standard inverted file typically
contains a value entry for each value represented in the
source file, the range attribute inverted file contains
only endpoints of the ranges. The searching process
involves identifying which interval the desired value(s)
reside in and retrieving the addresses from the address
file and the differential file. Once the addresses are
gathered, the corresponding source records are retrieved
and examined for the desired characteristics. Note that
the retrieval process will retrieve superfluous records
since a query may involve a specific attribute value that
is a member of some range in the inverted file.

Updating the range attribute inverted file utilizes
the same procedure as that for a standard inverted file.
The criteria used to determine whether or not the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28
differential file is to be incorporated into the address
file is based on the boundary choices made by the
designer. The accomplishment of the incorporation
involves two scenarios.

Suppose the file designer determined the range
boundaries using a priori knowledge about the intended
retrieval patterns on the database. The incorporation of
the differential file would consist of removing the
deleted address entires from the address file and the
differential file and then merging the two address lists
to create a new address file.

If any of the other possible methods of range
boundary determination was used, the inverted directories
must be regenerated from the source files. While it is
possible to attempt to restructure the inverted files
from the existing information, the basic structure of the
address files would require change. It would be
necessary to include the attribute value with the address
in the address file. This would consume an unacceptable
amount of space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

A GENERAL DESIGN TOOL FOR RANGE INVERTED FILES

It is possible to construct an inverted index design
tool incorporating the previous principles. In addition
to providing an environment for creating effective
indices, the system should also provide a means for
effective update and maintenance of the indices. This
chapter describes such a system implemented on a
microcomputer.

System Description

The system was created on a Compaq microcomputer
utilizing Turbo Pascal, version 2.0 . The system
requires a minimum of 128 K RAM and either 2 floppy disk
drives or 1 floppy disk drive and 1 winchester drive.
The system consists of three components. Each component
can be invoked directly from the operating system of the
computer.

The system creates several files for each entry in
the directory. Each file resides on the same medium as
the source files and is responsible for managing a
particular aspect of the directory. The system is
designed to work with fixed format files. A fixed format

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

file is one that has a fixed number of character^ or
bytes for each record in the file. Further, each
attribute occupies the same position in each record.

The user must possess a technical description of the
value being indexed. This description includes the
location of the value in the source record, the data type
of the value, and the amount of space consumed by the
value. Additionally, it is assumed that the medium has
enough space to accomodate the index.

Design Options

There are four basic design options. The user
selects the desired design option from a menu. The
following describes each design option and the behavior
exhibited by the system for that option. See appendix A
for sample runs of the tool that describe each option.

User Specified Intervals

This option allows the file designer to specify the
boundaries of the ranges. The ranges that are created
are unrestricted ranges. The process identifies the
current range being defined and prompts the user to
provide the low and high values for the range. The low
boundary value must be less than or equal to the high
boundary value. Once the boundaries have been provided,
the system will determine the number of records that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

possess the values in the range. If any values are
skipped from the previous range, the system will inform
the user of the number of values skipped. Once the user
has been provided with this information, the system
allows the user to include the range as defined in the
index, exclude the range from the index, or redefine the
boundaries of the range.

For example, suppose that it is known that the query
patterns on our sample file will consist of three
queries: retrieve all salaries less than 20,000,
retrieve all salaries between 20000 and 39000, and
retrieve all salaries greater than 39000. In this case,
it would be appropriate to define ranges that would
retrive these records by extracting a single range from
the range inverted index. Figure 7 illustrates the
organization for this situation.

Value File
Low Key Value High Key Value

0 19999
20000 39000
39000 99999

Address File
Address: 18 6 14 2 3 4 5 13 15 16 1 7 9 8 10 11 12

Figure 7: User Specified Intervals on Salary

Number of Intervals Specified

This option allows the user to create an inverted

Count Address
9 2
3 11
3 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

file with a fixed number of records per range. If the
user specifies r ranges, then each range will have
ciel(n/r) elements except for the last group which will
have mod k(n) elements, where n is the total number of
elements in the source file. The ranges are
unrestricted. For example, suppose we decide to create 8
ranges on the salary field. Figure 8 illustrates the
resulting value file for the index. Note that the
address file will not change.

Value File
Low Value High Value Count Address
15000 15000 2 2
16000 16000 2 4
16000 16000 2 6
16000 16000 2 8
16000 20000 2 10
21000 21000 2 12
22000 40000 2 14
45000 50000 2 16

Figure 8. Number of Intervals Specified on Salary

This option provides fixed size address lists. The
designer could choose to make the size of the address
lists equal to the size of a physical block of storage.

Auto Specification

This is really two options in one. The user is
asked to provide the minimum, average, and maximum number
of elements per range. If the user does not provide
values for these parameters, the system will calculate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values for the user based on the number of distinct
attribute values. The user has the option of providing
one or all of the parameters for this option. This
option creates restricted ranges, i.e., no value can have
more than 1 range. In the event the number of records
corresponding to a value exceeds the maximum number of
elements per range, the designer has the option of
including or excluding the range from the index. If the
user includes the range in the index, the system will
automatically try to combine the two previous intervals.
If the intervals cannot be combined, the addresses will
be uniformly distributed between the intervals.

Value File
Low Value High Value Count Address

15000 15000 2 2
16000 16000 7 4
20000 22000 4 11
40000 50000 3 15

Figure 9. Auto Specified Index on Salary

Standard Inverted File

This option allows the user to create a standard
inverted file. Each distinct value will have an entry in
the value file. The form of the standard inverted file
is the same as the form for the range inverted file. It
is treated as a special case of the range inverted file
where the low and high values for the boundaries happen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be equal for all intervals. 34

Other Options

Other options are provided that allow the user to
view the index files or the intermediate files used in
the creation of the directory.

Piles Created

Several files are created for each index. The value
file contains the values, pointers to the address and
differential files, and counts of entries in the address
and differential files. The name for this file is
provided by the user of the system.

The address file contains the lists of addresses of
records corresponding to the values in the value file.
The name for this f’\ Is the same as the name of the
value file with an extension of A.

The differential file contains the addresses of
records added to the source file after the index has been
created or reorganized. The name for the differential
file is DIFF.

The final file created for the directory is the
characteristic file. The characteristic file stores
information about the indices in the directory. This
includes the name of the index, the name of the source
file, the location and type of the indexed value, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35
size of the records in the source file, the type of
technique used in the determination of the ranges, and
the threshold value for incorporating the differential
file in the address file.

Support Modules

There are two support modules for the system. The
update module provides a conveneint method for updating
information in the directory. The update can be
accomplished interactively with the user providing the
attribute values and record numbers in addition to the
nature of the update operation. Facilities are provided
for adding, changing, and deleting entries in the
directory.

Another form of update is supported for batch
applications. Users can create files that describe the
changes that are to be perfomred on the directory.
Changes to the directory are limited to adding and
deleting entries in the directory.

When adding information to the index, the system
will consult the value file and locate the appropriate
range. if the range entry has entries in the
differential file, the system will insert the new entry
at the head of the linked list of entries. If the range
does not have any entries in the differential file, the
system will update not only the differential file, but

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also the value file.
When adding entries to the value file, a special

situation can arise when a value is being added that is
smaller than any value in the value file or the value is
greater than any value in the value file. In this
situation, the range boundaries must also be modified.
For the case when the value being added is smaller than
any value, the low value specified for the first range
must be updated to reflect the value being added. In the
case where the value being added is greater than any
value, the high value specified for the high range must
be updated to reflect the value being added.

When deleting entries from the value and address
files, the system will search for the value in the value
file and then traverse the address lists. If it locates
the address of the record deleted in the address file,
the system will replace the address value with a negative
value. if the address of the record deleted was not in
the address file, the system will search the differential
list for the entry. Again, when the entry is located,
the system will replace the address of the record with a
negative value.

The final support module determines whether or not
the index needs to be restructured. if the threshold
value for additions in the directory has been reached,
the system will restructure the index. This operation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37
consists of two operations. The deleted entries must be
removed from the system and the active entries in the
differential file must be incorporated into the address
file. The result is a value file and and address file
with no deleted entries and a differential file that is
empty. The threshold value is typically reached when the
differential file has the average number of records for a
range entries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

PERFORMANCE ANALYSIS

There are two important performance aspects to any
computer system. One is the space requirements for the
system and the other is the amount of time required to
perform various operations. This chapter develops
formulae that help categorize the behavior of the system
in space and time.

Space Requirements

There are four files used in the directory. They
are: value file, address file, differential file, and
characteristic file. Each one is responsible for
managing one aspect of the directory. Each one is
required for the proper functioning of the directory.

The folloTving notation will be used to develop the
formulae that describe the space consumption aspect of
the index technique. Let:

Lv = number of bytes consumed by the low value of
a given range.

Hv = number of bytes consumed by the high value of
a given range.

Pt = number of bytes consumed by a pointer to the
address of a given record in a given file.

Cv = number of bytes consumed by calculated values
such as counts and average, minimum, maximum
number of records per range.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vc = number of bytes consumed by characteristics of
of the source value, such as the size of the
source records, the size of the value being
indexed, and the location of the value in the
source record.

Vt = number of bytes consumed by the data type of
value being indexed.

Rt = number of bytes consumed by the range type used
to create the range inverted index.

Sf = number of bytes consumed by the sort flag.
Fn = The number of bytes consumed by a file name.

Value File

The value file has the following record format: (Low
Range Value, High Range Value, Pointer to address file,
Address Count, Pointer to differential file, Differential
count). This results in the following general formula
for the space consumed by one record in bytes:

Lv + Hv + 2*Pt + 2*Vc
If we have r ranges in the value file, then
Total Space Consumed = r*(Lv + Hv + 2*Pt + 2*Vc) .

For this implementation, the space consumed by Lv
and Hv is 16 bytes each. The space consumed by Pt and Vc
is 2 bytes each. This yields 40 bytes for each value
record or r*40 bytes for a value file with r ranges.

Address File

The address file consists of records with a single
attribute, the address, which is Pt bytes long. If there
are n records whose values are indexed, the space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consumed by the address file can be expressed as n*Pt
bytes. For this implementation, the space consumed by Pt
is 2 bytes. This yields n*2 bytes for an address file
with n records.

Differential File

This file is responsible for maintaining addresses
of records added to the source file since the directory
was last reorganized. The file is a linked list with
each record possessing the following stucture: (Source
record address, Pointer to next in Differential). Each
attribute in this file generally consumes Pt bytes, or
2*Pt bytes for each record.

The first record of this file is used to house a
pointer to the first available record in the differential
file. If there are d additions to the source file, the
size of the differential file can be expressed as 2*Pt +
d*2*Pt or 2*(Pt + d*Pt) bytes. In this implementation,
each Pt consumes 2 bytes yielding 4 + d*4 bytes.

Characterstic File

The characterstic file stores information about the
source file and attribute values used to create the
directory. Each index in the directory has an entry in
the characteristic file. Each record in the
characteristic file possesses the following format:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41
(Source Filename, Index Filename, Source File Record
Size, Key Value Size, Key Value Location, Key Data Type,
Range Type, Average Number of records per range, Minimum
Number of records per range, Maximum Number of records
per range, Sort Flag). The source filename and the index
filename consume Fn bytes each. The source file record
size, attribute value size, and attribute value location
each consume Cv bytes. The value type consumes Vt bytes.
The range type consumes Rt bytes. The average, minimum,
and maximum number of records per range each consume Vc
bytes. The sort flag consumes Sf bytes. This yields:

2*Fn + 3*Cv + Vt + Rt + 3*Vc + Sf bytes per record.
If there are i indexes represented in the
characteristic file, the total space consumed is:
i*(2*Fn + 3*Cv + Vt + Rt + 3*Vc + Sf)

For this implemenation, Fn consumes 16 bytes, Cv
consumes 2 bytes, Vt cosnumes 1 byte, Rt consumes 1 byte,
and Sf consumes 1 bytes. This yields total space
requirements of i*49 bytes.

Total Space Requirements

The amount of space consumed by each index in the
directory can be summarized as follows:

Given:
r - the number of ranges in an index
n - the number of source file records represented in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the index.
d - the number of additions to the source file since

the directory was reorganized.
i - the number indices in the directory.

In general, the space, s, consumed by one index is:
s = r*(Lv + Hv + 2*Pt + 2*Vc) +

n*Pt +2*(Pt + d*Pt) +
(2*Fn + 3*Cv + Vt + Rt + 3*Vc + Sf)

The space consumed by i indices in a directory is:
i

s j

Retrieval Time

Retrieval involves accessing 4 files. The total
time required to honor a request is dependent upon the
number of records retrieved and is the sum of accessing
the four files. All formulae are based on the assumption
that the value file is stored in primary storage.

Time to Search Key File

Given r ranges in the value file and assuming the
value file's organization is sorted, the time to search
the file in primary storage is proportional to log r
using a binary search.

Time to Access Address List

Once the value entry is located, the address pointer
and count of values is extracted. Since most computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43
systems access secondary storage devices using a block
access scheme, the amount of time required to retrieve
the addresses is proportional to the number of blocks
that need to be retrieved. This can be expressed as
follows:

Given:
b - the number of bytes contained in one block,
t - the number of bytes in the address record.

The blocking factor, B, is
B = b/t .

The number of blocks needed to retrieve c records is
bounded by:
ceil(c/B) .

Since a block can be retrieved in Ta time, and the
address list to be retreived is sequentially
ordered, the time required to retrieve the address ■
list is bounded by:
ceil(c/B) * Ta .

Time to Access Differential File

The time required to access a record in the
differential file will be longer than accessing
information in the address file since each address may
reside in a separate block. If we assume d entries in
the differential file for a given range attribute, the
time required to retrieve the entries has an upper bound
of d*Ta.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time to Access Source File Records

The total number of records to be retrieved from the
source file is equal to c + d . The amount of time
required to access the records has an upper bound of
(c+d)*Ta since each record may reside in a different
block.

Total Time to Satsify Query

The total time required to satisfy a simple query is
the sum of the accesses to the 4 files. This can be
expressed as follows:

Given:
B - blocking factor
c - number of addresses from address file
d - number of addresses retrieved from diff. file
r - number of ranges in index
Ta - time required to access a block from secondary

storage
Total time to satisfy a simple query

log r + (int (c/B) + c + 2d) * Ta

Example
Given:

A-file with 2000000 records.
An index on a value that has 250000 distinct

values.
The values are evenly distributed among the

records of the file.
There is no particular order to the values in

file.
A range inverted index is created using the auto­

specification option.
No need for differential file since values are

static and no new entries are committed.
Each block houses 512 bytes of data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following range parameters result:
Average Number of records = SQRT(250000)=500
Minimum Number of records = 1/2 * 500 = 250
Maximum Number of records = 2 * 500 = 1000
Records per value = 2000000/250000 = 8
Values per range = ciel(500/8) = 63
Addresses per range = 63 * 8 = 504
Number of ranges = 250000/63 = 3968

For a standard inverted file the folowing parameters
result:

250000 value entries
8 addresses per value

Space Consumption of Indexes (This implementation)
Range Inverted

Value File = 3968 * 40 = 143K
Address File = 250000 * 2 = 500K

TOTAL 643K

Standard Inverted
Value File = 250000*(16 + 2 + 2) = 5000K
Address File = 250000 * 2 = 500K

TOTAL 5500K

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time Required to Locate Records with Single Value
Range Inverted

Search of Value File - Bounded by log 3968 = 12
@ 0.0001 sec/access = .0012 sec

Retrieval of Addresses - 1 block required
0 0.001 sec/acces = .001 sec

Retrieval and Examine Source - Bounded by 504 * access
0 0.001 sec/access = .504 sec

TOTAL is bounded by .5062 sec.
Standard Inverted

Search of Key value File - Bounded by log 250,000 = 21
@ 0.001 sec/access = .021 sec

Retrieval of Addresses - 1 block required
0 0.001 sec/access = .001 sec

Retrieval of Source - Bounded by 8 * access
0 0.001 sec/access = .008 sec

TOTAL is bounded by .030 sec.
While the standard inverted file will outperform the

range inverted file in this situation, the standard
inverted consumes almost 10 times as much space. Note
further that the range inverted index can be housed in
primary storage while the standard inverted must remain
on secondary storage due to its enormous size. For most
computer systems, the amount of space versus the increase
in retrieval time is an uequal trade of space for time.
The next example, however, demonstrates how the range
inverted file can outperform the standard inverted file
in both time and space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47
Time Required to Locate a Range of Records
Assume that we wish to retrieve a single range of values
that exists in a single range in the range inverted file.
Range Inverted

Search of Value File - Bounded by log 3968 = 12
@ 0.0001 sec/access = .0012 sec

Retrieval of Addresses - 2 accesses
@ 0.001 sec/access = .002 sec

Retrieve Source - Bounded by 504 accesses
@ 0.001 sec/access = .504 sec

TOTAL is bounded by .519 sec
Standard Inverted

Search of Value File - Bounded by 8*log 250,000 = 168
@0.001 sec/access = .168 sec

Retrieval of Addresses - 8 accesses
@ 0.001 sec/access = .008 sec

Retrieval of Source - Bounded by 504 accesses
@ 0.001 sec/acces = .504 sec

TOTAL is bounded by .680 sec

Notice that the difference in time from the first
situation to the second situation can be explained by the
retrieval of superfluous records in the range inverted
situation. When satisfying queries that specify several
values, the range inverted file will outperform the
standard inverted file in most situations. Also, it
should be noted that the space requirements for the range
inverted file is an order of magnitude less than the
storage requirements for the‘standard inverted file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Index Creation

There are several distinct steps in the creation of
the index. The first step for all indexes is to extract
the values and corresponding record addresses. This step
can be accomplished with one pass through the source
file. The time required to accomplish this task is 0(n)
given n records in the source file.

The second step usually involves sorting the values.
The amount of time rquired to accomplish this task is 0(n
log n).

The third step involves the creation of a standard
inverted file. This requires one pass through the sorted
file and the amount of time required to accomplish this
task is 0(n).

Thus, the amount of time required to prepare the
values for processing is 0(n log n) if sorting is
involved or 0(n) if no sorting is involved.

Finally, the amount of time to create the index is
0(n) since all methods require a single pass through the
work files. THe total time required to create a index is
therefore 0(n log n).

Conclusion

This paper has presented a technique that is
particularly useful in creating general direcotries. The
algorithms described provide file designers with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comprehensive set of tools for the creation and
maintenance of indices in the directories. Unlike most
systems which give a file designer only a single type of
indexing scheme, this tool provides the designer with 4
schemes. The methods have been applied to a wide variety
of data types and retrieval patterns. The system and
method provide an effective general directory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

Algorithms

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ALGORITHMS

MAIN PROCEDURE
LOOP

DISPLAY OPTIONS
GET KEY VALUE DESCRIPTION
EXTRACT KEY VALUES AND RECORD ADDRESSES
IF USER WANT TO SORT THE DIRECTORY THEN
SORT WORK FILE

ENDIF
CREATE STANDARD INVERTED FILE
CREATE SPECIFIED INDEX TYPE

UNTIL EXIT
END MAIN
CREATE USER SPECIFIED DIRECTORY PROCUDURE

READ FIRST ENTRY FROM STANDARD INVERTED FILE
INITIALIZE INTERVAL COUNT, VALUES SKIPPED
WHILE NOT EOF AND MORE INTERVALS DO
ACCEPT LOW AND HIGH BOUNDARIES FOR NEXT INTERVAL
WHILE KEY VALUE <= HIGH BOUNDARY DO

IF LOW BOUNDARY <= KEY VALUE THEN
INCREMENT COUNT BY 1

ELSE
INCREMENT VALUES SKIPPED BY 1

ENDIF
READ NEXT ENTRY FROM STANDARD FILE

END WHILE
DISPLAY INTERVAL COUNT AND VALUES SKIPPED TO USER
CASE DECISION OF

I: INCLUDE INTERVAL
R: REDEFINE INTERVAL
E: EXCLUDE INTERVAL

END CASE
INTIALIZE NEW INTERVAL COUNT, VALUES SKIPPED

END WHILE
END CREATE USER SPECIFIED PROCEDURE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CREATE NUMBER OF INTERVALS PROCEDURE
GET NUMBER OF INTERVALS FROM USER
COMPUTE NUMBER OF RECORDS/INTERVAL = TOTAL RECORDS/

NUMBER OF INTERVALS
FOR 1=1 TO NUMBER OF INTERVALS DO

COPY NUMBER OF RECORDS/INTERVAL RECORDS FROM
STANDARD INVERTED FILE

STORE CORREPSONDING KEY VALUE RECORD IN INDEX END FOR
END CREATE NUMBER OF INTERVALS PROCEDURE
CREATE OPTIMIZED PROCEDURE
(INTERVAL COUNT refers to the number of records in the
current interval.

VALUE COUNT is the number of records for the current
value)
GET AVERAGE NUMBER OF RECORDS/INTERVAL FROM USER
IF NONE SUPPLIED THEN

COMPUTE AVERAGE NUMBER = SQUARE ROOT (TOTAL DISTINCT
ATTRIBUTES)

ENDIF
GET MINIMUM NUMBER OF RECORDS/INTERVAL FROM USER
IF NONE SUPPLIED THEN

COMPUTE MINIMUM = AVERAGE NUMBER / 2
ENDIF
GET MAXIMUM NUMBER OF RECORDS/INTERVAL FROM USER
IF NONE SUPPLIED THEN

COMPUTE MAXIMUM = AVERAGE NUMBER * 2
ENDIF
READ FIRST ENTRY FROM STANDARD INVERTED
INITIALIZE FIRST INTERVAL
WHILE NOT EOF DO

WHILE ((VALUE COUNT + INTERVAL COUNT) < AVERAGE) AND
(NOT EOF) DO
ADD VALUE COUNT TO INTERVAL COUNT
READ NEXT ENTRY FROM STANDARD INVERTED

END WHILE
IF NOT EOF THEN

IF VALUE COUNT + INTERVAL COUNT <= MAXIMUM THEN
ADD VALUE COUNT TO INTERVAL COUNT
STORE CURRENT INTERVAL

ELSE
STORE INTERVAL EXCLUDING CURRENT ENTRY
IF VALUE COUNT > MAXIMUM THEN

INFORM USER OF EXCEPTION
GET DECISION
IF STORE THEN

CALL COMBINE OR REDISTRIBUTE
ENDIF

ENDIF
ENDIF
READ NEXT EXTRY FROM STANDARD INVERTED
INITIALIZE NEW INTERVAL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ELSE
STORE LAST INTERVAL

ENDIF
END WHILE

END CREATE OPTIMIZED PROCEDURE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMBINE OR R E D ISTR IBU TE PROCEDURE

(Current interval is 1+1, while I and 1-1 are two
previous intervals.)

IF INTERVALS I AND 1-1 ARE CONSECUTIVE THEN
SUM = INTERVAL COUNT(l) + iNTERVAL COUNT(l-l)
IF SUM > MAXIMUM THEN

READ FIRST ENTRY OF INTERVAL 1-1INITIALIZE INTERVAL 1-1
NEWDIFF = SUM - INTERVAL COUNT (1-1)
REPEAT

READ NEXT STANDARD KEY VALUE ENTRY
ADD VALUE COUNT TO INTERVAL COUNT (I—1)
OLDIFF=NEWDIFF
NEWDIFF=ABS(INTERVAL COUNT(I) - INTERVAL

COUNT(1-1))
UNTIL NEWDIFF > OLDIFF
TRANSFER LAST ENTRY OF TOTAL VALUES FILE TO

INTERVAL I
STORE ENTRIES FOR INTERVALS I, 1-1

ELSE
COMBINE INTERVALS I, 1-1

ENDIF
ENDIF

END COMBINE OR REDISTRIBUTE
UPDATE PROCEDURE
(interactive updates include add,change, or delete
while batch updates only allow the add and delete
options.)
GET INDEX TO UPDATE FROM USER
GET METHOD OF UPDATE FROM USER
IF INTERACTIVE UPDATE THEN

DONE=FALSE
WHILE NOT DONE DO

GET UPDATE OPERATION FROM USER
CASE OPERATION OF:

ADD: DO ADD PROCEDURE
CHANGE: DO CHANGE PROCEDURE
DELETE: DO DELETE PROCEDURE
EXIT: DONE=TRUE

ENDCASE
ENDWHILE

ELSE
GET BATCH FILE NAME FROM USER
WHILE MORE BATCH UPDATE RECORDS DO

CASE OPERATION OF
ADD: DO ADD PROCEDURE
DELETE: DO DELETE PROCEDURE

ENDCASE
ENDWHILE

ENDIF
END UPDATE PROCEDURE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ADD PROCEDURE
LOCATE KEY VALUE IN KEY ADDRESS FILE
IF KEY VALUE NOT IN EXISTING RANGE THEN

UPDATE KEY VALUE RECORD
ENDIF
GET FREE POINTER FROM DIFFERENTIAL FILE
UPDATE DIFFERENTIAL FILE FREE POINTER
IF DIFFERENTIAL POINTER > 0 THEN

DIFFERENTIAL POINTER OF NEW RECORD = DIFFERENTIAL
POINTER OF VALUE RECORD

DIFFERENTIAL POINTER OF VALUE RECORD = NEW
DIFFERENTIAL RECORD

CHANGE POINTER OF CURRENT RECORD TO NEW RECORD
ADD RECORD TO DIFFERENTIAL FILE

ELSE
UPDATE DIFFERENTIAL POINTER IN KEY VALUE FILE
ADD RECORD TO DIFFERENTIAL FILE

ENDIF
END ADD PROCEDURE
CHANGE PROCEDURE

GET OLD VALUE AND RECORD ADDRESS FROM USER
CALL DELETE PROCEDURE
GET NEW VALUE FROM USER
CALL ADD PROCUDURE

END CHANGE PROCEDURE
DELETE PROCEDURE

LOCATE KEY VALUE
POSITION ON FIRST ADDRESS RECORD IN ADDRESS FILE
DONE = FALSE
FOUND = FALSE
COUNT=l
WHILE NOT DONE DO

IF ADDRESS RECORD = ONE TO DELETE THEN
CHANGE ADDRESS TO NEGATIVE VALUE
DONE=TRUE
FOUND=TRUE

ELSE
GET NEXT RECORD
ADD 1 TO COUNT
IF COUNT > NUMBER OF ADDRESSES THEN

DONE=TRUE
ENDIF

ENDIF
ENDWHILE
IF NOT FOUND THEN

PROCESS DIFFERENTIAL FILE
ENDIF

END PROCEDURE DELETE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RESTRUCTURE PROCEDURE 56

ASK USER FOR INDEX TO CHECK
OPEN CHARACTERISTIC FILE
RETRIEVE INFORMATION FOR INDEX
OPEN KEY VALUE FILE FOR INDEX
SUM = ZERO
WHILE MORE ENTRIES IN KEY VALUE FILE DO

SUM = SUM + COUNT IN DIFFERENTIAL ENDWHILE
IF SUM > THRESHOLD THEN

IF USER SPECIFIED RANGES THEN
MERGE ADDRESS LISTS

ELSE
RESTRUCTURE INDEX

ENDIF
ELSE

INFORM USER INDEX DOES NOT NEED TO BE RESTRUCTURED
ENDIF

END RESTRUCTURE PROCEDURE

EXTRACTION PROCEDURE
GET FIRST DATA BLOCK
LOW BYTE = 1
HIGH BYTE = BUFFER SIZE
FOR I =1 TO NUMBER OF RECORDS DO

START BYTE = RECORD # * RECORD LENGTH + KEY LOCATION
IF START BYTE > HIGH BYTE THEN
GET NEXT DATA BLOCK
ADJUST LOW AND HIGH BYTES

ENDIF
END BYTE = START BYTE + KEY LENGTH
IF END BYTE > HIGH BYTE THEN
DIFF = HIGH BYTE - START BYTE
TRANSFER DIFF BYTES TO WORK AREA
GET NEXT DATA BLOCK
ADJUST LOW AND HIGH BYTES
DIFF = KEY LENGTH - DIFF
TRANSFER DIFF BYTES TO WORK AREA

ELSE
TRANSFER KEY LENGTH BYTES TO WORK AREA

ENDIF
CONVERT DATA TO STANARD REPRESENTATION

ENDFOR
END EXTRACTION PROCEDURE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

SAMPLE RUN

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SAMPLE RUN 58

DIRECTORY UTILITY
BY

Edward J. Peeler
Do You Need Help? n
Do you wish to log the session (y/N)? y
DESIGN OPTIONS
1 - You Specify the Ranges
2 - You Specify the Number of Ranges
3 - System Creates Optimal Intervals
4 - Standard Inverted File
5 - Help I '
6 - Display Standard Inverted File
7 - Display Resultant File
8 - Exit System
Option #? 1

SOURCE FILE CHARACTERISTICS
File Name - indata.dat
Record Length in Bytes - 36
Number of Records in File - 100
Starting Byte of Attribute - 22
Data Type of Attribute (I=integer, R=Real,S=String) - i
Index Name - indl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

USER SPECIFIED INTERVALS
Interval 1
Low Value - 1
High Value - 206
Number of Records in Interval: 18 0 Value(s) skipped
I)nclude/E)xclude/R)edfine Interval? (Default=l) i

USER SPECIFIED INTERVALS
Interval 2
Low Value - 211
High Value - 3052
Number of Records in Interval: 54 0 Value(s) skipped
I)nclude/E)xclude/R)edefine Interval? (Default=I) i

USER SPECIFIED INTERVALS
Interval 3
Low Value - 3056
High Value - 5075
Number of Records in Interval: 28 0 Value(s) skipped
I)nclude/E)xclude/R)edefine Interval? (Default=I) i

DESIGN OPTIONS
1 - You Specify Ranges
2 - You Specify the Number of Ranges
3 - System Creates Optimal Intervals
4 - Standard Inverted File
5 - Helpl
6 - Display Standard Inverted File
7 - Display Resultant File
8 - Exit System
Option #? 7
Low Value High Value Count Pointer DCOUNT DPTR

1 206 18 0 0 0
211 3052 54 18 0 0

3056 5075 28 72 0 0
DISPLAY COMPLETE - PRESS RETURN TO CONTINUE

DESIGN OPTIONS
1 - You Specify Ranges
2 - You Specify the Number of Ranges
3 - System Creates Optimal Intervals
4 - Standard Inverted File
5 - Helpl
6 - Display Standard Inverted File
7 - Display Resultant File
8 - Exit System
Option #? 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOURCE FILE CHARACTERISTICS
File Name - indata.dat
Record Length in Bytes - 36
Number of Records in File - 100
Starting Byte of Attibute - 22
Data Type of Attribute (l=lnteger,R=Real,S=String) i
Index Name - ind2

USER SPECIFIED NUMBER OF INTERVALS
Number of Intervals 12

DESIGN OPTIONS
1 - You Specify Ranges
2 - You Specify the Number of Ranges
3 - System Creates Optimal Intervals
4 - Standard Inverted File
5 - Helpl
6 - Display Standard Inverted File
7 - Display Resultant File
8 - Exit System
Option #? 7
Low Value High Value Count Pointer DCOUNT DPTR

1 103 9 0 0 0
106 206 9 9 0 0
211 250 9 18 0 0
250 314 9 27 0 0
815 1270 9 36 0 0

2013 2112 9 45 0 0
2212 2422 9 54 0 0
3017 3052 9 63 0 0
3056 3510 9 72 0 0
3510 4039 9 81 0 0
4043 5075 9 90 0 0
5075 5075 1 99 0 0

DISPLAY COMPLETE - PRESS RETURN TO CONTINUE
DESIGN OPTIONS

1 - You Specify Ranges
2 - You Specify the Number of Ranges
3 - System Creates Optimal Intervals
4 - Standard Inverted File
5 - Helpl
6 - Display Standard Inverted File
7 - Display Resultant File
8 - Exit System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Option #? 3
SOURCE FILE CHARACTERISTICS

File Name - indata.dat
Record Length in Bytes - 36
Number of Records in File - 100
Starting Byte of Attibute - 22
Data Type of Attribute (I=Integer,R=Real,S=String) - x

Index Name - ind3
UNIFORM OPTIMIZATION

Average Number of Records per Interval
Average Number of Records - 9
Minimum Number of Records per Interval
Minimum Number of Records per Interval
Maximum Number of Records per Interval
Maximum Number of Records per Interval

DESIGN OPTIONS

4
18

1 - You Specify Ranges
2 - You Specify the Number of Ranges
3 - System Creates Optimal Intervals
4 - Standard Inverted File
5 - Helpl
6 - Display Standard Inverted File
7 - Display Resultant File
8 - Exit System
Option #? 7
Low Value High Value Count Pointer DCOUNT DPTR

1 106 10 0 0 0
107 211 10 10 0 0
212 260 10 20 0 0
261 1020 10 30 0 0

1024 2050 10 40 0 0
2070 2407 10 50 0 0
2419 3050 11 60 0 0
3052 3510 13 71 0 0
3616 4064 10 84 0 0
4068 5075 6 94 0 0

DISPLAY COMPLETE - PRESS RETURN TO CONTINUE
DESIGN OPTIONS

1 - You Specify Ranges
2 - You Specify the Number of Ranges
3 - System Creates Optimal Intervals

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 - Standard Inverted Pile
5 - Helpl
6 - Display Standard Inverted File
7 - Display Resultant File
8 — Exit System
Option #? 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY
Cardenas, A.F.: "Analysis and Performance of Inverted

Database Structures.", Comm. ACM, 18, No. 5 (1975),
253-63.

Conrad, L.; Bloom, S.? Cooper, C.; Cannon, T.;
Friedman, R.H.; Horowitz, J.? Krikorian, J.?
Lopez, J: "The Cancer Data Management System
Statistics Package.", Proceedings of the Fourth Annual
Symposium on Computer Applications in Medical Care,
1980, 1281-5.

Fedorowics, J.: "A Zipfian Model of an Automatic
Bibliographic System: An Application to MEDLINE." J. Am
Soc Inf Sci, 33, No. 4 (1982), 223-32.

Gersting, J.M. Jr.?Conneally, P.M.? Rogers, K.; Blum, B.I.:
"Two Search Techniques within a Human Pedigree
Database.", Proceedings of the Sixth Annual
Symposium on Computer Applications m Medical Care,
1982, 842-6.

Hardings, A.F.? Willet, P.W.: "Matrices" J. Am Soc Inf
Sci, 31, No. 4 (1980), 298-300.

Hoffer, J.A.: "Database Design Practices for Inverted
File." Information and Management, 3, No. 4 (1980)
149-61.

Horowitz, E.? Sahni, S: Fundamentals of Data Structures,
New York: Computer Science Press, 1976.

Jakobsson, M.: "Reducing Block Accesses in Inverted Files
by Partial Clustering." Inf Systems, 5, No. 1 (1980),
1 - 5 .

Jakobsson, M.? Nevalainen,D .: "On the Organization of
Hybrid Indexes.", Proceedings of the International
Conference on Databases, 1980, 250-9.

Jakobsson, M: "Evaluation of a Hierarchical Bit Vector
Compression Techique." Information Processing Letters,
14, NO. 13 (1982), 147-9.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Johnson, J. S. and Webster, E: "Updating an Inverted File
Index - A Performance Comparison of Two Techniques",
Computer Journal, 25 (1982), 169-75.

Knuth, D.E.: The Art of Computer Programming Vol. 3;
New York: Addison-Wesley, 1973.

Lie, J.W.: "Algorithms for Parsing Search Queries in
Systems with Inverted Files" ACM Tran Database Systems,
1, NO. 4 (1976), 299-316.

Motzkin, D.: "The Use of Normal Multiplication Tables for
Information Storage and Retrieval" Comm ACM, 2, No.
3 (1979), 193-207.

Motzkin, D? Williams, K; Chang K: "Uniform Organization
of Inverted Files.", Proceeding NCC-84, 1984, 567-85.

Nevalainen, D.; Jakobsson, M.? Berg, G.: "Compression
of Clustered Inverted Files" Mathematial Foundations
of Computer Science (1978), 219-225.

Putkanen, A.: "The Order of Merging Operations for Queries
in Inverted File Systems" Int J. Cmputer and Inf Sci,
9, No. 5 (1980).

Schkolnick, M: "A Survey of Physical Database Design
Methodology and Technique.", Proceedings Fourth
International Conference on Very Large Databases,
1978,474-87.

Schultheisz, R.J.: "Toxline Evolution of an On-Line
Interactive Bibliographic Database" J Am Doc Inf Sci,
32, No. 6 (1981).

Togasi, M. and Tanaka, K.: "An Information Management
System for Charged Particle Nuclear Reaction Data"
J Inf Sci Prin and Prac, 4, No. 5 (1982), 213-23.

Tuttle, M.S.; Sheretz, A.; Bloise, M.; Nelson, D.:
"Expertness from Structured Text, RECONSIDER: A
Diagnostic Prompting Program.", Proceedings of the
Conference on Applied Natural Langauge Processing,
Association of Computational Linguistics, 1983, 124-31.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A General Design Tool for Computer Directories
	Recommended Citation

	tmp.1509047970.pdf.ycZl2

