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A General Empirical Model of Protein Evolution Derived from Multiple
Protein Families Using a Maximum-Likelihood Approach

Simon Whelan and Nick Goldman
Department of Zoology, University of Cambridge, Cambridge, England

Phylogenetic inference from amino acid sequence data uses mainly empirical models of amino acid replacement
and is therefore dependent on those models. Two of the more widely used models, the Dayhoff and JTT models,
are estimated using similar methods that can utilize large numbers of sequences from many unrelated protein families
but are somewhat unsatisfactory because they rely on assumptions that may lead to systematic error and discard a
large amount of the information within the sequences. The alternative method of maximum-likelihood estimation
may utilize the information in the sequence data more efficiently and suffers from no systematic error, but it has
previously been applicable to relatively few sequences related by a single phylogenetic tree. Here, we combine the
best attributes of these two methods using an approximate maximum-likelihood method. We implemented this
approach to estimate a new model of amino acid replacement from a database of globular protein sequences
comprising 3,905 amino acid sequences split into 182 protein families. While the new model has an overall structure
similar to those of other commonly used models, there are significant differences. The new model outperforms the
Dayhoff and JTT models with respect to maximum-likelihood values for a large majority of the protein families in
our database. This suggests that it provides a better overall fit to the evolutionary process in globular proteins and
may lead to more accurate phylogenetic tree estimates. Potentially, this matrix, and the methods used to generate
it, may also be useful in other areas of research, such as biological sequence database searching, sequence alignment,
and protein structure prediction, for which an accurate description of amino acid replacement is required.

Introduction

The majority of likelihood methods used for recon-
structing phylogenies from amino acid sequences rely
on empirical models of protein evolution. These models
need good replacement matrices, which represent the
relative rates of amino acid replacement at homologous
sites in a protein, to accurately estimate the true evolu-
tionary distances and relationships among species. Un-
fortunately, none of the current methods used to estimate
these replacement matrices are entirely satisfactory.

Dayhoff and colleagues (Dayhoff, Eck, and Park
1972; Dayhoff, Schwartz, and Orcutt 1978) used a par-
simony-based counting method to generate accepted
point mutation (PAM) matrices from the limited amount
of protein sequence data available at the time. To
achieve this, phylogenetic trees were estimated for mul-
tiple protein families, along with the ancestral sequences
within those trees, using maximum parsimony (MP).
This information was then used to estimate the relative
rates of all amino acid replacements by simply counting
both the inferred numbers of different amino acid re-
placements that occurred on all of the lineages of the
trees and the numbers of occasions on which no change
in amino acids was inferred.

Jones, Taylor, and Thornton (1992) applied a faster,
automated procedure based on Dayhoff and colleagues’
(Dayhoff, Eck, and Park 1972; Dayhoff, Schwartz, and
Orcutt 1978) approach and used it to produce a replace-
ment matrix from a much larger database. After esti-
mating the phylogenetic tree for each protein family in
the database, their method selected a pair of sequences
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from a phylogeny that were nearest-neighbors and were
.85% identical and counted the differences between
them. The pair of sequences was then discarded to avoid
recounting changes on any given branch of a phylogeny.
This process was repeated for all such pairs of sequences
in all protein families from their database. The 85%
identity rule was used to reduce the number of multiple
changes recorded as single replacements. Both of these
approaches, which we refer to as counting methods, pro-
duce matrices of counts that may be used to estimate
Markov process models of amino acid replacement
(Swofford et al. 1996; Liò and Goldman 1998). The two
models described above, the most widely used for the
phylogenetic analysis of amino acid sequences of glob-
ular proteins, are both estimated using these counting
methods and are known as the Dayhoff model (Dayhoff,
Schwartz, and Orcutt 1978) and the JTT model (Jones,
Taylor, and Thornton 1992).

The counting methods effectively employ MP to
estimate amino acid replacement matrices and are there-
fore susceptible to its inherent problems. In particular,
MP intrinsically assumes that for any given site in an
alignment, only one change takes place along any single
branch in a tree. This can lead to a serious underesti-
mation of the true number of replacements that have
occurred in branches where multiple changes have oc-
curred and may consequently lead to systematic error in
any model estimated using counts of replacements. In
addition, MP inferences of ancestral sequences may in-
troduce still further inaccuracies (Yang, Kumar, and Nei
1995). The Dayhoff model may be affected by both of
these problems. The 85% rule of the JTT method at-
tempts to reduce the impact of these problems by re-
ducing the expected number of multiple hits that are
neglected. Without completely solving the problem, this
also renders the method very wasteful because it dis-
cards all of the information available in the sequences
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that are ,85% identical. The JTT method avoids mak-
ing inferences of ancestral sequences, but at the further
cost of using an inefficient method for avoiding the re-
peated counting on branches of phylogenetic trees, dis-
carding many sequences which have .85% identity
only with previously used sequences.

Adachi and Hasegawa (1996), Yang, Nielsen, and
Hasegawa (1998), and Adachi et al. (2000) used maxi-
mum-likelihood (ML) methods to estimate models of
amino acid replacement for vertebrate mitochondrial,
mammalian mitochondrial, and chloroplast sequences,
respectively. For an alignment of sequences related by
a single phylogenetic tree, the amino acid replacement
matrix that gave the highest likelihood was found si-
multaneously with the optimal phylogeny and branch
lengths. This ML approach avoids the problems asso-
ciated with the counting methods by using all of the
information available in the sequences across all levels
of homology and by having a model that explicitly al-
lows multiple changes to occur on a single branch at
any site in an alignment. Unfortunately ML, while pro-
viding a more reliable estimate of a model of replace-
ment than the counting methods, has a much greater
computational burden associated with it. The time each
individual likelihood calculation takes and the number
of calculations required to numerically maximize the
likelihood increase significantly with each sequence
added to an analysis. This has meant that relatively few
sequences, each consisting of a number of concatenated
genes available for all of the organisms studied, have
been included in previous analyses: Adachi and Hase-
gawa (1996) analyzed 20 sequences, each of 3,357 res-
idues; Yang, Nielsen, and Hasegawa (1998) used 23 se-
quences of similar lengths; and Adachi et al. (2000) used
just 10 sequences, each of 9,957 residues. This may re-
strict the accuracy of the resulting models or the variety
of proteins for which the models are subsequently found
to be useful (see also P. Liò and N. Goldman, unpub-
lished data).

Here, we combine the best attributes of the likeli-
hood and counting methods to estimate a model of ami-
no acid replacement from a large database of different
globular protein families using an approximation to ML.
This model should provide a better estimate of the evo-
lutionary process than existing models estimated using
counting methods and be applicable to phylogenetic
studies of a much broader range of protein sequences
than existing models estimated using the likelihood
approach.

Models of Amino Acid Replacement
The Amino Acid Replacement Matrix

All the models discussed in this paper assume that
all amino acid sites in an alignment evolve indepen-
dently and according to the same Markov process. The
Markov process is assumed to be both stationary and
homogeneous, so that the amino acid frequencies and
the model of evolution are assumed constant through
time and across all sites in an alignment. Additionally,
the Markov process is assumed to be reversible, imply-

ing that to an observer it would appear the same going
backwards in time as it would going forward. The prob-
ability of amino acid i being replaced by amino acid j
over time T is Pij(T), where i and j take the values 1, 2,
. . . , 20, representing the 20 different amino acids.
These probabilities can be written as a 20 3 20 matrix,
P(T), which is calculated as P(T) 5 exp(TQ), where Q
is the rate matrix, with off-diagonal elements Qij being
the instantaneous rates of change of amino acid i to
amino acid j and with diagonal elements Qii being fixed
so that the row sums of Q equal 0. The off-diagonal
elements of the matrix Q can be described by the off-
diagonal elements of the matrix product

— s s · · · s 1,2 1,3 1,20

s — s · · · s1,2 2,3 2,20 
s s — ··· s ·diag(p , . . . , p ), (1) 1,3 2,3 3,20 1 20

_ _ _ 5 _ 
s s s · · · — 1,20 2,20 3,20

so Q can be defined by two sets of components, sij and
pi. The variables sij represent the exchangeabilities of
amino acid pairs (i, j). Time reversibility is imposed by
placing the restriction that sij [ sji (as above), resulting
in 190 such parameters. Empirically derived models of
amino acid replacement describe the evolutionary pro-
cess by fixing these exchangeabilities to values that have
been estimated from a large amount of data. When per-
forming likelihood calculations on a tree, the matrix Q
is scaled to provide meaningful branch lengths (fixing
2Si piqii 5 1 means that evolutionary distances T are
measured in units of expected numbers of replacements
per site), and this effectively removes one parameter,
leaving 189 free parameters describing relative amino
acid exchangeability.

The pi values represent the equilibrium or station-
ary frequencies of the 20 amino acids. These frequencies
may all be set to 1/20 or may be set to the values esti-
mated from the original data used to estimate the sij

values. These applications are now relatively rare in
phylogenetics (and are not used in this paper), and the
pi are more typically estimated as being equal to the
proportions of the amino acids as observed in a data set
under phylogenetic analysis (Cao et al. 1994). When the
frequencies are estimated from the data in this way,
model names are generally given the suffix ‘‘1F’’; e.g.,
JTT1F would use sij as estimated by Jones, Taylor, and
Thornton (1992) and the pi observed in the data set
under analysis. The 20 amino acid frequencies can be
described by 19 free parameters because of the con-
straint Sipi 5 1 and, in effect, weight sij according to
sequences’ amino acid compositions.

All of the standard models of evolution used in this
paper have previously been well documented (e.g.,
Swofford et al. 1996; Liò and Goldman 1998). The sim-
plest model of amino acid evolution is the equiprobable
(EQU) model, which assumes that all the exchangeabil-
ity parameters sij are equal and sets all of the stationary
frequencies to 1/20. The EQU1F form of this model
allows the stationary frequencies to equal the propor-
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tions of the different amino acids observed in the data.
The Dayhoff (Dayhoff, Schwartz, and Orcutt 1978) and
JTT (Jones, Taylor, and Thornton 1992) models, which
in their Dayhoff1F and JTT1F forms will be compared
with our new models, have values of sij which have been
estimated from large databases using counting methods.
The mitochondrial- and chloroplast-specific models of
Adachi and Hasegawa (1996), Yang, Nielsen, and Has-
egawa (1998), and Adachi et al. (2000), which are not
appropriate for direct comparison with our new model
because of their sequence-specificity, have each had
their 189 free sij parameters estimated by direct likeli-
hood maximization for relatively few protein sequences
and using a single evolutionary tree.

Assumptions Needed to Estimate a Model Using
Multiple Phylogenies

The simultaneous use of many different protein
families implies that an estimated model may be appli-
cable to a wide range of proteins (as are the Dayhoff
and JTT models), and the use of the likelihood approach
to perform this estimation suggests that it may more
accurately reflect the evolutionary process by avoiding
systematic error and utilizing more of the available data.
In order to estimate an empirical model of amino acid
replacement simultaneously from many families of se-
quences, we have developed a new approximation to the
likelihood approach, exploiting two observations about
the ML estimation of parameters on phylogenetic trees.
First, it has been shown that parameters describing the
evolutionary process remain relatively constant across
near-optimal tree topologies (e.g., Yang, Goldman, and
Friday 1994, 1995; Sullivan, Holsinger, and Simon
1996; Yang, Nielsen, and Hasegawa 1998; Adachi et al.
2000). We exploit this by assuming it to be the case for
the parameters used to describe amino acid replacement,
in particular, assuming that the relative values of the
amino acid exchangeability parameters sij stay approxi-
mately constant over near-optimal branch lengths and
tree topologies. The implication of this assumption is
that so long as branch lengths are close enough to op-
timal when estimating the new model, any changes in
the branch lengths observed when they are reestimated
under the new model would not influence the model
estimated to any great extent.

The second observation relates to changes in indi-
vidual branch lengths that occur when performing ML
estimation under two different models of evolution for
a single-tree topology. When the two models are quite
different, the ML branch lengths they give can be quite
different (demonstrated by comparing the statistics
shown in table 3 for either the EQU or the EQU1F
model of evolution with those for either the Dayhoff1F
or the JTT1F model). When two models are alike in
their abilities to describe the evolutionary process, how-
ever, there is often much less difference in the branch
lengths (e.g., Yang, Nielsen, and Hasegawa 1998; also
illustrated by comparing the statistics shown in table 3
for the EQU and EQU1F models or those for the Day-
hoff1F and JTT1F models). We exploit the relatively

small changes in branch lengths under ‘‘similarly good’’
models of evolution by assuming that the JTT1F model
is capable of providing near-optimal branch lengths for
the best general model of evolution (yet to be
estimated).

Calculating a Likelihood Using Multiple Phylogenies

In order to calculate a likelihood for a complete
database of aligned protein families, each protein family
was taken in turn, and all pairwise phylogenetic dis-
tances between the sequences were estimated using the
Dayhoff1F model. These distances were used to esti-
mate phylogenetic tree topologies using neighbor-join-
ing (Saitou and Nei 1987). These steps were performed
using programs from the PHYLIP software package
(Felsenstein 1995). Although perhaps some of these to-
pologies will not be the ML topologies under the new
model ultimately estimated, we assume they will be
close enough to permit reasonably accurate estimation
of this new model (see above). Next, the branch lengths
for each family’s phylogenetic tree were reestimated by
ML under the JTT1F model (these and all subsequent
analyses were performed using purpose-written soft-
ware). These calculations are computationally slow, es-
pecially when using large numbers of sequences, and in
order to reduce this burden, an arbitrary upper limit of
100 sequences was taken to be the maximum size for
any single protein family. In the BRKALN database (see
below), five families were larger than this limit and were
split to form similarly sized subfamilies of fewer than
100 sequences. To try and minimize the amount of in-
formation lost from each family being split and to avoid
the problem of overlapping trees where individual
branches might be incorporated multiple times, families
were split along single branches of their phylogenies as
estimated in the neighbor-joining step.

Rather than completely fixing these estimates of the
branch lengths during the estimation of the amino acid
replacement model, only the ratios of branch lengths
were fixed, and a scaling factor r was introduced which
allowed all branch lengths to increase or decrease line-
arly. This parameter makes some allowance for any un-
foreseen changes in branch lengths between the JTT1F
model and the new model being estimated, which could
occur if the assumptions discussed above regarding
branch lengths were invalid. As we assume that the fam-
ilies’ topologies and relative branch lengths are now
fixed at near-optimal values, the overall log-likelihood
for the database can be calculated as

log L 5 log L(M, T z D) (2)

ø log L(M z T, D)
n

5 log L(M z T , D ), (3)O i i
families i51

where D 5 (D1, . . . , Dn) represents the database of n
aligned protein families, T 5 (T1, . . . , Tn) represents the
tree topologies and relative branch lengths for each fam-
ily, and M represents the model of evolution consisting
of the exchangeability parameters sij, the stationary fre-
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Table 1
Relative Proportions of the Amino Acids in the BRKALN
Database Used to Estimate the New Models

Amino Acid Frequency

A. . . . . . . . . . . . . . . . . .
R. . . . . . . . . . . . . . . . . .
N. . . . . . . . . . . . . . . . . .
D. . . . . . . . . . . . . . . . . .
C. . . . . . . . . . . . . . . . . .
Q. . . . . . . . . . . . . . . . . .
E . . . . . . . . . . . . . . . . . .
G. . . . . . . . . . . . . . . . . .
H. . . . . . . . . . . . . . . . . .
I . . . . . . . . . . . . . . . . . .

0.0866
0.0440
0.0391
0.0570
0.0193
0.0367
0.0581
0.0833
0.0244
0.0485

L. . . . . . . . . . . . . . . . . .
K. . . . . . . . . . . . . . . . . .
M . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . .
P . . . . . . . . . . . . . . . . . .
S . . . . . . . . . . . . . . . . . .
T . . . . . . . . . . . . . . . . . .
W . . . . . . . . . . . . . . . . .
Y. . . . . . . . . . . . . . . . . .
V. . . . . . . . . . . . . . . . . .

0.0862
0.0620
0.0195
0.0384
0.0458
0.0695
0.0610
0.0144
0.0353
0.0709

Table 2
Log-Likelihood Values of the Entire Database of Protein
Families Under the WAG and WAG* Models and Other
Commonly Used Models

Model

Log-Likelihood
(1F)a

(improvement
over JTT)b

Log-Likelihood
(1mF)c

(improvement
over JTT)b

Improvement
of 1mF
over 1F

EQU . . . . . .

Dayhoff . . .

JTT. . . . . . .

WAG* . . . .

WAG . . . . .

2770,812.7d

(—)
2732,442.1

(—)
2728,611.8

(—)
2722,008.4

(6,603.4)
2721,930.9

(6,680.9)

2767,010.7
(—)

2730,132.4
(—)

2726,166.2
(—)

2719,332.0
(6,834.2)

2719,428.3
(6,737.9)

3,802.0*

2,309.7*

2,445.6*

2,676.4*

2,502.6*

NOTE.—An asterisk in the right-hand column indicates that the increase in
likelihood between the 1F and 1mF models is statistically significant (P ,
0.01). Significance is tested using a standard likelihood ratio test between the
two models, comparing twice the difference in log-likelihoods with a x dis-2

3,439

tribution, where 3,439 is the number of degrees of freedom by which the two
models differ. A normal approximation to the x distribution (Lindgren 1976)2

3,439

gives these log-likelihood differences standard z-scores from 12.9 to 19.8; all P
values are too small to calculate reliably.

a Model applied with 1F option: one set of amino acid frequencies applied
to whole database.

b Difference recorded only for models with log-likelihoods exceeding that of
JTT.

c Model applied with 1mF option: different sets of amino acid frequencies
applied to each family in the database.

d We note that this is probably the lowest log-likelihood value ever recorded
in phylogenetics.

quencies pi, and the scaling factor r. To find the ML
model of evolution, we need only maximize log L over
M in equation (3) while fixing the parameters associated
with T, as our assumptions mean that the resulting model
will be close to that obtained by maximizing equation (2)
over both M and T. This dramatically reduces the com-
putational time required for large amounts of data be-

cause most of the parameters that would normally require
optimization are located within T.

Application to Real Data

This method was used to estimate a general model
of amino acid replacement from the BRKALN database
of aligned protein sequence families (D. Jones, unpub-
lished data). This database has previously been used to
estimate amino acid replacement models specific to dif-
ferent protein secondary structures (e.g., Goldman,
Thorne, and Jones 1996), and we used 3,905 sequences
split into 182 protein families, each containing no more
than 100 sequences. The amino acid frequencies for the
entire database are shown in table 1.

As described so far, the methods above assume that
a single set of stationary frequencies is sufficient to de-
scribe the evolution of all of the protein families in a
database. Different protein families may, however, be
expected to have different amino acid compositions due
to a variety of biochemical factors, such as differing
cellular environments or variable proportions of protein
secondary-structure elements. Two different estimation
methods were used to address this question. The first
method used a single set of stationary frequencies (19
free parameters) for all protein families, estimated by
counting the amino acids observed in the database (as
in table 1), with the remaining parameters of M (189
free exchangeability parameters sij and the scaling factor
r) estimated by ML. The resulting replacement model
is called the WAG model, after the authors of this paper.
The second method used a different set of stationary
frequencies for each protein family (19 3 182 5 3,458
free parameters, estimated by counting the amino acids
observed in each family), with the remaining parameters
of M again estimated by ML. In this case, the resulting
model is called the WAG* model.

Both the WAG and the WAG* models required
only 190 parameters to be numerically optimized, com-
pared with .7,500 (before even considering optimiza-
tion over topologies) under the traditional likelihood ap-
proach. This optimization was still computationally
slow: estimation of the WAG model took approximately
18 h on a Digital 600au Personal Workstation. To avoid
local maxima, estimations of the WAG and WAG* mod-
els were each performed using two sets of starting val-
ues, those of the EQU and the JTT models; the same
estimates were recovered in each case. We found it com-
putationally impractical to estimate the stationary fre-
quency parameters pi by ML (Yang and Roberts 1995)
simultaneously with the estimation of the sij. Given the
large size of the BRKALN database, we expect that any
differences in the estimated pi would be small and that
any consequent differences in the estimated sij would be
insignificant.

Results
Comparison of the Overall Performance of the New
Models with Other Commonly Used Models

Log-likelihood values (eq. 3) for the two newly es-
timated models and other commonly used models of
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Table 3
Tree-Related Statistics and Log-Likelihood Values for the Phosphoenolpyruvate
Carboxykinase Alignment

MODEL OF EVOLUTION

EQU EQU1F Dayhoff1F JTT1F WAG1F WAG*1F

Tree length . . . . . . .
Longest branch. . . .
Shortest branch. . . .
Median branch . . . .
Average branch . . .
Log-likelihood . . . .

1.889
0.144
0.0096
0.059
0.057

22,386.66

1.893
0.144
0.0091
0.060
0.057

22,347.66

1.977
0.158
0.0087
0.059
0.060

22,210.38

1.951
0.156
0.0080
0.058
0.059

22,216.74

2.032
0.150
0.0108
0.060
0.062

22,168.13

1.923
0.150
0.0106
0.060
0.058

22,167.28

NOTE.—This protein family consists of 18 sequences of 163 unambiguously aligned residues, not including gaps. Branch
lengths are in units of expected numbers of replacements per site.

amino acid replacement were calculated for the com-
plete database and are shown in table 2. Each model
was applied in both the 1F form, with one set of amino
acid frequencies estimated from the entire database and
applied to the analysis of all protein families, and in a
form denoted 1mF (multiple frequencies), with a dif-
ferent set of amino acid frequencies estimated for each
family. In all cases, models that used multiple sets of
stationary frequencies were significantly better than the
equivalent model using only a single set of stationary
frequencies (likelihood ratio test; twice the log-likeli-
hood difference compared with a x2 distribution with
3,458 2 19 5 3,439 df—see Yang, Goldman, and Fri-
day 1994). All models of amino acid replacement that
allow for unequal amino acid exchangeabilities have
much higher likelihood values than the EQU model.

Most importantly, both of the new models (WAG
and WAG*) have higher likelihoods than any of the oth-
er models. Statistical comparisons of these models
against the JTT model can be made by comparing twice
the log likelihood differences given in table 2 with a

distribution, with the 190 df being derived from the2x190
190 parameters sij and r estimated during the generation
of the WAG* and WAG models. In all cases, (JTT1F
vs. WAG*1F or WAG1F; JTT1mF vs. WAG*1mF or
WAG1mF), the WAG* and WAG models give a much
better fit to the data: using a normal approximation to
the distribution (Lindgren 1976), z-scores for these2x190
four tests are all .90 (cf. a standard normal distribution
with mean 0 and variance 1), and all P values are too
small to calculate reliably.

We also note that, even after making allowance for
the estimation of 190 additional parameters, the im-
provement in likelihood of the WAG* or WAG model
over the JTT model is greater than the improvement of
the JTT model over the Dayhoff model. This suggests
that the improvement achieved by estimating a model
of evolution using our new method may be at least as
great as the improvement obtained by using a larger
database from which to estimate a model of evolution,
which is the main detail in which the Dayhoff and JTT
models differ.

When the WAG* and the WAG models are com-
pared, neither appears clearly better than the other in
examining the whole database of families. As expected,
each performs best for the analysis conditions it was

optimized for, with WAG giving a better likelihood
when using a single set of stationary frequencies (1F
option) and WAG* performing better for multiple sets
of stationary frequencies (1mF). When the two models
are compared using equivalent methods (both 1F or
both 1mF) for calculating the stationary frequencies,
their log-likelihood values are very similar (changing by
approximately 0.01%), suggesting that there is little dif-
ference between the two models.

The branch length scaling factor r was estimated
as 1.027 during the generation of the WAG model. This
suggests that the likelihood maximization procedure was
not trying to change the branch lengths dramatically and
that the approximations used were valid. While we note
that this scaling factor may not detect nonlinear changes
in branch lengths (i.e., changes not proportional to the
original lengths), results obtained by the reestimation of
the branch lengths and a subsequently reestimated mod-
el give no indication of this occurring (see below).

Performance of New Models on Specific Phylogenies

The new models’ performance when estimating in-
dividual phylogenies is of more practical relevance than
their performance when estimating a likelihood for an
entire database. To give an example of the improvement
in fit to the data that might be achieved with our new
models, an alignment of 18 Lepidopteran sequences of
the phosphoenolpyruvate carboxykinase protein (Fried-
lander et al. 1996; Goldman, Thorne, and Jones 1998)
was chosen as a typical example of data used to perform
a phylogenetic analysis. Some statistics of the ML trees
under different replacement models are shown in table
3. From these statistics, it is clear that the use of the
WAG1F or WAG*1F model results in a considerably
higher likelihood value than any of the other models.
The difference between the two new models is very
small. There is some change in the branch length statis-
tics between JTT and the new models, although it does
not appear large enough to invalidate the assumptions
used to estimate the WAG and WAG* models. Note that
the phosphoenolpyruvate carboxykinase family is not
represented in the BRKALN database, and so there is
no possibility of the WAG and WAG* models having
any unfair advantage. In this example, the WAG and
WAG* models of sequence evolution are superior, and,
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in general, we expect the use of the models giving the
best fit to the observed data to lead to more accurate
phylogenetic estimation. Even small changes in branch
lengths may lead to changes in optimal ML tree topol-
ogy, resulting in an estimated tree being closer to the
true evolutionary tree.

In order to demonstrate this improvement in per-
formance for the whole BRKALN database, ML values
were calculated for each protein family under the
JTT1F, WAG1F, and WAG*1F models, this time fix-
ing the evolutionary models and tree topologies but re-
estimating the branch lengths for each family’s phylog-
eny. Figure 1A and B shows that the majority of protein
families (146 out of 182, or 80%) had higher likelihoods
when analyzed under either the WAG1F or the
WAG*1F model than under the JTT1F model. The
protein families whose likelihoods were higher under
the JTT1F model were examined in more detail and
compared with the families whose likelihoods were
higher under the WAG1F and WAG*1F models to see
if there was any common feature defining which model
was preferred. It was found that families for which the
JTT1F model gave a higher likelihood had relatively
shorter average branch lengths than those families for
which the new models gave higher likelihoods (data not
shown). This may be the result of Jones, Taylor, and
Thornton’s (1992) counting method of replacement ma-
trix estimation using only sequences that are .85%
identical to estimate the JTT model and perhaps con-
sequently overfitting the model to relatively short evo-
lutionary distances.

Figure 1A and B shows that the increases in per-
formance of the WAG1F and WAG*1F models com-
pared with the JTT1F model are very similar. To dem-
onstrate the relative performance of the two new mod-
els, the increase in likelihood of the WAG*1F model
over the WAG1F model for each individual protein
family is shown in figure 1C. It is apparent that the
difference in likelihood between the two models is min-
imal for the majority of the families: log-likelihood dif-
ferences between the WAG1F and WAG*1F models
are ,1 for 102 of the 182 families; 95 families lie above
the x-axis in figure 1C, and 87 lie below. The few cases
in which the likelihoods were clearly different between
the two models are located toward the highest log-like-
lihood values (i.e., the left-hand side of fig. 1C), with
the WAG model clearly outperforming the WAG* mod-
el. These cases were investigated in more detail, and it
was found that these families consisted of only two very
similar sequences. This suggests that the largest differ-
ences in likelihood between the WAG and the WAG*
models were caused by one or two differences in the
amino acid replacement matrices of the two models co-
inciding with differences between two closely related
sequences and can thus be attributed to chance effects.
We conclude that the overall difference between the two
models’ performances is negligible, and the additional
parameters (and computation time) used when estimat-
ing the WAG* model are not required for model esti-
mation from these data.

Comparison of the Structure of the New Models with
Those of Other Commonly Used Models

A comparison of the differences in the patterns of
amino acid replacement between the empirically derived
Dayhoff, JTT, WAG, and WAG* models of evolution is
shown in figure 2. From these graphs, it is clear that the
overall structures of the four models are similar, which
suggests that they are all modeling the same process.
Closer examination shows no discernible pattern to the
differences in the values of the parameters sij of the ami-
no acid replacement matrices of the JTT and WAG mod-
els; this is illustrated in figure 3. There is almost no
difference between the values in the replacement matri-
ces of the WAG and WAG* models. The exchangeabil-
ity parameters sij defining the WAG and WAG* models
are available via http://www.zoo.cam.ac.uk/zoostaff/
goldman/WAG.

Testing the Adequacy of Approximations

The methodology presented here may be consid-
ered similar to a single round of optimization in the
algorithms often used to maximize a likelihood for a
single given phylogenetic tree, which involve alternating
cycles of branch length optimization and model opti-
mization. In our methodology, we first optimize branch
lengths for multiple families under a fixed model and
then find the optimal model using those branch lengths.
It is therefore of interest to see whether further rounds
of optimization in our methodology would provide any
substantial increase in likelihood and, consequently, a
better fit to the data. We performed a second round of
optimization, involving a single reestimation of all of
the branch lengths for each individual protein family
using the WAG1F model followed by the reestimation
of the replacement model using these branch lengths.
This reestimated model was then used to examine the
individual families in the BRKALN database. This re-
sulted in only trivial changes to branch lengths, esti-
mated parameter values, and likelihood values (e.g., an
average increase in log-likelihood of only 0.026 per
family), and from this we conclude that second and sub-
sequent rounds of iteration are unnecessary to get a good
estimate of the optimal evolutionary model.

Discussion

The methodology presented here allows the esti-
mation of a model of amino acid replacement from large
numbers of sequences from many different families. By
doing so, it combines the best attributes of the counting
methods of Dayhoff, Schwartz, and Orcutt (1978) and
Jones, Taylor, and Thornton (1992), used to estimate the
Dayhoff and JTT amino acid replacement models, and
the true ML methods of Adachi and Hasegawa (1996),
Yang, Nielsen, and Hasegawa (1998), and Adachi et al.
(2000).

The newly estimated WAG and WAG* models
both gave significantly higher likelihoods than any other
commonly used models when used to assess phyloge-
nies for all 182 protein families of the BRKALN data-
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FIG. 1.—Likelihood improvements under the new models. A, Improvement in log-likelihood (log L) obtained in phylogenetic inference
with the WAG1F model relative to the JTT1F model for each protein family in the BRKALN database. B, Improvement in log-likelihood
obtained in phylogenetic inference with the WAG*1F model relative to the JTT1F model for each protein family in the database. C, Improve-
ment in log-likelihood obtained in phylogenetic inference with the WAG*1F model relative to the WAG1F model for each protein family in
the database. Note the different scale on the y-axis.
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FIG. 2.—Schematic representations of amino acid replacement matrices. The area of each bubble represents the amino acid exchangeability
parameter (sij) for the replacement of amino acid i by amino acid j or vice versa. The models depicted are those of Dayhoff, Schwartz, and
Orcutt (1978) and Jones, Taylor, and Thornton (1992) and the new WAG and WAG* models. All sij values are scaled so that the mean rate of
evolution is 1, assuming equal frequency parameters.

FIG. 3.—Schematic representation of the differences between the
JTT and WAG amino acid replacement matrices. The area of each
bubble is calculated as (sij(JTT) 2 sij(WAG))/sij(JTT). In total, there
are 66 increases (gray bubbles) and 124 decreases (white bubbles) in
the WAG matrix relative to the JTT matrix. The sij values are scaled
as in figure 2.

base simultaneously and for a large majority of the in-
dividual phylogenies examined. It was unclear which of
the two new models performed better, but we would
tentatively suggest that in this case the methodology
used to estimate the WAG model was preferable because
it involved fewer parameters being estimated from the
amino acid sequence database. We note some change in
the estimated branch lengths under the new models of
evolution. The better statistical fit of our new models to
the data suggests that in many cases they may provide
more accurate estimates of phylogenetic trees than ex-
isting models, although differences in branch length es-
timates do not appear so great as to invalidate the as-
sumptions used in our method for estimating models.

We hope that the WAG and WAG* models of ami-
no acid replacement will be of value in phylogenetic
analyses of amino acid sequences as potentially superior
alternatives to the Dayhoff and JTT models. Both our
new methodology and models produced using it may
have further applications outside of phylogenetics, in
fields that rely on accurate descriptions of amino acid
replacement, such as protein structure prediction, the de-
tection of sequence homology (including database
searching), and sequence alignment.
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WAG* matrices are available in electronic form via http:
//www.zoo.cam.ac.uk/zoostaff/goldman/WAG. The
WAG model is implemented in the PAML (Yang
1997—see http://abacus.gene.ucl.ac.uk/software/paml)
and TREE-PUZZLE (Strimmer and von Haeseler
1996—see http://www.tree-puzzle.de) software packages.
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