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A general expression for Hall conductivity including the effects of many-body interaction is 
derived on the basis of the Fermi liquid theory. It is exact as far as the most singular terms with 
respect to the quasiparticle damping are concerned. It is applicable for any types of interaction as 
far as the picture of Fermi liquid holds well. 

§ 1. Introduction 

The systems in which electron-electron interactions cannot be neglected, such as 
heavy fermion systems!) and high- Tc oxide superconductors, are of current interest_ 
The former system exhibits the large T2-component of resistivity in its low tempera­
ture coherent regime. This behaviour is ascribed to electron-electron scattering with 
the Umklapp process_ Therefore, Hall coefficient should also be affected by many­
body effects. Until now, many-body effects have been treated only within crude 
approximations. In metals, it seems dangerous to treat them on the basis of such 
approximate calculations as alloy analogy and Hubbard decoupling which neglect the 
momentum dependence of the self-energy. Moreover, we should include the vertex 
corrections originating from electron-electron interactions in order not to violate the 
Ward identity. These motivated us to seek an exact formula for Hall coefficient 
including the many-body effects on the basis of the Fermi liquid theory. 

Such a formula for conductivity was given by Eliashberg2
) in 1961. He collected 

all the terms which are, in the static limit, singular with respect to quasiparticle. 
damping, namely, divergent terms as the quasiparticle damping goes to zero. The 
result is given by (for simplicity, we give a static conductivity per spin) 

(J -e2f dp {_I (_ df) }v *v * 
, ,,11- (2n-)3 2yp de e=E(p) " 11 

+f dp f dp' { 1·( df) .} *a
2

<J: 22(p,P') *, 
(2n-)3 (2n-)3 2yp - de e=E(p) V" 4iyp' V ll

• 
(1'1) 

Here v,,*, E(p) and yp represent the velocity, energy and damping constant of a 
quasiparticle of momentum p, and f is the Fermi distribution function. The first 
term represents free quasiparticle propagation with damping, and the second term 
includes vertex correction arising from quasiparticle interaction a2 <J: 22. Equation 
(1'1) can be written as 

- 2f~{_1 (_ df) } * 
(J"lI-e (2n-)3 2yp de e=E(p) V" JlI' (1'2) 
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624 H Kohno and K. Yamada 

where 

J = v * + f dp a
2 
g: 22(P, p') v *, 

1I 1I (271-)3 4iyp' 1I. (1'3) 

This is compared with the expression obtained from the Boltzmann equation: 

If Jp. is proportional to vp.*, i.e., 

Jp.=vp.*· X(p) , 

we can define a transport relaxation time by 

rtr= X
2
(p) , 
YP 

and Eq. (1'2) reduces to Eq. (1'4). 

(1·4) 

(1·5) 

(1'6) 

In this paper, we devote ourselves to Hall conductivity. In this case, we must 
deal with a three-body interaction vertex. But this can be reduced to two-body 
interaction vertex by use of the Ward identity within our accuracy. The final result 
is given by 

_e
3
Hf dp [f aJlI aJp.J] * 1 ( df) (]p.lI-c (2IT? p. aplI - aplI 1I Vp. (2Yp)2 - de e=E(p) ' 

(fJ,=x, v=y) (1'7) 

while the Boltzmann equation gives3
) 

(fJ,=x, v=y) (1'8) 

If Eq. (1' 5) holds, Eq. (1' 7) reduces to Eq. (1' 8) also in this case. 
In the argument for Bloch electrons or tight binding models, we restrict ourselves 

to the case in which the result can be expressed only with single band quantities and 
start with the single band model. This is because we are mainly interested in the 
many-body effects and complications arising from interband effects are not of our 
concern. 

In § 2, a formal expression for Hall conductivity is given on the basis of linear 
response theory. In § 3, the terms proportional to the magnetic field is calculated. 
These procedures are formulated by Fukuyama et al.4

) in their study of impurity 
effects on Hall coefficient. Then, following Eliashberg,2) analytic continuation is 
performed and the most singular terms with respect to the quasiparticle damping are 
collected. Thus we get the final result (1'7). In § 4, some modifications needed to 
proceed to the case of Bloch electrons5

) are described. In § 5, some remarks on the 
results and the justification for the terms neglected in § 3 are given. The range of 
applicability is also discussed. 
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A General Expression for Hall Coefficient 625 

§ 2. Basic formula4
) 

We consider the situation in which a uniform static magnetic field H is applied 
along the z-axis, and the current is forced to flow in the x-direction. We assume 
reflection symmetries of the system with respect to xz-plane and yz-plane throughout 
this paper for simplicity. 

The Hall coefficient R is generally given by 

(2·1) 

in terms of the conductivity tensor (Jp.JJ in the presence of the magnetic field H. We 
consider a 'classical' or weak field limit (by which we mean wer<1 where We is the 
cyclotron frequency and r the electron mean free time) and retain only terms up to the 
first order in H in the prefactor of I/H, so that 

R (J1V 1 
(J(O)(J(O) • H 

xx yy 
(2·2) 

is independent of H. Here we denote the term of order H m as (JPJJ(m). The magnetic 
field free part (Jp.p.(O) ({l=x or y) has already been discussed2

) and is given by Eq. (1·1). 
In this paper, we will discuss (JXy(l>, the part proportional to H in the transverse 
conductivity. The procedure of calculating (JXy(l) is given by Fukuyama et a1.4

) and 
we shall follow them. 

We introduce a magnetic field through the vector potential A(r)=Aqeiq.r and let 
q->O later to obtain a uniform field. Also we calculate a static conductivity by 
introducing a uniform electric field of frequency wand letting w -> 0 at the end. 
According to Kuboformula, the conductivity tensor of our concern is given by 

(2·3) 

We put {l=X, l/=y throughout this paper. ([Jp.iq, w+iO) is obtained by the analytic 
continuatiort w. -> w + iO from 

([JPJJ(q, w.)= 11P 
driP dr' ew>(r-r'l( Trl p.H(q, r) 1 JJH(O, r'»H , 

where w.=2mAT, II: positive integer, T=fJ-l: temperature, and 

J(k)= 2~i fdr e- ik .r[¢t(r)J7 ¢(r)- J7 ¢t(r)· ¢(r)] , 

p(k)= fdr e-ik.r¢t(r)¢(r). 

Here time evolution and thermal average are defined by the Hamiltonian: 

(2·4) 

(2·5) 
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626 H Kohno and K. Yamada 

(2·6) 

Ho describes the system of non-interacting electrons and Hint introduces the many­
body interaction to it, whose explicit form need not be specified. For simplicity, we 
neglect the spin degeneracy, which will be recovered in the final expression (Eq. (4'7) 
or (4'8)) in a trivial way. To extract the part proportional to H, we write 

(2·7) 

where 

2 

Kff.v(q, w)= ~cOlJa[.1'p(q, w+iO)-.1'p(q, +iO)] 

(2·8) 

1 (P (P -
.1'p(q, w;')=-fj)o dr)o dr'e,",(r-r')<Trl p(q, r)p( -q, r'» , 

1 (P (P (P_ - -
.1'~IJ(q, w;')=fj)o dr)o dr')o dr" e,",(r-rU)<Trl p(q, r)J a( -q, r')J IJ(O, r"». 

Bere and hereafter time evolution and the thermal average are defined by the 
Hamiltonian 

$( = Ho + Hint. (2·9) 

§ 3. Hall coefficient in nearly free electron system 

In this section, we discuss the case in which the nori-interacting electron disper­
sion is well described by c(p)=p2/2m (m: the mass of an electron). The case in 
which c(p) has a general form will be argued in the next section. 

The field operator is expanded in t,erms of a plane wave basis as 

(3·1) 

where V is the volume of the system and set to be unity hereafter. One-particle 
thermal Green function is defined by 

1 (P (P 
{l(p, cn)=-fj)o dr)o dr'e'n(r-r'>(Trcp(r)c/(r'» , (3·2) 

cn=(2n+ l);riT , 

The renormalized vertices of two- and three-body interaction shown in Fig. 1 are 
written as 
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A General Expression for Hall Coefficient 627 

(3·3) 

(3·4) 

where p±=p±q/2,p±'=p'±q/2, En+=En+WA, etc. The renormalized vertices cou­
pled to external fields are defined as 

(3·5) 

+ (p± p± I p', p') (p' ) (p') , =evv-+T ~,r + +, , g +r g , evv" 
p,en En En En En En En 

(3·6) 

+' +' 

::: -:rrl-r--r[oE- ~:: 

( a ) 

Fig. 1. The vertex functions of (a) two-body and (b) three-body interaction corresponding to (3'3) 
and (3'4), respectively. 

Fig. 2. The vertex function 11 coupled to an external field. 

Fig. 3. Integral equation for r. 

~=x + 
e'll}4 

Fig. 4. Integral equation for 11. 
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628 H. Kohno and K. Yamada 

(3'7) 

(3'8) 

If we define the irreducible vertex r(1) by 

(3'9) 

the integral equation for A. is given by 

These relations are shown in Figs. 2~4, where A is denoted by a shaded triangle and 
r (or r(I)) by a rectangle with the letter r (or I) inside it. 

Using these functions, Eq. (2· 8) is written as 

Kffll=(i) +(ii)+ (iii) + (iv) , (3'11) 

. e2 (p+ ,p-) (p+) (p-) (1)=-ollaT L: Ap +, g + g ., 
me p,en En En En En 

("")=IT L: A P P g PAP P g PAP P g P ( + -) (-) (- +) (+) (+ +) ( +) 
11 e p,en p En + En En a En En En 11 En En + En + ' 

(iv)=lT L: T L: T L: n(1) P P, P P P P g P Ap P P g P , (+ -I ' , 1 -" +") ( +)' (+ -) ( -) 
C p,En p',En' p",En" en + En en' en +r en" en" en + . en + en en 

(p, ) (p' P' ) ,(p' ). (p-") (p-" P+") g (P+") X g , All , +r g +, g c" Aa c" c " c'" 
En En En En <;.n <;.n en <;.n 

Diagrammatic expressions for these terms are shown in Fig. 5. The 'irreducible' 
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A General Expression for Hall Coefficient 629 

vertex function n(I) [Fig. 6(a)] of three-body interaction is defined such that it cannot 
be decomposed as (b) nor (c) nor (d) in Fig. 6, i.e., it contains no 'two-particle­
reducible' parts in any of its particle-hole channels. 

3.1. Extraction of the q-linear terms 4) 

In order to obtain the terms proportional to H = iq x A, we need to extract the 
part linear in q from K!1v. Since the final expression should depend on A only 
through H, i.e., be gauge invariant, we expect to get the q-dependence of K!1v in the 
form qp 8va - qv8p a. 

The vertex Av coupled to the uniform electric field which does not change the 
momentum is expanded as [Fig. 7] 

(3 ·12) 

where 

AvO=Avlq=o=Av(P P +), 
cn cn 

(3·13) 

and Jp denotes the differentiation with respect to PP. The symbol ~ expresses the 
equality up to the first order in q. We write the vertex Ap related to the observed 
current, which changes both momentum and energy, as [Fig. 8] 

ii ( iii ) ( iv ) 

Fig. 5. Contributions to KJMq, COl). 

(a) ( b) (c ) (d) 

Fig. 6. Definition of r3(1) (a), which cannot be 
decomposed as (b) nor (c) nor (d). 
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630 H. Kohno and K. Yamada 

o + 

Fig. 7. The q-Iinear extraction from v-vertex_ 
The circle means the vertex with q=O. The 
cross with the letter p means differentiation 
with respect to Pp_ 

Fig. 9. The reduction of a-vertex combined with 
two Green functions both sides of it by means 
of the Ward identity. The cross with the let-
ter a denotes differentiation with respect to Pa. 

o + 0 

Fig_ 8. The q-Iinear extraction from /1-vertex_ 
The square represents the q-linear part of A p • 

A (p+ P-)~A o+A I> (3·14) p + - p p. 
En En 

Here Ap ° and ilp I> are the zeroth and the 
first order part of Apin q, respectively. 
The vertex A a , which couples to the 
external magnetic field and preserves the 
frequency argument, has no q-linear 

and (3·8). 
as [Fig. 9] 

terms. This can be seen from Eqs. (3·7) 
So, combined with the Green functions of both sides of it, it can be written 

=e· Ja{l(p, En) . (3·15) 

In the last equality, we used the Ward identity:4),6)-8) 

JJ;(p, En) = T ~ r<1)(p pip', p' ,). J/ {l (p', En') . 
p',En' En En En En 

(3·16) 

Finally, the q-linear part of the integral equation (3·10) [Fig. 4] is given by [Fig. 
10] 

Here we put 

+ T ~ r<1)I> {l' {l'( + )Apo, . 
p',c.n' 

o 

Fig. 10. q-linear part of Fig_ 4_ 10 represents the 
irreducible vertex with q=O, and 1 the q-linear 
part of the vertex_ 

(3·17) 
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· A General Expression for Hall Coefficient 631 

(
p, P' ) 

g'= g (p', en'), A,/'=Au , +" etc. 
en en 

and defined the "alternate" differentiation as 

(3'18) 

With these elementary procedures, the q-linear terms of (i)~(iv) are derived as 
follows: 

(ii) 

x g ( , e ')A (p' P' ) g (, +'). a " g " p, n u., +, P , en a 
en en 

Here n(I)o and ra(I)" mean n(I) with q=O and the q-linear part of n(l), respectively. 
Making use of the Ward identity: 

(a + a ')T(I)(P pip' p' ) a a - + , +, 
en en en en 
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632 H. Kohno and K. Yamada 

= T ~ n (I)(p pip' p' I p" p"). a " Q (" ~') 
,~" 3 + ,+,,,,, a P ,en , 

p ,en En En En En En En 
(3 '19) 

which can be proved in a similar way to Eq. (3 '16), we can rewrite (iv) as 

+~T L: T L: T L: n(I)'" A"o Q Q (+). A,," Q' Q'( +). aa" Q" . (iv-c) 
C p,en p',E:n' p",en" . 

Using Eq. (3'10) for the aa-terms and integrating partially for the aa'-terms, we get 

-~T L: T L: r<1)°A,,"'Q Q(+)·aa'[A,,"'Q'Q'(+)] , 
C p,en p',en' 

The second terms of (iv-a) and (iv-b) cancel with (0. From Eq. (3'17), the last terms 
of (iv-a) and (iv-b) yield 

-~T L: A,,"'aa[A,," Q Q( +)] 
C p,cn 

+~T L: T L: F(I)'" A"o Q. Q (+). aa'[A,,"' Q' Q'( +)], 
C p,en p',en' 

(3·20) 

whose first term cancels with the first terms of (ii), (iii) and (iv-a). 
The resulting terms are (A) the first term of (iv-b) and the second terms of (ii) and 

(iii); (B) the last terms of (ii) and (iii); (C) (iv-c); and (D) the second term of Eq. (3·20): 

C=~T L: T L: T L: n(I)"'A"oQ Q(+)·A,;"'Q'Q'(+)·aa"Q", 
C p,en p',en' p",en'" 

D=~T L: T L: r<1)"'A"oQ Q(+)·aa'[A,;"'Q'Q'(+)]. 
C p,en p',en' 
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A General Expression for Hall Coefficient 633 

We neglect C and D whose q-linear terms arise from n(I) and rI). The validity 
of this approximation will be discussed in § 5.1. With the replacement: qpJp~ 8JJaqpJp 

+ 8paqJJJJJ which is valid under the assumed reflection symmetries of the system, we 
finally get as A + B 

(3·21) 

This has the desired gauge-invariant form. When x- and y-directions are equivalent, 
this reduces to 

(3·22) 

The above procedure is seen more intuitively in the diagrammatic calculation and 
we give it in the following. In the diagram, the upper (lower) vertex corresponds to 
AiAJJ) except (i) whose lower vertex is simply 1, and the right (left) line corresponds 
to the Green function with frequency en +(en). 

( i ) 
~ ,A ~ ~ 
OVct' P-EnVP En ' 

1 

(i i) + (iii) 

~ 
e ~E"6 .~ -Op1 - f5 n + PEn 
C ~ Q 

V V' 

/'v e [QV + OQ] (a)-c 
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+ 

+ 

(iv) 

H Kohno and K. Yamada 

2eC ~[~O 
xp 

2~~[~VP 
f-l 

v.~l 
pv~l 

PEn e r----"'--<.-

Il 

- ~ bv(J.· PEi~ P+E~ 
me V 

1 

(b) 

(e) 

(d) 

(e) 
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A General Expression for Hall Coefficient 635 

~O~O - 2~J*j.[()p -PY 1 (f) 
me 

1 

e ~a 2~ {~~ -:~l (g) 
e 

(h) 

where @a. represents aa'[Al/o, Q' Q'( +)]. (i) cancels with (f). From Fig. 10, I 

becomes 

whose first term cancels with (a)+(d). 
Thus, we finally get 

2eC~{ Op pO J 
xa. a.x 

A (e) + (b) 

2ec~[ Qn n~ 1 ' 
B (e) 2~~' n\)P p0n j. 
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c 

D 

(h) 

H. Kohno and K. Yamada 

e 
c 

2nd term of (9) 

3.2. Main terms in the Fermi liquid2
) 

Now, we shall perform the analytic continuation of Eq. (3·21) or (3·22). Since 
we are concerned only with energy variables in this subsection, some momentum 
variables are omitted for simplicity. Also, momentum derivatives are irrelevant and 
the problem of the analytic continuation of Eq. (3·22) is equivalent to that of 

Lpu(wx)= TL;A,/Avo g( +)g . (3·23) 
<n 

Thus we consider Eq. (3·23) for the moment. Note that, from Eq. (3·8), Apo and Avo 
are different components of an identical vector. 'Apo is defined by Eq. (3·5) with q=O. 
The analytic property of r was examined by Eliashberg in Ref. 2). According to 
that, one can see that Apo has branch cuts Imc=O and Im(c+ w)=O by which the whole 
c-plane is divided into three regions [Fig. 11]. From each region, Apois analytically 
continued to the function jp(l), jp(2) or jp(3) defined on the real axis, where 

l eo dc' 3 
jp(l)(c; w)=evp+ L; ev/ -4·L; :Jim(€, c'; W)gm(c'; w), (1=1,2,3)· 

p' -eo lCZ m=l 
(3·24) 

gl(C; W).= GR(c+ w)GR(c) 1 
g2(C, w)= GR(c+ w)GA(c) , 
gs{c; w)=GA(c+W)GA(c) 

(3·25) 

and the definition of effective vertices :J im( C, c; w) [see Fig. 12] at finite temperature 
is given in Ref. 2) as Eq. (12). Thus Eq. (3·23) is analytically continued to the real 
frequency through the 'retarded' function as 

( h c+ w h c )K(2)(·. ) h c+ w K(3)(. )] + t 2T- t 2 T pv c, w -t 2T p~ c, w , (3·26) 

(3·27) 

N ext, in order to clarify the physical meaning, we shall make an approximation 
which is based on Fermi liquid picture. One-particle Green functions can be written 
as 

I 

I 
D
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--------------ImE=O 
J(2) 2 

--~_:__-------Im( £ +w) = 0 
f3) 3 

Fig. 11. The analytic region of Ap"(c) as a func­
tion of a complex variable c. From each 
region, Ap" is analytically continued to the 
whole plane through the functions Jp(l). 

Fig. 12. 'I,,,;(c, 10'; w). 

637 

(3·28) 

where E(p), rp and a are the energy, the damping constant and the wave-function 
renormalization factor of a quasiparticle of momentum p. It is assumed that the 
temperature is sufficiently low and if E~ T and E(p)~ T, then rp4:.. T. We collect all 
the terms in Eq. (3·26) that are proportional to or higher order in 1/rp, i.e., divergent 
as the quasiparticle damping approaches zero. For w4:.. T, g/s behave like 

(3·29) 

(3·30) 

After E-integration (or p-integration for impurity scattering), gr and g3 leave no 
singularities arising from the smallness of r p, while g2-section contributes to 
1/rp-singularity. Since the irreducible vertex part r<l) [or q(l)] has no singular factor 
1/r p, we should collect all the terms that have at least one g2-section. 

On the other hand, in order to obtain a static conductivity 6(W--> 0), we must 
extract the w-linear terms from Eq. (3·26). The second term of Eq. (3'26) is already 
linear in w, so we can put w=O in Kp,}2). The first and the la'st terms of Eq. (3' 26) give 
no contributions to Eq. (3' 22). This is understood as follows. 

In these cases, a g2-section should be picked up ineither Jp (I) or J,}I) (l = 1, 3), since 
we collect diagrams with at least one g2-section. Then, the factor w is always present 
in the Fermi distribution function of the form th«E+w)/2T)-th(c/2T)=(w/2T) 
'ch-2(c/2T) as seen from Eq. (12) in Ref. 2), and consequently we are allowed to put 
w=O in gr or g3 in Eq. (3·27). Returning to Eq. (3'22Lthese gr- and g3-sections are 
subject to momentum derivatives and vanish: 

Now, we introduce the 'irreducible' vertex r;nr;;. with respect to g2-section by 

x (". ) cr (0) (" , ) gk E , W ~ km E , E ; W . (3'31) 
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638 H. Kohno and K. Yamada 

Here :I0 ) corresponds to r(1) in the same way that :I corresponds to r. Denoting 
:I~~'s by shaded rectangles and :I 22 (neither :I~~) nor :I~Y) by a shaded circle, :I 2/S 
U*2) are expressed as shown in Fig. 13, and jp.(2) as shown in Fig. 14. From the last 
line of Fig. 14, we obtain the relation 

where 

This Qp.(p, e) is connected with the quasiparticle velocity vp.*=aJi(p) by 

v * Qp.=e-p.-. 
a 

This is seen from the analytically-continued Ward identity:2),8) 

and the replacement: :I ~~) -+ (:I lj + :I 3j) / 2 which can be justified for e ~ T. 2) 

Thus Eq. (3·17) is analytically continued as 

K a (. )~ - -.£( !:' - !:,)..., 1= de (- df)[J (2)~a J (2)][GR~a GA ] P.II W = w 2 qp.Ulla qllUp.a £.oJ 2' d p. 11 11 p., 
c p - m e 

(3·33) 

(3·34) 

(3·36) 

where f is the Fermi distribution function. With Eq. (3·28), the e-integration is 
performed as 

1= [ 1 J2 7[ _=deA(e) (e-E(p))2+y/ -:::::;A(E(p))2 yp3, 

[2J ~+~ 
2 j 2 2 2 2 

Fig. 13. The expression for 'l"zh*2) in lenns of 
'l"W(j*2) (shaded rectangles) and 'l"zz(shaded 
circle). 

~=X+ 
2 

3 
2:[2I>v 

1<=1 
2 k 

=x+ @>v + .~[~ + ~ 
2 2 j-1,3 2 j 2 2 2 J 

= [ 1 + @=: J( X + j~3~J 
2 2 2 J 

Fig. 14. The expression for J"(2). The cross means the bare current vertex ev". 

(3·37) 
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A General Expression for Hall Coefficient 639 

where A(.s) is a smooth function over the scale .s~ r p. This holds even for A(.s) 
= - dl/d.s, because this function does not change appreciably over the scale .s~ r p ~ T. 
Finally we get the result as 

(fJ.=x, lI=Y) (3'38) 

where 

J,..=- ~J,..(2}(p, Ep) 

=v,..*+ /(:%)3 a2g:2lpE(p)lp'E(p'» :[;~, . (3'39) 

The second term of Eq. (3'39) represents the vertex correction arising from quasi­
particle interactions. Note that two velocities in Eq. (3'38) are subject to this vertex 
correction. Note also that Eqs. (2'38) and (2'39) are derived for the static (w=O) 
limit or in the 'first sound regime' rather than in the 'zero sound regime': rp~w. In 
the latter case,2} the second term of Eq. (2'39) is replaced by the backflow term which 
is well-known in the usual Fermi liquid theory at zero temperature.6

},7} 

§ 4. Extension to 'Bloch electron' system 

N ow we turn to the case of 'Bloch electron' which has an arbitrary dispersion 
relation .s(p). 

Simple replacement for .s(p) and v,.., which have been p2/2m and p,../m in the 
previous section, with those of a Bloch electron leads to the expression obtained from 
Eq. (3'21), with extra terms: 

~>,. 0+ 2~a",q,-[OP-PO 1 
1v« 1v«, .1 .... 

_ e2 
"" e2 

0 ~ --T ~ A,.. g g(+)Jva+-2 -qpT ~ A,.. [gapg(+)]Jva, (4'1) 
me p,En me p,En 

where 

1 _ 1 a2.s(p) mJ va-m8va - apvaPa . (4'2) 

This term is not gauge invariant in general. What is wrong with this prescription? 
The above inconsistency arises from the fact that the current operator appearing 

in the conductivity formula has finite interband matrix elerpents in general.9
} This 

may be interpreted as interband transitions violate the current conservation within a 
single band and consequently the gauge invariance of the single-band formula. 
Nevertheless we expect that when the band in which the whole Fermi surface lies is 
energetically far apart from any other bands, the conductivity can be expressed only 
with single band quantities in a gauge-invariant manner. To treat this situation 
self-consistently, we start with the single band model explained below. Though this 
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picture may not be suitable in the real situation, this method makes possible a 
consistent calculation for some model systems which are interesting in the context of 
many body problem. 

We assume that all the physies, even the intermediate states, are described by the 
Hamiltonian defined in a single-band subspace 

(4·3) 

The summation over p is performed within the first Brillouin zone. As we saw in the 
previous section, we are interested in the linear terms in q and neglect higher order 
terms. In expectation of the gauge-invariant results, we determine the conserved 

. current operator by means of the equation of continuity: 

Here 

a_+. ~H 0 at p q zq· J q = . (4·4) 

(4 ·5) 

is the q-component of the charge density operator and j q H is that of the current 
operator to be determined. The result is 

(
..,. ·H)P_ ~ pt·· e2

A ~ a2e(p) t 
J q -e £.... Vp Cp-Cp+-- q,v £.... ::l'P ::l'P Cp Cp . pCp u pu v 

(4·6) 

Working with Eqs. (4·3) and (4·6), we can see that the gauge non· invariant terms 
(4·1) indeed vanish and get the same expression as Eq. (3·38): 

(j - e
3 

HL:f dp [J <1a J <1]v *<1 1 (df) (lI=x,lI=Y) (4.7) 
pv-c <1 (271-)3 P v v P (2yp)2 - de e=E(p) ' r-

] <1 = V *<1+ L:f dp a
2
[ 9" 22(P, p') y<1' v *,<1, 

P P <1' (271-)3 4iyp' p, 

also in the case of general dispersion. Here we take into account the spin degrees of 
freedom and the summation over p is performed in the first Brillouin zone. In this 
formula, the equivalence of the x- and y-directions of the system is assumed. In case 
that x- and y-directions are not equivalent, we must use the 'symmetrized' formula 

(f1.=x,lI=Y) (4·8) 

corresponding to Eq: (3·21). 

, 
I 
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§ 5. Discussion 

5.1. The validity of neglecting C and D 

As we saw in the preceding sections, the main term in 6x)ll behaves like (1/Yp)2, 
while that of 6x)Ol like l/yp. So the Hall coefficient (2·2) remains finite in the limit 
Yp-.O, and as far as this value is concerned, we have only to collect these most 
singular terms. For 6xy , the (1/Yp)2-singularity arises from the "alternately" 
differentiated g2-section: 

1 oc--2 • yp 
(5·1) 

In the following, we shall show that this order of singularity is not contained in 
the diagrams whose q-linear terms are extracted from the vertex part nCI) or r(I), 
namely, C and D in § 3. Any single electron-hole propagator appearing explicitly in 
these diagrams (we are not concerned with those included in A's), when analytically 
continued, contributes at most l/yp (the case when continued to g2). This is in 
contrast to the case of Eq. (5·1). When twO*l pair propagators are continued to g2 in 
such a diagram, the vertex between them is r;r 22 which is of order y p. **l Thus the 
diagrams C and b are at most of order l/yp and can be neglected compared with the 
main term of order (1/rp)2. 

5.2. The range of applicability 

Though we have been mainly concerned with electron-electron interaction in the 
text, there are other kinds of interaction which are popular in actual systems such as 
electron-phonon interaction and scattering from impurities. The former case can be 
treated in the same way by reinterpreting the interaction line as the phonon 
propagator. For the case of impurity scattering, the interaction line carries no 
frequency and the analytic property of the vertex function becomes simpler than that 
discussed in this paper (Le., the whole Imc- Imc' plane shrinks to the line Imc= Imc'). 
Anyway the same expression is obtained. 

Thus we conclude that our result can be applicable to any interaction discussed 
above or their combinations, as far as the system remains to be Fermi liquid and the 
l/yp-term can be neglected in comparison with the (1/yp)2-term. It is also assumed 
that interband effects can be neglected. 

5.3. Some remarks 

First, we note that y p and r;r 22 must be determined according to the Ward identity 
which means local conservation of particle current. This is crucial for transport 
coefficients.lOl 

*l Note that the pair-propagator connected to the a-vertex in C cannot be continued to g2. 

**l This is seen from the Ward identity, e.g., Eq. (2·20) in Ref. 8). 
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Second, we point out that under the consistency between y p and :I 22 mentioned 
above, the quantity 6xy is divergent if we consider only the electron-electron interac­
tion and do not take the Umklapp processes into account.ll) This is because under 
these conditions, the electron system couples to no momentum reservoir to which the 
momentum is released, and consequently the total momentum is conserved. Thus in 
this case, Umklapp processes must be taken into account.10

) 

§ 6. Summary and conclusions 

In this paper we derived the general expression for Hall conductivity based on the 
theory of Fermi liquid, in which many-body effects are included. 

Starting with Kubo formula for conductivity in the presence of a magnetic field, 
the terms proportional to the strength of the magnetic field are extracted according 
to Fukuyama et al.4

) In this procedure, it is assumed that contributions from the 
diagrams whose q-linear parts are extracted from vertex functions can be neglected. 
This assumption proves to be valid as far as the (1Iyp)2-terms are concerned, which is 
the main contribution in the Fermi liquid. It should be noted that owing to this 
approximation, we can get the expression containing only two-body interaction 
vertices for the Hall conductivity, which originally contained the three-body interac­
tion vertex. After analytic continuation 2) and collection of (Ily p)2-terms, we get 
Eq. (4'8) as a result. This is applicable to any kind of interaction such as electron­
electron interaction, electron-phonon interaction and impurity scattering, so long as 
the picture of Fermi liquid holds well. 

In a future study, we will apply the general expression obtained here to strongly 
correlated systems, such as heavy fermion and high Tc superconducting systems, and 
clarify the effects of electron interactions on the Hall effect. 
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