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A general expression for Hall conductivity including the effects of many-body interaction is
derived on the basis of the Fermi liquid theory. It is exact as far as the most singular terms with
respect to the quasiparticle damping are concerned. It is applicable for any types of interaction as
far as the picture of Fermi liquid holds well.

§1. Introduction

The systems in which electron-electron interactions cannot be neglected, such as
heavy fermion systems” and high- 7t oxide superconductors, are of current interest.
The former system exhibits the large 7>-component of resistivity in its low tempera-
" ture coherent regime. This behaviour is ascribed to electron-electron scattering with
the Umklapp process. Therefore, Hall coefficient should also be affected by many-
body effects. Until now, many-body effects have been treated only within crude
approximations. In metals, it seems dangerous to treat them on the basis of such
approximate calculations as alloy analogy and Hubbard decoupling which neglect the
momentum dependence of the self-energy. Moreover, we should include the vertex
corrections originating from electron-electron interactions in order not to violate the
Ward identity. These motivated us to seek an exact formula for Hall coefficient
including the many-body effects on the basis of the Fermi liquid theory.

Such a formula for conductivity was given by Eliashberg? in 1961. He collected

all the terms which are, in the static limit, singular with fespect to quasiparticle

damping, namely, divergent terms as the quasiparticle damping goes to zero. The
result is given by (for simplicity, we give a static conductivity per spin)

_z2[ dp {_1 <_ﬂ> } %, %
Ow=e @r)P  2yp\  de/e=5m Vs Uy

do (di (1 (_df\ 1, .aTulpr), o
+'/-(27l')3 (271')3 127’17\ dE)e:E(p)}v# 4i7p’ UV* . (1 1)

Here v.*, E(p) and 7, represent the velocity, energy and damping constant of a
quasiparticle of momentum p, and f is the Fermi distribution function. The first
term represents free quasiparticle propagation with damping, and the second term
includes vertex correction arising from quasiparticle interaction @*<,. Equation
(1-1) can be written as '

o= [ R i\~ e s} o 12
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where

UV*+f(dp @Ixp,p), (1-3)

41y y
This is compared with the expression obtained from the Boltzmaﬁn equation:

_ 2 dp __Cﬁ :
Ow=¢e"T (27[)‘3_< de )&‘:E(p)v#*vu* . . (1 ’4)

If J. is proportional to v.*, ie.,

Je=v.*x(p), : (1-5)
we can define a transport relaxation time by
_x(p) ' o )
Ttr 27’p 3y (1 6)

and Eq. (1-2) reduces to Eq. (1-4).
In this paper, we devote ourselves to Hall conductivity. In this case, we must
deal with a three-body interaction vertex. But this can be reduced to two-body

interaction vertex by use of the Ward identity within our accuracy. The final result
is given by

_ée o [, oy O]« ] « 1 ( df
O H (27[)3 I_]ﬂ apu aj)u ]u Vs (2 }’p)z\ de >s E(p)
(e=x,v=y) -7
while the Boltzmann equation gives3)
m c HZ- (27T)3 LU# 317;; apu e L dE e=E(p)
(p=2z,v=y) . ' (1-8)

If Eq. (1-5) holds, Eq. (1+7) reduces to Eq. (1-8) also in this case.

In the argument for Bloch electrons or tight binding models, we restrict ourselves
to the case in which the result can be expressed only with single band quantities and
start with the single band model. This is because we are mainly interested in the
many-body effects and comphcatlons arising from 1nterband effects are not of our
concern.

In § 2, a formal expression for Hall conductivity is given on the basis of linear
response theory. In § 3, the terms proportional to the magnetic field is calculated.
These procedures are formulated by Fukuyama et al.” in their study of impurity
effects on Hall coefficient. Then, following Eliashberg,? analytic continuation is
performed and the most singular terms with respect to the quasiparticle damping are
collected. Thus we get the final result (1-7). In §4, some modifications needed to
proceed to the case of Bloch electrons® are described. In § 5, some remarks on the
results and the justification for the terms neglected in § 3 are given. The range of
applicability is also discussed.
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A General Expression for Hall Coéﬁicient 625

§ 2. Basic formula?

We consider the situation in which a uniform static magnetic field H is applied
along the z-axis, and the current is forced to flow in the z-direction. We assume
reflection symmetries of the system with respect to xz-plane and yz-plane throughout
this paper for simplicity.

The Hall coefficient R is generally given by

— — Oyz 1 .
R= OrzOyy— OxyOyz H . (2 1)
in terms of the conductivity tensor o in the presence of the magnetic field H. We
consider a ‘classical’ or weak field limit (by which we mean w.r<1 where w. is the
cyclotron frequency and 7 the electron mean free time) and retain only terms up to the
first order in H in the prefactor of 1/H, so that
1) :

is independent of H. Here we denote the term of order H” as d'™. The magnetic
field free part 6@ (#=z or v) has already been discussed® and is given by Eq. (1-1).
'In this paper, we will discuss 0", the part proportional to H in the transverse
conductivity. The procedure of calculating gz is given by Fukuyama et al. and
we shall follow them. ‘

We introduce a magnetic field through the vector potential A(r)=A4,¢°?" and let
g—0 later to obtain a uniform field. Also we calculate a static conductivity by
introducing a uniform electric field of frequency @ and letting w—0 at the end.
According to Kubo formula, the conductivity tensor of our concern is given by

6u(a, ©) =1 0(a, 0+i0)— Bpulg, +10)]. (2-3)

We put £=x, v=y throughout this paper. @./(q, ®+10) is obtained by the analytic
continuation @i~ @+ 70 from ,

A B = =
Ol o) =g [ de [[dee T @, O TAO P, 2-4)

where w,=2miAT, A: positive intege.r, T =4"": temperature, and
T shrN e’
J (k)—J(k)—%P(k—Q)Aq,
Fi —L —ik-r‘ ¥ y t
F(B) =g [dr e 19 (NP () =P §' ()91, (2:5)
(k)= [dr e * g ().

Here time evolution and thermal average are defined by the Hamiltonian:
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'ﬂH:Ho‘Ff[int_%jf(—q)'Aq. (2‘6)
H, describes the system of non-interacting electrons and Hin introduces the many-
body interaction to it, whose explicit form need not be specified. For simplicity, we
neglect the spin degeneracy, which will be recovered in the final expression (Eq. (4+7)
or (4-8)) in a trivial way. To extract the part proportional to H, we write

0@, ) =-Ki(q, 0)Age, (2:7)

where
] ,
Ki(a, )=, 8wl Lulg, 0+i0)~ L g, +i0)]

+%[Izu(q, 0+i0)—L8&(q, +i0)], (2:8)

B B —~
L., wx)z_%l a’ffo dr'e* "X T J (g, D) p(—q, ),

’ £ 8 s — . ~
Lidg, 0o)= [ dr [(ar ["dr e KT T g, ©) T~ a0, )T 0,

Here and hereafter time evolution and the thermal average are defined by the
Hamiltonian

ﬂ[ZHo‘f-Hmt. : . (29)

§3. Hall coefficient in nearly free electron system
In this section, we discuss the case in which the non-interacting electron disper-
sion is well described by e(p)=p?/2m (m: the mass of an electron). The case in

which &(p) has a general form will be argued in the next section.
The field operator is expanded in terms of a plane wave basis as

$(r)=—rr ﬁ/— 21eP ey, (3:1)

where V is the volume of the system and set to be unity hereafter. One-particle
thermal Green function is defined by

9(p, en)=— [ de [ de'em X ey (2, (32)

en=02n+1)m T, cp(r)=e¥ Mg o= H-rmr

The renormalized vertices of two- and three-body interaction shown in Fig. 1 are
written as
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+
( H (3'3)
572 en
( p//p//)’ (3.4)
en En En &n

where p*=p=*q/2, p*’=p £ q/2, ex"=¢en+ w4, etc. The renormalized vertices cou-
pled to external fields are defined as

e Aﬂ(p P )

Sn En
+ — —7 +7 td +7 A
—evu+ T 3 I(p+"‘p,p+>g(p,)g(p+>ew/, (3+5)
pen En En|En En En En
S Au(p- p-+)
En En
=ev,*+T X F(p_ p—+ ot ;,p ,>Q(p +,)Q(p ,)evu’ . ' (3-6)
pen’ En En En En En En )
PEn P'E
pe} = pel
_ .. PE; P'en
p En > p—gn p :’ + 11 "
' ’ P €n P en
(a) (b)

Fig. 1. The vertex functions of (a) two-body and (b) three-body interaction correspondirg to (3-3)
and (3-4), respectively.

~ P'ed , :
I I =

e Uy K

Fig. 2. The vertex function A coupled to an external field.

- -~

r|lo= 1| + j1 | |r

Fig. 3. Integral equation for I'.

= x4 1|

evu

Fig. 4. Integral equation for /.
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-
fm Aa(p p )
- .671 En

— + A+ —r +7 -
=eve+ T 3 P(p p p,",)Q(",)Q(",)eva', (3-7)
Den’ En En |En En En En
where vu.=pu/m, v =p. Im and v, =p,*/m. Note the symmetries
F(pl D2 | D3 p4)___‘F<ps D4l D1 pz)zp(pz D1 D4 pa) . ‘ (3'8)
€1 &2 | &3 &4 €3 €4 | &1 &2 €2 €1 &4 &3

If we define the irreducible vertex I'® by

r p" p|p7p" ) _ rofP" PP PY
ent €nlEd &7 ent en|&d "
+ - —rr —rr | +r +//l —rr
+T2F(I)p+p p//p+llgvp” gp+//Fp+I/p//
pen” En En|En En En En En  En
—7 +7 -7 +7
p,p_ng,gp A#p+/p, ]
En En En &n” En En

(3-10)

These relations are shown in Figs. 2~4, where A is denoted by a shaded triangle and
I’ (or I'") by a rectangle with the letter I" (or 1) inside it.
Using these functions, Eq. (2-8) is written as

Kg=(1)+ @)+ (iii) +Gv) , (3-11)

)
Ds€n En En En
+ - - N + + o+ +
ezl MM 2
) D:En En En En En €n En En En En
p* o\ (p\ [(pp \.[p7\, (P P\ [P\
__ v g a 14 y
W="c7 2 Aﬂ(en‘“ en)g(en )A (en e;ﬁ“) (&:*)A (ef sf) (e{')
p" p"” g(P" 1 p" p” ¢lP
e’ €n” &r" ﬂ‘€n+ En &n
: ’ +r7 trr
ol o2 2ol o220
&n en €n" \€n En en” €n” En

Diagrammatic expressions for these terms are shown in Fig. 5. The ‘irreducible’

the infegral equation for A, is given by

+ ptp
Aﬂ("f )—evﬁ-T > rm( P

En En Den En

|\p P

D.en pen’ pen’” & &n €n

(lv)——T STIT S rw(" P
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A General Expression for Hall Coefficient ' 629

vertex function I3 [Fig. 6(a)] of three-body interaction is defined such that it cannot
be decomposed as (b) nor (c) nor (d) in Fig. 6, i.e, it contains no ‘two-particle-
reducible’ parts in any of its particle-hole channels.

3.1. Extraction of the q-linear terms®

In. order to obtain the terms proportional to H=ig X 4, we need to extract the
part linear in g from K£. Since the final expression should depend on A only
through H, i.e., be gauge invariant, we expect to get the g-dependence of K/ in the
form Q#Sua QUa;m

The vertex A, coupled to the uniform electric field which does not change the
momentum is expanded as [Fig. 7]

AU("_ p_>;/1u°_%q,,- W/ (3-12)
En En ’
where
Au°:AU|q=0=Au(p p +), (3-13)
En En

and 0, denotes the differentiation with respect to pp.' The symbol = expresses the
equality up to the first order in g. We write the vertex /. related to the observed
current, which changes both momentum and energy, as [Fig. 8]

I3
£ _8,. P et
mc O P€En P*en

(i)

p N
P en . pref
1. Py
[¢ € C&n @
pren pet
v v

(i) (iii )
Fig. 5. Contributions to K£(q, w.).

(a) (b) (d)

Fig. 6. Definition of I® (a), which cannot be
decomposed as (b) nor (c) nor (d).
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xp

Fig. 7. The g-linear extraction from v-vertex.
The circle means the vertex with ¢g=0. The
cross with the letter o means differentiation
with respect to pe.

p“&% ~ o % «
pE ==
" & P €n

Fig.. 9. The reduction of e-vertex combined with

two Green functions both sides of it by means
of the Ward identity. The cross with the let-
ter @ denotes differentiation with respect to pe.

vl

Fig. 8. The g-linear extraction from u-vertex.
The square represents the g-linear part of A,

o + O

o
A#(p+p )gAH/m. (3-14)
€n" &n
Here A.° and A.* are the zeroth and the
first order part of /. in g, respectively.
The vertex /. which couples to the
external magnetic field and preserves the

frequency argument, has no g-linear v

terms. This can be seen from Egs. (3-7)

and (3-8). So, combined with the Green functions of both sides of it, it can be written

as [Fig. 9]

- - ot +
({22
En En En En En En €n

:e'aag'(p, Sn) .

(3:15)

In the last equality, we used the Ward identity:?"*~®

pp

Phen’ En En 57;, En,

3.5(p, en)=T 3 F“’(p p

10]

)- ' G (p, e).

- (3-16)

Finally, the g-linear part of the integral equation (3-10) [Fig. 4] is given by [Fig.

AAZET B I @ @AM+ 50T 3 OG5, 6 (H)) A
Dhen

pen’

+T 3 T8¢ G (+)A,” |

pen’

Here we put

i |

O X
‘ [ 1°\

(3-17)

1 pP_p
-l e+

Fig. 10. g-linear part of Fig. 4. I° represents the
irreducible vertex with ¢=0, and I the g-linear

part of the vertex.
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gzg(py Eﬂ)’ g(+):g(p; €7I+)’

= g (p,; En,) s AVO,:Au(p,, b ), etc.

En 5n+,

and defined the “alternate” differentiation as

B _0A

[A3,B]= =Ag 5B ' (3-18)
With these elementary procedures, the g-linear terms of (i)~ (iv) are derived as
follows :
(i) ———SuaT 2 ALE Q(+)+ 8uaq,,T Z Ay’ [Q 3.8(+)],
Dy&n
pt p*
(ii) ;—T X A,l( . ) 0.8 ( +>Q(p+-e,,+)
Dien En En En En

IIZ

_T 2 A;lAAu aag g(+)+ 2 q,aT 2 A/.z (3,;/1;1) aag g(+)

DiEn

+7ec*q‘oT 2 ApuAyo'aag°apg(+),

P&n
Gi) =47 3 A (" p)g(p e,,)/l( _+)-aag(+)
c b,en &n’ en n €n

DP.&n

‘-—T 2 A,uAAy g aag('i_)— 2 q,aT 2 Ayo(apAyo)g'aag(_‘_)
Bién

2 QpTzAﬂAU apg aag(+)

DEn

(iv) :—T XT 2T 2‘. "G (p, sn+)Ay(6+€_)g(p‘, &n)

Pén p en’

-
X G(p', ex )AU(. ,
n n

+') g (p/a 5n+’) <0." 8"

+ET 2T T T 2 LA G(H)G A8 G (+)-3.7 8" .
14 oen’”

Here I3 and I3 mean I3 with ¢=0 and the g-linear part of I3®, respectively.
* Making use of the Ward identity:

(Oa+ O )F‘”( P ‘6’ +,)

en En
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o
er ent

Db D
€n’ €n

pp

D’sen”’ 571 En

=T 2 B(I)(

) 3" 8 (p", &), (3-19)

which can be proved in a similar way to Eq. (3:16), we can rewrite (iv) as

(1V)~—T IR ADS (Bat 0N ALG G(+H)- A G G(+) (iv-a)
DsEn p en’
+%qu T (aa+a,, Y A, [ 89,8 (+)]- Ay 87 G/ (+) (iv-b)
DP>€n Dy
+ET 2T 2 T 3 nOAs gg(+) NG G(H) 378", (iv-c)

c D,en phen’ e

Using Eq. (3:10) for the d.-terms and integrating partially for the 9./-terms, we get

(iv- a)——T 2 Afg G(+)0al — é‘uaT 2 NLGG(+)

D.€n D,&n

—-T 2T 2 I8 G(+)-8[A7 974" (+)],

Dién p en’

o 2 -
(iV'b):%QpT p,zsn A”u[g 8#Q(+)]' aaAun_ze%auzZQpT 1;,25,, Ayo[g 8pg(+)]

—ooa.T =T F I A8 3,6 (+)]0[A~ 8" G (+)].
The second terms of (iv-a) and (iv-b) cancel with (i). From Eq. (3:17), the last terms
of (iv-a) and (iv-b) yield

——T S A8 A8 G ()]

DPyEn
+-= _T ST 2 I'ALG-G(+)-3/TAS GG (+H)], - (3-20)
Den pen’

whose first term cancels with the first terms of (ii), (iii) and (iv-a).
The resulting terms are (A) the first term of (iv-b) and the second terms of (ii) and
(iii); (B) the last terms of (ii) and (iii); (C) (iv-c); and (D) the second term of Eq. (3-20):

A=20T 3 A8 3,8 ()] 0ulls’—2,T 2 A8 3.8 (H)]udhs’
2c DEn 2c DieEn

B= 9 L 0T 2 N[0:8 008 (+)— 3G 3.8 (H)]AS,

p.en

C=ST T 2T 3 LA GEG(+) A9 G (+)a/4",

D,en pen’ pen”

D=CT X T 3 I A6 4(+) 8. TA 4" G (+)].

D:en phen’
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A General Expression for Hall Coefficient 633

We neglect C and D whose g-linear terms arise from I3® and I'". The validity
of this approximation will be discussed in § 5.1. With the replacement: ¢,0, 8vagu0k
+ 8reqydy which is valid under the assumed reflection symmetrles of the system, we
finally get as A+B -

Kgu(wx):fg(mzaua ijapa)T 2 {[A# UAU ][ggﬂg('i_)]

A 3,218 3,8 ()]} (3- zi)

This has the desired gauge-invariant form. When z- and y-directions are equivalent,
this reduces to

ng(wl):%(Qﬂal/ﬂ qllaﬂd)T 2 [Aﬂ uAu ][ggﬂg(+)] . (3'22)

The above procedure is seen more intuitively in the diagrammatic calculation and
we give it in the following. In the diagram, the upper (lower) vertex corresponds to
Au(A,) except (i) whose lower vertex is simply 1, and the right (left) line corresponds
to the Green function with frequency &.*(en).

L

2 .
(i) = —rr?_c Sue PEn prer .

|12
=
e
-
S+
go
L5

(i) +Gi) =

i
P&n PE,—,
(j\pgn R
Pen PE*

ou@ + o | | (a)

IR  ”2
o|o
‘ @t
+
7
< 3=
N
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x QL

x

(b)

(c)

(d)

(e)
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where @(x represents 3. [A,” 8" G'(+)]. (i) cancels with (f).
becomes ‘

@ = —= )+ =

whose first term cancels with (a)+(d).
Thus, we finally get

— ¢ _ e .
A = (@+bd = ==F P —p

635

me é\w‘ - 'Zeﬁ&«x% <><p - p@ (f)
1 1 |

(9)

(h)

From Fig. 10, |
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I

D = 2nd term of (9)

3.2. Main terms in ihe Fermi liquid®

Now, we shall perform the analytic continuation of Eq. (3-21) or (3:22). Since
we are concerned only with energy variables in this subsection, some momentum
variables are omitted for simplicity. Also, momentum derivatives are irrelevant and
the problem of the analytic continuation of Eq. (3:22) is equivalent to that of

Lu(o)=T8A A, G(+)G . (3-23)

‘Thus we consider Eq. (3:23) for the moment. Note that, from Eq. (3-8), A.° and A,°
are different components of an identical vector. -A,’ is defined by Eq. (3-5) with ¢=0.
The analytic property of I" was examined by Eliashberg in Ref. 2). According to
that, one can see that A, has branch cuts Ime=0 and Im(e+ w)=0 by which the whole
e-plane is divided into three regions [Fig. 11]. From each region, A.° is analytically
continued to the function /., J.® or J.® defined on the real axis, where

J.e o)=evut+ X evy 2 T (e, € w)gn(e; w), (1=1,2,3)-  (3-24)

47rz
ale; 0)=G¥ e+ w)G*(e)
agle, 0)=G¥e+w)Ge) | , | (3-25)
g(e; w)=G* e+ w)GA(e)

and the definition of effective vertices 4 (¢, ; w) [see Fig. 12] at finite temperature
is given in Ref. 2) as Eq. (12). Thus Eq. (3:23) is analytically continued to the real
frequency through the ‘retarded’ function as

Lufw)= [ £ [th—K,SL’(e ©)

+(th tio —thﬁ> (e 0)—th 2 <3>(e w)] (3-26)
K$9(&; ©)=J.e; 0)].&; 0)gi(e; ) . ’ (3-27)

Next, in order to clarify the physical meaning, we shall make an approximation
which is based on Fermi liquid picture. One-particle Green functions can be written
as
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A General Expression for Hall Coefficient 637

J'(]) 1 l&
Im&=0 ,
J@ 2 £+ E+W
Im(g+u)=0 I
J(3) 3 £ g’
Fig. 11. The analytic region of A(e) as a func- Fig. 12. 9umle, € w).

tion of a complex variable . From each
region, A,° is analytically continued to the
whole plane through the functions J,.'”.

GHe)=[GXe)]*= (3-28)

a
e~ E@+irs’
where E(p), yp and a are the energy, the damping constant and the wave-function
renormalization factor of a quasiparticle of momentum p. It is assumed that the
temperature is sufficiently low and if e~ T and E(p)~ T, then y,<T. We collect all
the terms in Eq. (3-26) that are proportional to or higher order in 1/yp, i.e., divergent
as the duasiparticle damping approaches zero. For w< T, g/’s behave like

gl(AE; w)=[gs(&; @)]*~ (#M)Z : (3-29)

2mia?8(e— E(p))

a)+227p (3-30)

g&; w)~

After e-integration (or p-integration for impurity scattering), ¢: and gs leave no
singularities arising from the smallness of 7y, while g-section contributes to
1/yp-singularity. Since the irreducible vertex part I' [or 2] has no singular factor
1/y, we should collect all the terms that have at least one gz-section.

On the other hand, in order to obtain a static conductivity o(w—0), we must
extract the o-linear terms from Eq. (3-26). The second term of Eq. (3-26) is already
linear in @, so we can put w=0in K.,”. The first and the ldst terms of Eq. (326) give
no contributions to Eq. (3-22). This is understood as follows.

In these cases, a g--section should be picked up in either /. or J,*¥ (/=1, 3), since
we collect diagrams with at least one g2-section. Then, the factor w is always present
in the Fermi distribution function of the form th((e+w)/27T)—th(e/2T)=(w/2T)
-ch™(e/2T) as seen from Eq. (12) in Ref. 2), and consequently we are allowed to put
w=0in ¢ or gs in Eq. (3:27). Returning to Eq. (3:22), these ¢:- and gs-sections are
subject to momentum derivatives and vanish: ‘ '

[G*p, €)3,G"(p, £)]=0

Now, we introduce the ‘irreducible’ vertex g% with respect to g.-section by

TW(e, & 0)=TWe, & w)+ Z‘./

T
471 & Th(e, ¢, )

X gi(e”; )T 5", &5 w) . (3-31)
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Here 9 corresponds to I'® in the same way that  corresponds to I'. Denoting
T@’s by shaded rectangles and 9z (neither I nor %) by a shaded circle, T2/’s
(7=2) are expressed as shown in Fig. 13, and /. as shown in Fig. 14. From the last
line of Fig. 14, we obtain the relation

J:%(p, )=Qu(p, )+ 3} [T pelp' Vool s 0=0)Qu, ), (332)

~where

2 I (pelp’e)gip',€; 0=0). (3-33)

Qup, e)=ev.+ ? evy’ 4 e

This Qu(p, €) is connected with the quasiparticle velocity v.*=3d.E(p) by

Q,l=evz. , (3-34)

This is seen from the analytically-continued Ward identity:*"®

%[GR(I), ' =—v.— %‘. v 2 I1{pelp’e)gip’,e’; ®=0), (3-35)

4 L

and the replacement: 8- (9 1;+ 9'5,)/2 which can be justified for e~ T2
Thus Eq. (3-17) is analytically continued as

Ki )2 ~ 05 (0= 0.6:0) D [ A — L) 125.0,2G*3,611, (3+36)

where f is the Fermi distribution function. Wlth Eq. (3 -28), the e-integration is
performed as

[:deA(E)[ (e—E(;))Z-l- Yo ]Zz

7= +

2] 2 2 2 2

(3-37)

. Fig. 13. The expression for T2,(j*2) in terms of
T(7+2) (shaded rectangles) and gzz(shaded
circle).

£l
§
:

Fig. 14. The expression for J.”." The cross means the bare current vertex ev,.
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where A(e) is a smooth function over the scale e~y, This holds even for A(e)
= —df/de, because this function does not change apprec1ab1y over the scale e~y ,<T.
Finally we get the result as

1 af _- - .
_H/(Zﬂ')a []/1 u]U]'U# (27, )z( %)e:lﬂ‘(p) , (ﬂ—x, V—y) . (3 38)
where

J:="27.%p, Ep)

=y *+ / G’ @*T 2 pE(p)|p'E(p'))-22 (3-39)

427
The second term of Eq. (3-39) represents the vertex correction arising from quasi-
particle interactions. Note that two velocities in Eq. (3-38) are subject to this vertex
correction. Note also that Eqgs. (2-38) and (2-39) are derived for the static (w=0)
limit or in the ‘first sound regime’ rather than in the ‘zero sound regime’: y,<w. In
the latter case,” the second term of Eq. (2-39) is replaced by the backflow term which
is well-known in the usual Fermi liquid theory at zero temperature.®”

§4. Extension to ‘Bloch electron’ system

Now we turn to the case of ‘Bloch electron’ which has an arbitrary dispersion
relation &(p). _

Simple replacement for &(p) and v, which have been p?/2m and p./m in the
previous section, with those of a Bloch electron leads to the expression obtained from
Eq. (3-21), with extra terms:

mc 61./(2 + ZWLC 8uaqﬂ Gp p O
[

= T P A#Ag g(—{—)ng—l— qu 2 A#[gapg(‘i‘)]gw, (4'1)
D:en )
where
_ 3*s(p) ' .
gua 6ua apuapa . ’ (4 2)

This term is not gauge invariant in general. What is wrong with this prescription?

The above inconsistency arises from the fact that the current operator appearing
in the conductivity formula has finite interband matrix elements in general.” This
may be interpreted as interband transitions violate the current conservation within a
single band and consequently the gauge invariance of the single-band formula.
Nevertheless we expect that when the band in which the whole Fermi surface lies is
energetically far apart from any other bands, the conductivity can be expressed only
with single band quantities in a gauge-invariant manner. To treat this situation
self-consistently, we start with the single band model explained below. Though this
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picture may not be suitable in the real situation, this method makes possible a
consistent calculation for some model systems which are interesting in the context of
many body problem.

We assume that all the physics, even the intermediate states, are described by the
Hamiltonian defined in a single-band subspace

j[:;g[()‘i‘j[mt, ’ ‘ (4'3)

o= % s(p)cp*cp—%f_q-Aq ,

.;—q: %: vpchrcp-+ O0(g?).

The summation over p is performed within the first Brillouin zone. As we saw in the

previous section, we are interested in the linear terms in ¢ and neglect higher order

terms. In expectation of the gauge-invariant results, we determine the conserved
" current operator by means of the equation of continuity:

’a%ﬁq+iQ°J?qH=0- (44)
Here

ﬁq§e§c}_cp+ (4'5)

H

" is the g-component of the charge density operator and j,” is that of the current

operator to be determined. The result is

-~ .. 2 a .
(Gay=e S vfehcr—SAw D TR o re, (1-6)

Working with Eqgs. (4-3) and (4+6), we can see that the gauge non-invariant terms

(4-1) indeed vanish and get the same expression as Eq. (3-38):

fpre L (_df o .
HZ/(Z%)S [ U]u v (271,)2(—%)5:15(11), (p=z, v=y) 4-7)

P a’p @[ d »(p, D)
= vt +2/ (2r divy

17w
g9, K707
Upn 3

also in the case of general dispersion. Here we take into account the spin degrees of
freedom and the summation over p is performed in the first Brillouin zone. In this
formula, the equivalence of the x- and y-directions of the system is assumed. In case
that x- and y-directions are not equivalent, we must use the ‘symmetrized’. formula

H3 [5R, ok {J.73a] 0 *6+<wu\>}—(2;p)2(—%)Ezm

(u=z, v=y) (4-8)

corresponding to Eq: (3-21).
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§5. Discussion

5.1. The validity of neglecting C and D

As we saw in the preceding sections, the main term in 0. behaves like (1/7,)
while that of 0.2 like 1/y,. So the Hall coefficient (2-2) remains finite in the limit
yp—0, and as far as this value is concerned, we have only to collect these most
singular terms. For o, the (1/yp)*-singularity arises from the “alternately”
differentiated gz-section:

[1655.614e < 1o [ | e parrry] 2

1 .
cc ] . 5-1
2 | . | (5-1)

In the following, we shall show that this order of singularity is not contained in
the diagrams whose g-linear terms are extracted from the vertex part I3 or I'®,
namely, C and D in § 3. -Any single electron-hole propagator appearing explicitly in
these diagrams (we are not concerned with those included in A’s), when analytically
continued, contributes at most 1/yp, (the case when continued to g:). This is in
contrast to the case of Eq. (5:-1). When two™ pair propagators are continued to g in
such a diagram, the vertex between them is 92 which is of order 7,** Thus the
diagrams C and D are at most of order 1/y, and can be neglected compared with the
main term of order (1/y,)%

5.2. The range of applicability

Though we have been mainly concerned with electron-electron interaction in the
text, there are other kinds of interaction which are popular in actual systems such as
electron-phonon interaction and scattering from impurities. - The former case can be
treated in the same way by reinterpreting the interaction line as the phonon
propagator. For the case of impurity scattering, the interaction line carries no
frequency and the analytic property of the vertex function becomes simpler than that
discussed in this paper (i.e., the whole Ime—Ime’ plane shrinks to the line Ine=Ime’).
Anyway the same expression is obtained.

Thus we conclude that our result can be applicable to any interaction discussed

above or their combinations, as far as the system remains to be Fermi liquid and the

1/yp-term can be neglected in comparison with the (1/y7,)*term. It is also assumed
that interband effects can be neglected. ' '

5.3. Some remarks

First, we note that 7, and <5, must be determined according to the Ward identity
which means local conservation of particle current. This is crucial for transport
coefficients.'”

*) Note that the pair-propagator connected to the a-vertex in C cannot be continued to g.
**) This is seen from the Ward identity, e.g., Eq. (2-20) in Ref. 8).

220z 1snBny |z uo 1senb Aq G£86981/£29/7/08/21o1e/d)d/Woo dno-oiwapese)/:sdyy Woly papeEo|umo



642 | . H. Kohno and K. Yamada

Second, we point out that under the consistency between 7, and s, mentioned
above, the quantity oz, is divergent if we consider only the electron-electron interac-
tion and do not take the Umklapp processes into account.!” This is because under
these conditions, the electron system couples to no momentum reservoir to which the
momentum is released, and consequently the total momentum is conserved. Thus in
this case, Umklapp processes must be taken into account.'®

§6. Summary and conclusions

In this paper we derived the general expression for Hall conductivity based on the
theory of Fermi liquid, in which many-body effects are included.

Starting with Kubo formula for conductivity in the presence of a magnetic field,
the terms proportional to the strength of the magnetic field are extracted according
to Fukuyama et al.¥ In this procedure, it is assumed that contributions from the
diagrams whose g-linear parts are extracted from vertex functions can be neglected.
This assumption proves to be valid as far as the (1/yp)*-terms are concerned, which is
the main contribution in the Fermi liquid. It should be noted that owing to this
approximation, we can get the expression containing only two-body interaction
vertices for the Hall conductivity, which originally contained the three-body interac-
tion vertex. After analytic continuation® and collection of (1/y p)*terms, we get
Eq. (4+8) as a result. This is applicable to any kind of interaction such as electron-
electron interaction, electron-phonon interaction and impurity scattering, so long as
the picture of Fermi liquid holds well.

In a future study, we will apply the general expression obtained here to strongly
correlated systems, such as heavy fermion and high 7% superconducting systems, and
clarify the effects of electron interactions on the Hall effect.
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