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A General Finite Difference Technique for

the Compressible Flow in the Meridional

Plane of Centrifugal Turbomachinery

W. R. DAVIS

INTRODUCTION

The demand for increased efficiency and

accurate performance predictions, in the area of

industrial centrifugal turbomachinery, has

recently received considerable attention, One

result has been an increased concentration of

effort in the understanding of the complex flow

in centrifugal machines. It appears that rela-

tively recent advances in computational fluid

dynamics may prove valuable when applied in this

area. For example, Senoo ( l ) 1 and Novak ( 2 ) have

used the streamline curvature method to solve the

flow field in the meridional plane of a centrif-

ugal impeller.

More traditional potential,-flow solutions,

e.g,, the work of Stanitz ( 3 ), do not have the

flexibility of the foregoing work. Another

approach is to use empirical design methods based

on large amounts of data, which treat essentially

the inlet and exit conditions, Jansen ( 4 ) con-

sidered the flow in a vaneless radial diffuser,

assumed that both wall boundary layers were

identical, and then solved a special case of the

three-dimensional turbulent boundary-layer equa-

tions,

It must be recognized that the flow in a

centrifugal machine is extremely complex, as

pointed out by Dean ( 5 ). Although it is impossible
at this time to model all the phenomena existing

in a real machine, it is felt that a systematic

approach, which begins with state-of-the-art

analytical techniques in fluid dynamics, and

extends these as further developments occur, will

significantly improve both our understanding of

flow and our ability to predict performance and

improve efficiency.

One approach would be to attempt the solu-

tion of the complete Navier Stokes Equations,

but this is such a formidable problem as to be

1
Underlined numbers in parentheses desig-

nate References at end of paper.

out of reach now and in the immediate future.

Another approach is to assume that a two-layer

model is representative, i.e., an inviscid flow

solution which interacts with an end wall

boundary-layer calculation. In this way, the

model is flexible and can be altered to include

separation zones and skewed boundary layers if

necessary. This method is feasible at the

present time.

In Reference ( 6 ), Wu presents a rigorous
derivation of the equations which govern the

inviscid flow on two intersecting families of

stream surfaces, which he called surfaces of the

first and second kind. These S l and S2 surfaces

are general stream surfaces, more commonly known

as the blade-to-blade surface and hub-to-shroud

surface, respectively, and are not restricted,

as is commonly done, to the simpler surface of

revolution (S1) and a surface made up of radial

elements (S 2 )< Instead, they are allowed freedom

to warp as a function of the computed flow field,

and thus the complete three-dimensional solution

requires an iterative technique, with information

being fed from one surface to the other until a

stable converged solution is obtained. Wu ( 6 )
also suggested a finite-difference approach for

the solution of the flow field on both surfaces,

which would generate a set of non-linear equations

which could then be solved using either an iter-

ative matrix technique or a relaxation procedure.

More recently, Marsh ( 7 ), using the Wu
approach, employed an irregular finite-difference

net on the S2 surface, to generate the set of

non-linear equations, which he then solved using
an iterative matrix approach. The importance of

this irregular net is that the boundary grid

points fall on the physical boundaries of the

machine, even when the boundaries are curved, as

they generally are in modern turbomachines, Fig.

1(b).

Smith and Frost ( 8 ) successfully extended
the Marsh/Wu technique to the S1 (blade-to-blade)
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NOMENCLATURE

a i ,b i ,c i = finite difference coefficients used

to multiply the function value at a

stencil point

[A] = coefficient matrix of the principle

equation, equation (8)

b = integrating factor for the continuity

equation, or the stream sheet thick-

ness

F = vector, parallel to n, due to tangen-

tial gradients (units of force per

unit mass)

f = any two-dimensional function

h = static enthalpy per unit mass of

fluid

I = rothalpy (Ho - w RVe )

[U = lower triangular banded coefficient

matrix

m = meridional direction, or the stream-

line direction in the meridional

plane

M = Mach number

m = number of quasi-orthogonals

n = number of grid points across the

annulus (quasi-streamlines)

n = unit vector normal to relative

stream surface S 2

p = static pressure

q = any quantity on relative stream

surface S 2
[Q],q = vector on the right-hand side of

the principal equation

R = radius

Rg = gas constant

s = entropy per unit mass

S1 = relative stream surface passing

through fluid particles in the

circumferential plane

S 2 = relative stream surface passing

through fluid particles in the

meridional plane

T = static temperature

t = time

[u] = upper triangular banded coefficient

matrix

V = absolute velocity vector

W = relative velocity vector

z = axial direction

« = finite difference operator for the

operator 02 ( )

/3;K = finite difference operators for

partials fR and f z
R = flow angle measured from the meri-

dional direction

= function on the right hand side of

the principal equation

P = fluid density

0 = tangential direction

0 = angle between the R, z and x,y

coordinate systems

= stream function defined on relative

stream surface S 2

L^^= column vector of i

= angular velocity of the relative

coordinate systemof fR = partial derivatives of f with respectR
to R

V2 ( ) = the operator (f RR + 
fzz )

D( )/Dt = total or substantial derivative

Subscripts

i = grid point subscript (across the

annulus)

j = grid point subscript (along the

annulus)

m = meridional component

o = total state

R,B,Z = radial, tangential, and axial

components

surface, employing the governing equations

derived by Wu, the irregular finite-difference

grid developed by Marsh, and the appropriate

boundary conditions for the regions upstream and

downstream of the cascade.

The author has successfully implemented the

Marsh technique and the more familiar streamline

curvature method for the inviscid flow on the S 2
surface of axial flow compressors (9, 10), as

part of axial compressor performance prediction

computer programs developed at Carleton University.

Also, a matrix technique, similar to that

described by Smith (8) was used in a computer

program which computes the flow field on the S1

surface (11). This experience with the matrix

technique indicated that it is a stable, accurate,

inviscid flow computation technique which offers

some advantages over the more commonly used

streamline curvature method (12),

Some comment on the disadvantages of the

streamline curvature method is in order, since

the quasi-orthogonal streamline curvature method

used by Senoo (1) and Novak (2), does appear to

be attractive. The accurate calculation of the

streamline curvature has always been a source of

trouble in this method, and great care must be

taken to avoid instabilities which may cause

divergence of the solution. Wilkinson (13)

investigated this problem for very small values

of curvature and recommended optimum procedures
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(a) Regular or rectangular net

R 

(b) Irregular parallel net (Marsh)

z

(c) Irregular quasi-orthogonal net

Fig. 1 Finite difference grids

which were significantly different than the

conventional methods which are used. A similar

study has not been reported for the severe

curvatures encountered in some centrifugal machine

components, In Reference (12), Davis and Millar

compared the streamline curvature and matrix

methods as they were applied to the analysis of

flow in axial turbomachinery. It was concluded

that there was some advantage to the matrix

method, mainly due to stability considerations.

Further comparisons have been carried out for the

geometries considered in this paper with similar

conclusions, The streamline curvature method

also requires a number of coordinate transforma-

tions, since in a cylindrical coordinate system,

the streamline slopes become infinite in certain

components, and similarly, streamline curvatures

are not defined. The inherent instability of the

technique requires that streamline shifts be

damped, and it follows that any addition to the

analytical model which interacts with the stream-

line position, such as a boundary-layer calcula-

tion, will be a potential source of instability.

It should also be noted that the streamline slopes

and curvatures must be recomputed every time the

streamline position changes, i.e., each iteration,

Both Marsh and Smith, using the matrix

techniques described in the foregoing, wrote the

governing equation in a coordinate system rotated

through an angle from the axial direction, as

shown in Fig. 1(b), in order to extend the

application of their procedures to a wider range

of turbomachines,

However, in the area of centrifugal turbo-

machines, especially multi-stage machines, when

considering the flow on the S 2 surface, the de-

signer is confronted with a series of 90- and

180-bends with, in some cases, extreme curvatures

and rates of change of curvature. The application

of a Marsh type of grid to centrifugal machinery

components is very difficult in most cases, due

to the proximity of the components and impossible

in other cases, for example, an interstage return

bend (180-deg annular bend), However, since the

finite-difference approach has demonstrated

reliability, accuracy, and stability, all of

which are important when considering the complex

flow in centrifugal passages, it is desirable to

use this approach.

The foregoing discussion suggests that a

technique which uses the fixed grid approach of

Wu ( 6 ) or Marsh ( 7 ), and yet has the flexibility
of the quasi-orthogonal grid, would be well suited

to the flow problems encountered in centrifugal

turbomachinery. For these reasons, the author

has developed a general finite-difference tech-

nique which uses a curvilinear grid to solve the

inviscid compressible flow on the S2 (hub-to-

shroud) surface of any turbomachinery component

or components. The grid, as shown in Fig. 1(c),

is made up of arbitrary quasi-orthogonals, and

quasi-streamlines spaced at equal intervals

between the boundaries. Since streamline curva-

tures and slopes are not required, any arbitrary

duct geometry may be considered without additional

difficulty. At the same time, the stability and

accuracy of the matrix technique is retained.

Although the examples discussed in this

paper do not include any rotating components,

such as an impeller, the technique is not limited

to stationary components, The omission is

deliberate since additional analytical models for

rotating three-dimensional boundary layers,

separation zones, and circumferential variations,

among others, are required before any meaningful

comparisons with data could be presented. As

reliable models in these areas are developed,

they can be combined with the inviscid technique

described herein.

The paper describes the development of the

quasi-orthogonal, finite-difference technique

3
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in the foregoing, and its application to the flow

in the hub-to-shroud plane of turbomachinery.

The governing flow equations and the procedure

of solution are described. The finite-difference

procedure and a turbulent boundary-layer calcula-

tion technique have been implemented in a computer

program, and the results for a radial to axial

inlet, a radial diffuser, and an interstage

return bend are presented.

MATHEMATICAL ANALYSIS

The derivation of the equations governing

the inviscid compressible flow on an S 2 surface

in this paper is similar to the development of

Wu ( 6 ) and, therefore, is given in the Appendix.
These equations, for adiabatic flow, are

summarized as follows,

The energy equation is given by,

TDt=Q=0,	 (1)

where the operator, D ( )/Dt, indicates a total

derivative, or for steady flow, the derivative

along a streamline.

The equation of state for a perfect gas

may be written

P = p R9T .	 (2)

The orthogonality relation for the body

force from the equations of motion, and the S 2

stream surface is given as,

F . W=0 .	 (3)

By the use of equation (3), and the equa-

tions of motion in cylindrical coordinates, we

have

Dt -
TDt=o .	 ()

The circumferential component of the equa-

tion of motion may be written

1 D(RV)
R Di	=R	(^)R'

where FB is the tangential component of the force

vector defined by

1	h	as	 (6)
F = nn Rq T ap

The stream function is derived from the continuity

equation, and may be defined as

	pbRW z	(7a)

az = -
 ObRWR	

( 7b )

where Rb may be thought of as the thickness of

the stream surface in the tangential direction.

If equation (7) is substituted into the

radial and axial components of the equation of

motion written on an S 2 stream surface, we obtain

two equations which are very similar in form, and

for conciseness may be written

(8)

R° + ^z2 = 4 ^R ' z ''	2z l + E
i	for i + 1, 2

where

q =	
. A(1n Rbp)	)d,. a(In bs l

2R	2R	az	lz

Rb	;Ii
w a!i,vR `

^1 wR	aR + T aR + R	aR *F1

and

W ^(RJ
Rbc	̂I	̂s	A	R

^2	W	Tz + r az + R	z	Fz
z

Equation (8) is a second-order, non-linear,

two-dimensional partial differential equation,

called the stream function equation or the

principal equation. Equation (8) may be expanded

into two principal equations, since l corresponds

to the radial component, and 2 to the axial

component of the equation of motion. Only one of

these principal equations is required to solve

the system of equations (1) through (8).

Wu ( 6 ) and Marsh ( 7 ) both use the radial
component (i = 1); since FR is always much smaller

than FZ in axial flow machines, and F R is zero or

nearly zero on S 2 surfaces for mixed flow impellers

with radial blade elements.

However, we wish to apply the principal

equation in regions where we may have purely

radial or axial flow; i,e., WR or W may in

general be zero, and the right-hand side of

either equation would not be defined. This com-

plication may be avoided by writing the equations

in a streamline coordinate system, but the equa-

tions are then dependent on the streamline slope

and curvature, and as explained earlier, it is

desirable to avoid this dependency.

Therefore, it is necessary to use the axial

version of equation (8) (i = 2), in regions where

WZ > WR , and the radial version of equation (8)

4
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(i = 1) in regions where WR > WZ ,

There are seven independent relations

contained in equations (1) to (8), and there are

nine unknowns, if we consider b as given; i,e.,

&, WR , WZ , WB, FR , FZ, F9, S, and I (or p), If

the shape of the S2 surface is assumed to be

known, two additional relations between the F or

n components will completely define the problem.

NUMERICAL TECHNIQUE

R

z
The previous section has described the

governing equations for the inviscid compressible

flow on an S 2 surface, These equations form a

system of non-linear partial differential equations

which, in general, are not soluble unless an

approximate numerical technique is employed.

The technique described here concerns the

numerical solution of the principal equation,

for prescribed boundary conditions, at discrete

points in the region of interest. The remaining

equations, equations (1) to (7) are used as

auxiliary equations to relate properties along

the stream function lines computed from equation

(8). Since equation (8) is nonlinear, the process

is iterative, with the functions,	and q,

assumed known and recomputed each iteration.

If we cover the area of interest with a

mesh of grid points, equation (8) can be applied

to every grid point, and by replacing the differ-

ential operator 7 2 ( ) by a finite difference

operator, a system of algebraic equations in the

unknown, , will be built up. This system of

equations can be expressed in matrix form as:

= CQ]	 (9'

where (A_1 is the square coefficient matrix derived

from replacing the differential operator p 2 ( ),

L"J is the vector of unknown stream function
values and [ Q] the vector of quantities q, and

the boundary values.

Finite-Difference Approximations

It is necessary to replace the mathematical

operator modifying ,Lt at any point P, by some

linear combination of the function values at

discrete points in the flow field. If these

discrete points lie on a regular grid, then the

linear coefficients are simple, well defined,

and tabulated in suitable texts. However, to

maintain a given order of accuracy for an irreg-

ular grid, a large number of coefficients are

required, and they will be different (in general)

for every point in the grid.

As with most finite-difference methods,

the Taylor's series is used to relate the changes

(a) 10-Point stencil for 2 ( )

R

z

(b) 15-Point stencil for ^f/^R, f/,z

Fig. 2 Finite-difference stencils

over a finite interval in the neighborhood of a

point of interest to the values of the function

and its derivatives at that point. Any operator,

for example ?( )/aZ or V 2 ( ), can be expressed

as a linear combination of the function values

at the surrounding points, to a degree of accuracy

depending on the number and location of these

points. Letting a represent such an operator,

this is expressible as:

a = 	a.
i
 f(R., z

i l
	 (la)

i	1" 

where a i is the coefficient multiplying the func-

tion value at the point, i, with coordinates Ri ,

zi, The function value, f (Ri,zi), can be

expanded in a two-dimensional Taylor's series

around the point of interest (Rp,zp), and if we

substitute in equation (la) and group terms, we

have

(10b)

a _ (r a l f	+ T a. AR. f	+ T a i Izi) fz l +i	/	p	i i	i	Ri	 p	i	 P

where the subscripts, R and z, denote partial

differentiation with respect to R and z. The
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Taylor's series must be truncated for practical

purposes, the accuracy desired defining the number

of terms retained. For example, if third-order

accuracy is desired, it can be shown that ten

terms must be retained, and in order to solve for

the coefficients, we will require ten grid points.

Equation (lob) can be broken into as many equations

as there are terms in the Taylor's series by

equating coefficients of like terms; for the ten

terms retained to obtain third-order accuracy,

ten equations result, which may be solved for the

coefficients, a i . For example if we have

2f ) 2 f

aR2 + ^Zz

the coefficients of the left-hand side (and thus

the right-hand side), of equation (10b) truncated

after the tenth term, will all be zero, except for

the coefficients of the second derivatives, fRR

and fzz.

The foregoing procedure may be made clear

by a simple example. Consider the case of a

square grid with spacing X in both directions,

and assume that the grid points are numbered as

shown in Fig, 2(a). Now when the coefficients

of ten terms of equation (10b) are expanded for

a square grid, and set equal to the Laplacian

coefficients, that is unity for the derivatives,

fRR and f zz , we have

al + a2 +a3 + . . . . + a10 =0,

X(al + a4 ) - X(a3 + a6 + a9) + 2a10 X = 0,

and

require third-order accuracy (10 terms), we

require information from four grid lines in the

R and z direction. That is, the finite-difference

stencil must be chosen so that the grid points

fall on four grid lines in each direction. If we

do not, the ten equations will not be independent.

It is desirable to minimize the number of

grid lines which the finite-difference stencil

covers since, for practical purposes, one wishes

to minimize the width of the banded matrix which

results from the system of difference equations,

Marsh was able to reduce the number of grid lines

required to three and still retain third-order

accuracy by an elegant device which made use of

the particular geometry of his irregular net.

Specifically, the irregular net which he used,

was made up of parallel lines in one of the

directions (axial), as shown in Fig. 1(b).

Unfortunately, for the quasi-orthogonal

grid which is used here, this device is not

applicable, and it is necessary to use four grid

lines in each direction. The finite difference

stencil which has proved to be successful in

computing the operator, a 2 ( )/aR2 + 82( )/a Z 2

with third-order accuracy is shown in Fig. 2(a),

In order to evaluate the functions, and

q, of equation (8), the first derivatives in the

axial and radial directions must be computed in

a manner similar to that described in the fore-

going for the operator V2 ( ), That is, we set:

aR - £
b. C.

- X(al + a2 + a3 + a10 ) + X(a8 + a9 ) + 2a7 X = 0,

and so on, until we have ten equations in the

ten unknowns, ai.
This system of equations can be solved

quickly by hand to give

al = a3 =a9 = a7 = a10 = 0,

2a2 =s^= a6 = aB =X

a5 = - 1+X -2

The finite difference expression for the

Laplacian thus reduces to

2 f
	f

ry TR
z + aZ 	X2 (f

2 + f4 + f6 + f8 - 4f J )

where the subscripts refer to the stencil point

of Fig. 2(a).

In general, for rectangular grids, if we

rV ;1 f
it =aZ =7 C i fi

and calculate the linear coefficients, b i and c i .

An interesting result was that for some of the

geometries considered, it was necessary to use

a fourth-order finite-difference stencil (15 grid

points) for the first derivative, to obtain the

correct solution of equation (8). Thus, a 15-

point stencil covering five grid lines in each

direction was employed to compute the coefficient,

bi and ci. A typical interior grid point stencil

is shown in Fig. 3(b),
As can be seen by examining the stencils in

Fig. 2, when the point at which the finite-

difference coefficients are being computed (R.,
Zp), is next to a boundary, some of the stencil

points will fall outside of the boundary. To
avoid this, the stencil is altered sufficiently

so that all of the stencil points fall within the

region of interest. The change in shapes is

generally achieved by moving the stencil point to

9= af
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L

Fig. 3(a) Radial to axial flow inlet

the other side of the stencil. For example, at

the exit boundary, point 7 of Fig. 2(a) is placed

beside point 2,

Boundary Conditions

In flow along S2 surfaces, the boundary

walls extend from inlet to exit, and if they are

solid, the stream function will be constant along

each walls That is, if we define a/iQ as the

stream function, ti1', non-dimensionalized with

respect to mass flow, we have on the hub or inner

wall;

d''1,j = 0 ,

and on the tip or outer wall:

n, J = 1.0.

At the inlet, we may assume that conditions

are known, and the variation of it across the

annulus on the inlet grid line may be computed.

At the exit station, it is necessary to

make some assumption which relates the Ot values

on the exit grid line to those on the adjacent

upstream grid line, The assumption made here is

that the stream function is constant between these

two grid lines, That is,

- 	i, m

and the location of the exit station should be

HUB	 SHROUD

6C

50

E

r

40
0
J
W

Q 30

0
0

uJ
20

Re7

0
0	200	400	600	800	1000

DISTANCE FROM HUB (mm)

Fig. 3(b) Radial to axial flow inlet velocity

profiles

chosen so that this approximation is reasonable.

Method of Solution

The foregoing finite-difference operators,

along with the boundary conditions and an initial

guess at the flow properties throughout, result

in the matrix equation

[A]LL'] = [Q]

	

(11)

A] is a square banded matrix of band width

(4n-7), and since there are (n-2) x (m-2) interior

grid points (where m is the number of quasi-

orthogonals and n is the number of quasi-stream-

lines), [A] is a sparse matrix. To minimize

computer storage requirements, [ Al is factored

into an upper and lower triangular banded matrix

such that:

^A] _ [L}[U]
	

(12)

and the resulting equation:

{LUv} _ [Q]	 (13)

may be solved explicity for [ lfr]_ This is

necessary since the inverse of f_Aj will not be a

banded matrix and core storage requirements would

become prohibitive.
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For axisymetric flow, equation (5) gives:

i a.(av
a_	 (14)

R ar;

and since from equations (1) and (4):

1 I	I S _ ^ ^	 (15)
in	3m

once the vector, ', has been computed, the

properties, I, RVe , and s, may be related along

streamlines to compute these quantities at each

grid point. Note that "m" is the direction of

the streamline in the meridional plane and will

be referred to as the meridional direction.

The density is allowed to lag one iteration,

so that once the velocity components have been

computed from equation (7), the density may be

computed simply from the equation of state.

In a duct region (no blades), the S 2 surface
will be defined by the tangential velocity

computed from equation (14), whereas if the sur-

face passes through a blade row, it is necessary

to specify the shape of the surface. Currently,

the angle that the surface makes with the merid-

ional direction is specified at each station

within the blade row. That is,

_l	altan ^V;
	 (ib)

When the flow properties have been computed

at all grid points, the vector IQj is recalculated,

and equation (15) solved again. This process is

repeated until the change in the vector q^1 is

within a specified tolerance on successive

iterations.

Limitations

The technique as described may be used to

compute a true three-dimensional inviscid flow

field on an S J surface if enough information is

available from some other source, Specifically,

a geometric description on the S2 stream sheet

and the property gradients in the tangential

directions are required, and these, in general,

would require the complete solution of the flow

on several Sl stream sheets.

In practice, the shape of the S surface

is estimated, and by assuming axisyrmnetric flow,

the tangential gradients are eliminated. If

computations within a blade row are required, the

shape of the surface is simplified by following

a mean stream surface defined by the mean flow

angle.

The two-layer approach requires that a

reliable end-wall boundary-layer calculat`_on

procedure be available if viscous flow, situations

are to be treated realistically. Igor two-

dimensional and axisyinmetric applications, there

are many good boundary-layer calculation techniques

descrbed in the literatu.^'e, If three-dirnensional

effects, such as si;=nificant cross-flow in the

boundary layer, or separated flow regions are

lirtely to exist, then additional models are

required which will interact with the inviscid

solution.

The principal equation, equation (8), is a

second-order non-linear partial differential

equation or the elliptic type, and the derivatives

are replaced by centered finite differences. If

the flow in the meridoval plane is locally

supersonic, the derivatives in this region should

not be computed using a centered finite difference

formula, since this would permit a downstream

point to influence the upstream point, which is

contrary to our physical knowledge of supersonic

flow. Thus, strictly speaking, the technique is

restricted to subsonic flow. In the analysis of

the flow through turbomachinery this limitation

takes two forms: if angular momentum is specified

(RV0); P 	1, and if the flow angle is specified

(13); Mabs< 1 for a stationary coordinate system

and Mre l < I for a rotating coordinate system.

Marsh ( 14 ) suggested that the ambiguity

caused by computing density and velocity could

be resolved if the density were allowed to lag

one iteration and the foregoing Mach number

limitation could be relaxed. This would permit

the computation of flow fields which contained

transonic regions or supersonic patches.

This technique of lagging the density has

been implemented, as described earlier, and it

does improve stability at high subsonic Mach

numbers. It will also permit computation of

supersonic patches, if the iteration procedure is

stopped when the stream function field appears

to have stabilized. However, if the computation

is permitted to continue, the Mach number in the

supersonic regIon will slowly but continually

increase, and will not converge to the appropriate

solution.

This phenomena is not peculiar to the

particular technique described in this paper,

but will occur in any fixed grid stream function

approach. For example, the same behavior has

been observed using a relaxation technique to

solve the stream function equation on the Sl

surface ( 15 ). Therefore, it appears that lagging

the density one iteration, will not insure that

supersonic patches may be treated.
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Boundary-Layer Model 8,	These computer t-imnec are typical,	once the

The two-layer model requires an end-wall matrices [ Ll andUj have been computed for the

boundary-layer calculation technique to complement particular grid of interest,

the inviscid flow field computation if a realistic These examples were chosen to illustrate

representation of internal flow is desired, the technique:	(a) because they are typical

The technique that has been used in the stationary components of centrifugal turbo-

computer program is an integral method based on machinery which are of interest to the designer

the entrainment theory of Head (16).	The two- and analyst; and (b) because in two of the

dimensional compressible momentum-integral egos- components, the inlet and the diffuser, data was

tion written in a streamline coordinate system available, which indicated the flow was well-

is solved on each end-wall using Head's entrain- behaved and could, therefore, be used to qualify

ment function for compressible flow as described the inviscid flow technique.	The third case was

by Summer (17), and the Ludweig-Tillman skin chosen to illustrate the flexibility of the finite-

friction relation. difference grid applied to a complex geometric

The blockage due to the boundary layer, shape, i,e,, a 180-deg annular bend,

i,e., the mass defect computed from the boundary- The velocity profiles which are given in

layer calculation, must be allowed to influence the following, were cbtained from an iteractive

the inviscid flow computation.	One manner by solution of the inviscid compressible flow using

which this is commonly accomplished is to redefine the finite difference technique, and a two-

the end-walls using the calculated displacement cimoensional turbulent boundary-layer calculation

thickness;	i.e,, new fictitious physical boundarin which uses the technique described earlier.	The

are employed for another inviscid flow oomputa- boundary-layer calculation effectively provides

tion,	Continued iteration of the two solutions the	inviscid flow computation with a blockage,

will then yield the complete solution, Some of the profiles which are presented,

As described earlier, when solving equation show the results of the inviscid calculation only,

(8) in an annular duct, the stream function and some show a combination of the inviscid and

values along the hub and along the casing are boundary-layer results,	When the boundary-layer

constants (i,e,, 0 and 1.0),	since each wall is profile has been shown, it was obtained from

essentially a streamline.	An alternative to the integral parameters of the two-dimensional

shifting the end-walls and retaining these boundary-layer calculation, and a power law

constants for the stream function boundary values, profile faired to provide a smooth transition from

is to change the boundary values, by an amount one region to the other,	When the inviscid pro-

equal to the local mass defect of the computed file is distorted or nonuniform, this fairing

boundary layer.	This method is equivalent to process was necessarily approximate,

the technique of redefining the boundary stream-

lines as described in the foregoing, but it does Annular Inlet

not alter the finite-difference grid, which would The radial-to-axial annular flow inlet

necessitate the repeated computation of the shown in Fig. 5(a) was designed as an experimental

finite-difference coefficients.	The procedure test rig to compare experimental data and analyt-

is, to solve equation (9)	for[ I j, calculate the ical predictions (18).	For this reason, there

end-wall boundary layers, redefine the stream was a large amount of data available for both

function boundary values, and then solve equation the inviscid flow and the end-wall boundary layers

(9) again,	If this technique were not used, and throughout the inlet,	In addition, the analytical

the grid was altered each iteration, computer inviscid flow profiles computed by the streamline

time would increase by a factor of 20 to 30 times, curvature method were available.

NUMERICAL EXAMPLES

A computer program has been developed to

implement the numerical procedure described in

the foregoing. The program is written in FORTRAN

for an IBM 370/168 with high-speed auxiliary

storage, and required approximately 50 K computer

words to accommodate grid sizes of 70 by 20. The

computer time varies from 5 to 10 sec for the

numerical examples described in the following,

which all had grid sizes of approximately 50 by

Fig. 3(b) shows the meridional velocity

profiles computed at the quasi-orthogonals P-1,

P-2, and 5-3 [shown in Fig, 3(a)] and compares

them with the experimental traverse data. The

blockage due to the boundary layer is accounted

for in the manner described earlier, but the

boundary -layer and inviscid velocity profiles have

not been combined. This explains, in part, the

discrepancy observed near the wall; i.e., the

inviscid flow should not extend to the wall but

should follow some boundary-layer velocity

profile. This explanation may be seen more
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Interstage Return Bend
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Fig. 4 Radial diffuser velocity profiles (swirl

angle, a = 30 deg)

clearly in the third example where the inviscid

and boundary-layer profiles are both shown in

Fig. 5(b), Apart from the wall region, the

agreement is very good. Also, although not shown,

the agreement between the streamline curvature

method and the finite-difference technique for

the inviscid flow velocity profiles in this case

was good.

Radial Diffuser

Fig, 4 shows the middle section of a radial

diffuser which extended from an impeller tip

radius of 2540 mm (10.0 in.) to an interstage

return bend inlet or diffuser exit at a radius of

4318 (17.0 in.). This radial diffuser was tested

extensively at Carrier -(19) for a variety of

compressor operating conditions, which produced

a number of different diffuser inlet conditions,

and thus various flow patterns. The case which

is shown in Fig. 4 had uniform inlet conditions,

with a swirl angle of 30 deg, and, therefore, the

velocity profiles shown are uniform, In this

case, the combined boundary layer and inviscid

velocity profiles are plotted. The boundary-layer

profile was computed from the boundary-layer

parameters by assuming a power law velocity pro-

file. The agreement with experimental data is

very good.

The third example gives a good demonstra-

tion of the flexibility of the quasi-orthogonal

grid in handling a complex geometry and flow

situation. The duct shown in Fig. 5(a) is typical

of the geometry used to connect one centrifugal

stage to the next, although many industrial return

bends have a much smaller radius of curvature on

the hub to minimize the axial distance between

stages.

The profiles for quasi-orthogonals Nos. 4,

15, 25, and 30 are shown in Fig, 5(b), There are

two profiles, one which represents the inviscid

flow, and the other the inviscid velocity profile

corrected for the boundary-layer effect. As

mentioned in the foregoing, the boundary-layer

profiles are calculated from the computed param-

eters assuming a power law distribution, and then

combined with the inviscid flow profile which has

been calculated with the boundary-layer blockage

effect,

CONCLUSIONS

This paper has described a new finite-

difference technique which has been developed to

permit the accurate, stable solution of the com-

pressible flow field in the meridional plane of

centrifugal turbomachinery, The method is general

in the sense that complex geometric bends may be

handled as easily as simple duct shapes, with

third-order accuracy.

By using the double stream surface approach

described by Wu ( 6 ), the complete inviscid
equations of motion and continuity may be solved

if sufficient information from the circumferential

plane is available.

The technique has been implemented, and

shown to be successful for several stationary

components of centrifugal machines; an inlet bend,

a radial diffuser, and an interstage return bend.

In addition, although this has not been accomplish-

ed at the present time, this method is suitable

for solving the inviscid flow field in rotating

centrifugal turbomachinery, i.e., within the

impeller. The difficulty in this case is the

accurate representation of real flow effects,

such as cross-flow in the boundary layers, sepa-

rated flow, etc.

The technique has proved to be stable under

adverse computation conditions such as extremely

large curvatures and interaction with a rapidly

changing end-wall boundary layer. This aspect of

the technique is particularly important when the

more complicated viscous flow models such as

three-dimensional boundary-layer calculation, and

separated flow zones are implemented, and must
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QUASI -ORTHOGONALS
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Fig. 5(a) Interstage return bend
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interact with the inviscid solution.

The availability of the quasi-orthogonal

finite-difference technique will now permit con-

centration on the development of models for the

viscous and three-dimensional flow effects in

0 t	 -  	^.	0 	^.

40	50	60	70	50	60	70

V (m/s)	 V (m/s)

Fig. 5(b) Interstage return bend velocity profiles

(flow angle = 50 deg from radial)
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APPENDIX

This derivation follows that of Wu ( 6 )

closely and is included here for completeness

only.

The equation of motion, in a steady rotating

coordinate system is given by

- W x (Vx V) = -VI + TVs	 (17)

where W is the relative velocity vector and V is

the absolute velocity vector, and

QxV =VxW+2uq	 (18)

where w is the angular velocity of the coordinate

system.

For general rotational motion, the equations

of motion, continuity, energy, and state may be

written in cylindrical coordinates (R,B,z) as:

1 Motion:

12

(19a)

Wo ra(RVA )	aWR^	dWR	̂Wz	
AI	̂s

R L_ SR	Aa	+ Wz az aR	aR + aR

	

W 'A(RV	AW	AW	dw	(19b)
R r	R'	Rl W rl _z _ P = 1 aI + T ^s

L	SR 	aA	z ^R ^A	az	R aA	R aR '

	-W 
^WR aWz^	

(I aWZ aWE' _ aI	as ; 19C)
R _az	SR 

^+WR
 RaA	̂z I	Az+T5Z

2 Continuity:

1

R c^ () + R ^A 
/

AW
p

\
 + ẑ ^

R pRWR
0w ) = 0	( 20)

3 Energy:

TDt=Q .	 (21)

4 State (perfect gas);

P= OR9T	 (22)

In order to solve the steady three-dimension-

al flow in a relatively simple manner, an approach

is taken to obtain the three-dimensional solution

by an appropriate combination of mathematically

two-dimensional flows on essentially two different

kinds of relative stream surface. The first kind

of relative stream surface is one whose inter-

section with the Z-plane at some location (i.e.,

inlet) is a circular arc. The second kind of

relative stream surface is one whose intersection

with the Z-plane at some location in the region

to be considered forms a radial line. These

surfaces are called the Sl and S2 surfaces,

respectively. In this development, we will consider

the S2 surface defined by

S2(R,R,z) = 0 ,	 (23)

It is convenient to consider the unit

vector, n, normal to the surface, which is related

to S 2 by

nR dR+nR dR+n z dz=0 .	 (24)

The vector, n, is perpendicular to the

relative velocity, W, so that

n W = 0	 (25)

Equations (23), (24), and (25) will now be

used to eliminate the independent variable, 8;

i.e., any quantity, q, on S 2 is now considered as

q = q[R,z,A(R,z)1
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Accordingly, on S 2 ,

aq 	q	1q
aR ^r nA R aR	 (26a)

(26b)
nz 1c

az	az	n R ^P '

where the operator ( ) is used to denote the

rate of change of any quantity, q, on S 2 , with

respect to R or z, with the other held constant.

The continuity equation thus becomes

^_(DW R)	e(PW )

R aRR + a
—-- = p•C(R,z)	( 27)

where

a(RbpW2)	a(Rb ow z )	 (30)

aR	+	̂z	-C'

which is the necessary and sufficient condition

that a stream function, , exist and

aR =Rb 0W 5 , (31a)

RbpWR	
( 3lb )

It may be shown that b is proportional to

the angular thickness of a thin stream sheet whose

mean surface is the stream surface, S 2 , and whose

variable circumferential thickness is equal to Rb.

The equations of motion may be combined

using equation (29), to give

1	; Ww	AWC	AWz

C(R,z; =	nQR nR aP	nA ^a 	nz aA )

DI _ Ds
Dt T Dt

(32)

If equation (31) is substituted into the

radial and axial components of the equation of

motion, i.e., equations (28a) and (28c), the

The equations of motion in the three perpendicular following equations will result:

directions become

WA _(RVp )	̂1WR	; Ww	
aI	aS	

( 28a)

R	aR	+ W z 

(

az	̂R _ 'AR + TA
R + FR ,

w0 a(RV )	w a(RV )D(RV )
28b

R	5Rp + R z az Q =	

r
FQ for FR Dt Q	(	)

^wR	aw 	WA ^(RV
R)	̂I	dS

-WR (')z	aR /	R	̂z	az + a + F z ,

(28c)

where F is a vector having the units of force per

unit mass of gas, defined by

1 I'^h	̂s 
F= nQR 4 P - T;q n

Since the vector, F, is normal to the S2

surface

	F . W= C	 (^9)

For convenience, the bar over the partial

derivative operator will be omitted in the remain-

der of the development,

By the use of an integrating factor, b, the

continuity equation, equation (27), may be put in

the form

(33a)

	= q(R,z) R̂	I + T ŝ + F + P ^(RVA
) ^ ,

ARz ^ z2	WR	AR 	R R	aR

and

(33b)

+ a2dr	R z ) + R^	̂I + T^s + F + Wa a(RVA ) 1

;R2	az2 = 4( 
	z	az	z R	as

where

q(R,z) = w • 
a(ln boR )	. 5(ln bo) .

,)R	dR	+ 'Az	az

For concisness, these may be written

Q z (d) = q (R, z) + ^ i ,	for i = 1,2	(34)

where

W	(RV )
	_ - R^ ^_ ^I	̂s	A	QWR ^ v aR +

T+ FR + R AR

and

W A(RV )

	

Rbp r ^I	7)s	a	a
+T—+F +

	

z = Wz L dz	 z R	Nz _

Equation (34) will be referred to as the stream

function equation or the principal equation.

13
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