A GENERAL FIXED POINT THEOREM FOR FOUR WEAKLY COMPATIBLE MAPPINGS SATISFYING AN IMPLICIT RELATION

VALERIU POPA

(2000) AMS Mathematics Subject Classification: 54H25.

Key words and phrases: fixed point, compatible mappings, weakly compatible mappings, implicit relation.

Abstract

In this paper, using a combination of methods used in [5], [14], [15] and [17] the results of [1, Theorems 2.2 and 2.3] and [15, Theorem 3] are improved by removing the assumptions of continuity and reciprocally continuity, relaxing compatibility and compatibility of type (A) to weakly compatibility and replacing the completeness of the space with a set of four alternative conditions for four mappings satisfying an implicit relation.

1. Introduction

Let S and T be self mappings of a metric space (X,d). Jungck [7] defines S and T to be compatible if $\lim d\left(\operatorname{STx}_{n}, T S x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim S x_{n}=\lim T x_{n}=x$ for some $x \in X$. In 1993, Jungck, Murthy and Cho [9] defined S and T to be compatible of type (A) if $\lim d\left(T S x_{n}, S^{2} x_{n}\right)=0$ and $\lim d\left(S T x_{n}, T^{2} x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim S x_{n}=\lim T x_{n}=x$ for some $x \in X$. By [9 Ex. 2.1. and Ex. 2.2.] it follows that the notions of compatible mappings and compatible mappings of type (A) are independent.

Recently, Pathak and Khan [12] introduced a new concept of compatible mappings of type (B) as a generalization of compatible mappings of type (A). We say that S and T are compatible of type (B) if

$$
\begin{aligned}
& \lim d\left(\mathrm{STx}_{\mathrm{n}}, \mathrm{~T}^{2} \mathrm{x}_{\mathrm{n}}\right) \leq \frac{1}{2}\left[\lim \mathrm{~d}\left(\mathrm{STx}_{\mathrm{n}}, \mathrm{St}\right)+\operatorname{limd}\left(\mathrm{St}, \mathrm{~S}^{2} \mathrm{x}_{\mathrm{n}}\right)\right] \\
& \operatorname{limd}\left(\mathrm{TSx}_{\mathrm{n}}, \mathrm{~S}^{2} \mathrm{x}_{\mathrm{n}}\right) \leq \frac{1}{2}\left[\operatorname{limd}\left(\mathrm{TSx}_{\mathrm{n}}, \mathrm{Tt}\right)+\operatorname{limd}\left(\mathrm{Ttt}^{2} \mathrm{~T}_{\mathrm{n}}\right)\right]
\end{aligned}
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim S x_{n}=\lim T x_{n}=t$ for some $t \in X$.
Clearly, compatible mappings of type (A) are compatible mappings of type (B). By [12, Ex. 2.4] it follows that the implication is not reversible. In [13] the concept of compatible mappings of type (P) was introduced and compared with the concepts of compatible mappings of type (A). S and T are compatible of type (P) if lim $d\left(S^{2} x_{n}, T^{2} x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim S x_{n}=\lim T x_{n}=t$ for some $t \in X$.
Lemma 1. [7] (resp. [9], [12], [13]). Let S and T be compatible (resp. compatible of type (A), compatible of type (B), compatible of type (P)) self mappings of a metric space (X, d). If $S x=T x$ for some $x \in X$, then $S T x=T S x$.

In 1994, Pant [10] introduced the notion of pointwise R - weakly commuting mappings. It is proved in [11] that the notion of pointwise R - weak commutativity is eqivalent to commutativity at coincidence points.

Recently, Jungck [8] (resp. Dhage [2]) defines S and T to be weakly compatible (resp. coincidentally commuting) if $\mathrm{Sx}=\mathrm{Tx}$ implies $\mathrm{STx}=\mathrm{TSx}$. Thus, S and T are weakly compatible or coincidentally commuting mappings if and only if S and T are pointwise R - weakly commuting mappings. It may, however, be noted that the notion of point-wise R-weakly commuting maps (1996) is older than the equivalent notions of weakly compatible maps (1996) and coincidently commuting maps (1999).
Remark 1. By Lemma 1 it follows that every compatible (compatible of type (A), compatible of type (B), compatible of type (P)) pair of mappings are weakly compatible.

The following example from [15] is an example of weakly compatible pair of mappings which is not compatible (compatible of type (A), compatible of type (P)).

Let $\mathrm{X}=[2,20]$ with the usual metric. Define
$T x=\left\{\begin{array}{ll}x & \text { if } \quad x=2 \\ 12+x & \text { if } 2<x \leq 5 \\ x-3 & \text { if } 5<x \leq 20\end{array} ; S x=\left\{\begin{array}{lll}2 & \text { if } & x \in\{2\} \cup(5,20] \\ 8 & \text { if } & 2<x \leq 5\end{array}\right.\right.$.
S and T are weakly compatible since they commute at their coincidence point. S and T are not compatible of type (B).

Let us consider a decreasing sequence $\left\{x_{n}\right\}$ such that $\lim x_{n}=5$. Then $\lim T x_{n}$ $=2, \lim S x_{n}=2, \lim S T x_{n}=8, \lim \mathrm{~T}^{2} \mathrm{x}_{\mathrm{n}}=14, \lim \mathrm{~S}^{2} \mathrm{x}_{\mathrm{n}}=2$. Then
$\lim \mathrm{d}\left(\mathrm{STx}_{\mathrm{n}}, \mathrm{T}^{2} \mathrm{x}_{\mathrm{n}}\right)=6>\frac{1}{2}\left[\operatorname{lim~d}\left(\mathrm{STx}_{\mathrm{n}}, \mathrm{St}\right)+\lim \mathrm{d}\left(\mathrm{St}_{\mathrm{S}} \mathrm{S}^{2} \mathrm{x}_{\mathrm{n}}\right)\right]=\frac{1}{2}(6+0)=3$.
The following theorems are proved in [1].
Theorem 1 [1]. Let $\{\mathrm{S}, \mathrm{I}\}$ and $\{\mathrm{T}, \mathrm{J}\}$ be compatible pairs of a complete metric space (X,d) into itself such that
(a) $\mathrm{T}(\mathrm{X}) \subset \mathrm{I}(\mathrm{X}), \mathrm{S}(\mathrm{X}) \subset \mathrm{J}(\mathrm{X})$,
(b) For all x, y in X , with $\mathrm{a}, \mathrm{b} \geq 0, \mathrm{a}+\mathrm{b}<1$, either
$\mathrm{d}($ Sx, Ty $) \leq \frac{\mathrm{a}[\mathrm{d}(\mathrm{Ix}, \text { Sx }) \mathrm{d}(\mathrm{Ix}, \text { Ty })+\mathrm{d}(\mathrm{Jy}, \text { Ty }) \mathrm{d}(\mathrm{Jy}, \text { Sx })]}{\mathrm{d}(\mathrm{Ix}, \text { Sx })+\mathrm{d}(\text { Jy, Ty })}+\mathrm{bd}(\mathrm{Ix}, \mathrm{Jy}) \quad$ whenever
$d(I x, S x)+d(J y, T y) \neq 0$, or
(1') $d(S x, T y)=0$ whenever $d(I x, S x)+d(J y, T y)=0$.
If one of S, T, I and J is continuous then S, T, I and J have a common fixed point z in X .

Further, z is the unique common fixed point of S and I , and T and J .
Theorem 2 [1]. Let $\{\mathrm{S}, \mathrm{I}\}$ and $\{\mathrm{T}, \mathrm{J}\}$ be compatible of type (A) pairs of mappings of a complete metric space (X, d) into itself such that condition (a) and (b) of Theorem 1 are satisfied. If one of S, T, I and J is continuous then S, T, I and J have a common fixed point z in X . Further, z is the unique common fixed point of S and I , and T and J .

2. Implicit relations

Let K_{6} be the set of all real continuous functions $\mathrm{F}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{6}\right): \mathrm{R}_{+}^{6} \rightarrow \mathrm{R}$ with t_{3} $+\mathrm{t}_{4} \neq 0$ satisfying the following conditions:
$\left(K_{1}\right) \quad F$ is decreasing in variables t_{5} and t_{6},
$\left(\mathrm{K}_{2}\right) \quad$ there exists $\mathrm{h} \in[0,1)$ such that for every $\mathrm{u}, \mathrm{v} \geq 0$ with
$\left(\mathrm{K}_{\mathrm{a}}\right) \quad \mathrm{F}(\mathrm{u}, \mathrm{v}, \mathrm{v}, \mathrm{u}, \mathrm{u}+\mathrm{v}, 0) \leq 0$ or
$\left(\mathrm{K}_{\mathrm{b}}\right) \quad \mathrm{F}(\mathrm{u}, \mathrm{v}, \mathrm{u}, \mathrm{v}, 0, \mathrm{u}+\mathrm{v}) \leq 0$
we have $\mathrm{u} \leq \mathrm{h}$.
Ex. 1. $\mathrm{F}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{6}\right)=\mathrm{t}_{1}-\frac{\mathrm{a}\left[\mathrm{t}_{3} \mathrm{t}_{5}+\mathrm{t}_{4} \mathrm{t}_{6}\right]}{\mathrm{t}_{3}+\mathrm{t}_{4}}-\mathrm{bt}_{2}$, where $0 \leq \mathrm{a}+\mathrm{b}<1$.
(K_{1}) Obviously.
$\left(K_{2}\right) \quad \operatorname{Let} F(u, v, v, u, u+v, 0)=u-\frac{a v(u+v)}{u+v}-b v \leq 0$.
Then $\mathrm{u} \leq \mathrm{hv}$, where $\mathrm{h}=\mathrm{a}+\mathrm{b}<1$.
Similarly, $\mathrm{F}(\mathrm{u}, \mathrm{v}, \mathrm{u}, \mathrm{v}, 0, \mathrm{u}+\mathrm{v}) \leq 0$ implies $\mathrm{u} \leq \mathrm{hv}$.
Ex. 2. $\quad \mathrm{F}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{6}\right)=\mathrm{t}_{1}-\frac{\mathrm{a}\left[\mathrm{t}_{3}^{2}+\mathrm{t}_{4}^{2}\right]}{\mathrm{t}_{3}+\mathrm{t}_{4}}-\mathrm{bt}_{2}-\mathrm{ct}_{5} \mathrm{t}_{6} \leq 0$, where $0<\mathrm{c}+\mathrm{b}<1, \mathrm{a}>0$ and $\mathrm{c} \geq$ 0.
(K_{1}) Obviously.
$\left(K_{2}\right) \quad$ Let $F(u, v, v, u, u+v, 0)=u-\frac{a\left(u^{2}+v^{2}\right)}{u+v}-b v \leq 0$, which implies

$$
u^{2}(1-a)+u v(1-b)-(a+b) v^{2} \leq 0
$$

If $\mathrm{v}=0$, then $\mathrm{u}=0$, a contradiction. Then $\mathrm{f}(\mathrm{t})=\mathrm{t}^{2}(1-\mathrm{a})+\mathrm{t}(1-\mathrm{b})-(\mathrm{a}+\mathrm{b}) \leq 0$, where $\mathrm{t}=\frac{\mathrm{u}}{\mathrm{v}}, \mathrm{f}(0)<0$ and $\mathrm{f}(1)=2[1-(\mathrm{a}+\mathrm{b})]>0$. Let $\mathrm{h} \in(0,1)$ be the root of the equation $\mathrm{f}(\mathrm{t})=0$, then $\mathrm{f}(\mathrm{t})<0$ for $\mathrm{t} \leq \mathrm{h}$ and thus $\mathrm{u} \leq \mathrm{hv}$.

Similarly, $\mathrm{F}(\mathrm{u}, \mathrm{v}, \mathrm{u}, \mathrm{v}, 0, \mathrm{u}+\mathrm{v}) \leq 0$ implies $\mathrm{u} \leq \mathrm{hv}$.
Ex. 3. $\quad \mathrm{F}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{6}\right)=\mathrm{t}_{1}-\frac{\mathrm{ct}_{3} \mathrm{t}_{4}+\mathrm{bt}_{5} \mathrm{t}_{6}}{\mathrm{t}_{3}+\mathrm{t}_{4}}$, where $1 \leq \mathrm{c}<2$.
(K_{1}) Obviously.
$\left(\mathrm{K}_{2}\right) \quad$ Let $\mathrm{u}>0$ and $F(u, v, v, u, u+v, 0)=u-\frac{c u v}{u+v} \leq 0$. Then $\quad u^{2}+u v-c u v$
≤ 0 which implies $\mathrm{u} \leq \mathrm{hv}$, where $0 \leq \mathrm{h}=\mathrm{c}-1<1$.
Similarly, $\mathrm{F}(\mathrm{u}, \mathrm{v}, \mathrm{u}, \mathrm{v}, 0, \mathrm{u}+\mathrm{v}) \leq 0$ implies $\mathrm{u} \leq \mathrm{hv}$.

If $u=0$ and $v>0$ then $u \leq h v$.
Ex. 4. $\mathrm{F}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{6}\right)=\mathrm{t}_{1}^{3}+\mathrm{t}_{1}^{2}+\mathrm{t}_{1}-\frac{\left(\mathrm{bt}_{5}+\mathrm{ct}_{6}\right)^{2}}{\mathrm{t}_{3}+\mathrm{t}_{4}}$ where $1 \leq \mathrm{b}<\frac{\sqrt{2}}{2}, 0 \leq \mathrm{c}<\frac{\sqrt{2}}{2}$.
$\left(\mathrm{K}_{1}\right)$ Obviously.
(K_{2}) $\quad \mathrm{F}(u, v, v, u, u+v, 0)=u^{3}+u^{2}+u-\frac{b^{2}(u+v)^{2}}{u+v} \leq 0$ which implies $\mathrm{u}-\mathrm{b}^{2}(\mathrm{u}+\mathrm{v}) \leq 0$, hence $\mathrm{u} \leq \mathrm{h}_{1} \mathrm{v}$, where $\mathrm{h}_{1}=\frac{\mathrm{b}^{2}}{1-\mathrm{b}^{2}}<1$.

Similarly, $\mathrm{F}(\mathrm{u}, \mathrm{v}, \mathrm{u}, \mathrm{v}, 0, \mathrm{u}+\mathrm{v}) \leq 0$ implies $\mathrm{u} \leq \mathrm{h}_{2} \mathrm{v}$, where $\quad \mathrm{h}_{2}=\frac{\mathrm{c}^{2}}{1-\mathrm{c}^{2}}$
<1. Then $u \leq h v$, where $h=\max \left\{h_{1}, h_{2}\right\}$.
Other examples are presented in [15].
S and T are said to be reciprocally continuous [11] if $\quad \lim \mathrm{TSx}_{\mathrm{n}}=\mathrm{Tt}$
and $\lim \mathrm{STx}_{\mathrm{n}}=$ St whenever $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a sequence in X such that $\lim \mathrm{Sx}_{\mathrm{n}}=\lim \mathrm{Tx}_{\mathrm{n}}=\mathrm{t}$ for some $t \in X$. If S and T are both continuous then they are obviously reciprocally continuous, but the converse is not true. There exists reciprocally continuous mappings S and T such that S and T are non-continuous [11]. The following theorem is proved in [15].
Theorem 3 [15]. Let (S, I) and (T,J) a weakly compatible pair of self-mappings on a complete metric space (X, d) such that
(a) $\quad \mathrm{S}(\mathrm{X}) \subset \mathrm{J}(\mathrm{X}), \mathrm{T}(\mathrm{X}) \subset \mathrm{I}(\mathrm{X}) ;$
(b) $\quad \mathrm{F}(\mathrm{d}(\mathrm{Sx}, \mathrm{Ty}), \mathrm{d}(\mathrm{Ix}, \mathrm{Jy}), \mathrm{d}(\mathrm{Ix}, \mathrm{Sx}), \mathrm{d}(\mathrm{Jy}, \mathrm{Ty}) \mathrm{d}(\mathrm{Ix}, \mathrm{Ty}) \mathrm{d}(\mathrm{Jy}, \mathrm{Sx})) \leq 0$
for all $x, y \in X$ with $d(I x, S x)+d(J y, T y) \neq 0$, where $F \in K_{6}$, or
(b') $\mathrm{d}(\mathrm{Sx}, \mathrm{Ty})=0$ if $\mathrm{d}(\mathrm{Ix}, \mathrm{Sx})+\mathrm{d}(\mathrm{Jy}, \mathrm{Ty})=0$;
(c) (S,I) and (T,J) is a compatible pair of reciprocally continuous mappings. Then S, T, I and J have a unique common fixed point.
In this paper, using a combination of methods used in [5], [14], [15] and [17] the results of Theorems $1-3$ are improved by removing the assumptions of continuity and reciprocally continuity, relaxing compatibility and compatibility of type (A) to weakly compatibility and replacing the completeness of the space with a set of four alternative conditions for four mappings satisfying an implicit relation.

3. Main results

Theorem 4. Let $\mathrm{S}, \mathrm{T}, \mathrm{I}$ and J be self mappings of a metric space (X, d) such that
(a) $\quad \mathrm{S}(\mathrm{X}) \subset \mathrm{J}(\mathrm{X})$ and $\mathrm{T}(\mathrm{X}) \subset \mathrm{I}(\mathrm{X})$;
(b) The pairs (S, I) and (T, J) are weakly compatible;
(c) $\quad \mathrm{F}(\mathrm{d}(\mathrm{Sx}, \mathrm{Ty}), \mathrm{d}(\mathrm{Ix}, \mathrm{Jy}), \mathrm{d}(\mathrm{Ix}, \mathrm{Sx}), \mathrm{d}(\mathrm{Jy}, \mathrm{Ty}) \mathrm{d}(\mathrm{Ix}, \mathrm{Ty}) \mathrm{d}(\mathrm{Jy}, \mathrm{Sx})) \leq 0$
for all $x, y \in X$ with $d(I x, S x)+d(J y, T y) \neq 0$, where $F \in K_{6}$, or
(c') $\mathrm{d}(\mathrm{Sx}, \mathrm{Ty})=0$ if $\mathrm{d}(\mathrm{Ix}, \mathrm{Sx})+\mathrm{d}(\mathrm{Jy}, \mathrm{Ty})=0$.

If one of $S(X), T(X), I(X)$ and $J(X)$ is a complete subspace of X, then S, T, I and J have a common fixed point u. Further, u is the unique common fixed point of S and I, and T and J.
Proof. Let x_{0} be an arbitrary point in X. Then since (a) holds, we can inductively define the sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ by

$$
\mathrm{y}_{2 \mathrm{n}}=\mathrm{Sx}_{2 \mathrm{n}}=\mathrm{Jx}_{2 \mathrm{n}+1} ; \quad \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Tx}_{2 \mathrm{n}+1}=\mathrm{Ix}_{2 \mathrm{n}+2} \text { for } \mathrm{n}=0,1,2, \ldots
$$

(i). If
$\mathrm{d}\left(\mathrm{Ix}_{2 \mathrm{n}}, \mathrm{Sx}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{Jx}_{2 \mathrm{n}+1}, \mathrm{Tx}_{2 \mathrm{n}+1}\right) \neq 0$ and $\mathrm{d}\left(\mathrm{Ix}_{2 \mathrm{n}}, \mathrm{Sx}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{Jx}_{2 \mathrm{n}-1}, \mathrm{Tx}_{2 \mathrm{n}-1}\right) \neq 0$
for $\mathrm{n}=0,1,2, \ldots$ as in the proof of $\left[15\right.$, Theorem 3] it follows that $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence.

Now suppose that $J(X)$ is a complete subspace of X, then the sequence $y_{2 n}=$ $\mathrm{Jx}_{2 n+1}=S \mathrm{x}_{2 \mathrm{n}}$ is a Cauchy sequence in $\mathrm{J}(\mathrm{X})$ and hence has a limit u. Let $v \in J^{-1} u$, then $J v$ $=u$. Since $\left\{y_{2 n}\right\}$ is convergent and $y_{2 n+1}=\mathrm{Tx}_{2 n+1}=\mathrm{Ix}_{2 n+2}$ also converges to u. To prove that $u=T v$, assume that $d(u, T v)>0$. Setting $x=x_{2 n}$ and $y=v$ in (c) we have

$$
\mathrm{F}\left(\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tv}\right), \mathrm{d}\left(\mathrm{Ix}_{2 \mathrm{n}}, \mathrm{Jv}\right), \mathrm{d}\left(\mathrm{Ix}_{2 \mathrm{n}}, \mathrm{Sx}_{2 \mathrm{n}}\right), \mathrm{d}(\mathrm{Jv}, \mathrm{Tv}), \mathrm{d}\left(\mathrm{Ix}_{2 \mathrm{n}}, \mathrm{Tv}\right), \mathrm{d}\left(\mathrm{Jv}, \mathrm{Sx}_{2 \mathrm{n}}\right)\right) \leq 0
$$

and letting n tend to infinity we get

$$
\mathrm{F}(\mathrm{~d}(\mathrm{u}, \mathrm{Tv}), 0,0, \mathrm{~d}(\mathrm{u}, \mathrm{Tv}), \mathrm{d}(\mathrm{u}, \mathrm{Tv}), 0) \leq 0
$$

which implies by $\left(\mathrm{K}_{\mathrm{a}}\right)$ that $\mathrm{d}(\mathrm{u}, \mathrm{Tv})=0$, a contradiction. Then $u=T v$.
Since $T(X) \subset I(X), u=T v$ implies $u \in I(X)$. Let $w \in I^{-1} u$, then $\quad I w=u$. Now using the earlier arguments one can show that $S w=u$. Therefore, $u=J v=T v=$ $\mathrm{Iw}=\mathrm{Sw}$. If one assumes that $\mathrm{I}(\mathrm{X})$ is complete then analogous arguments establish the earlier conclusion. The remaining two cases are essentially the same as the previous cases. Indeed, if $S(X)$ is complete then by (a) $u \in S(X) \subset J(X)$. Similarly, if $T(X)$ is complete, $\mathrm{u} \in \mathrm{T}(\mathrm{X}) \subset \mathrm{I}(\mathrm{X})$.

By $u=J v=T v$ and weak compatibility of (J,T) we have

$$
\mathrm{Tu}=\mathrm{TJv}=\mathrm{JTv}=\mathrm{Ju}
$$

By $u=I w=S w$ and weak compatibility of (I,S) we have

$$
\mathrm{Su}=\mathrm{SIw}=\mathrm{ISw}=\mathrm{Iu}
$$

Then $d(I w, S w)+d(J u, T u)=0$ and by $\left(c^{\prime}\right)$ we have $d(S w, T u)=0$, i. e. $d(u, T u)=0$, which implies $u=T u$. Similarly one can show that $u=S u$. Then

$$
\mathrm{u}=\mathrm{Tu}=\mathrm{Ju}=\mathrm{Su}=\mathrm{Iu}
$$

Let z be other fixed point of T and J. Then

$$
\mathrm{d}(\mathrm{Su}, \mathrm{Iu})+\mathrm{d}(\mathrm{Tz}, \mathrm{Jz})=\mathrm{d}(\mathrm{u}, \mathrm{u})+\mathrm{d}(\mathrm{z}, \mathrm{z})=0 .
$$

Therefore, by $\left(\mathrm{c}^{\prime}\right)$ we have $\mathrm{d}(\mathrm{Su}, \mathrm{Tz})=\mathrm{d}(\mathrm{u}, \mathrm{z})=0$. Hence, $\mathrm{u}=\mathrm{z}$. Similarly, u is the unique fixed point of S and I .
(ii). If

$$
\mathrm{d}\left(\mathrm{Ix}_{2 \mathrm{n}}, \mathrm{Sx} \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{Jx}_{2 \mathrm{n}+1}, \mathrm{Tx}_{2 \mathrm{n}+1}\right)=0
$$

and

$$
\mathrm{d}\left(\mathrm{Ix}_{2 \mathrm{n}}, \mathrm{Sx}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{Jx}_{2 \mathrm{n}-1}, \mathrm{Tx}_{2 \mathrm{n}-1}\right)=0
$$

for some $\mathrm{n}=1,2, \ldots$ the proof is identical with the proof of case (ii) by [15, Theorem 3]
Corollary 1. Theorems 1 and 2.
Proof. It is follows from Theorem 4 and Ex. 1 .
Corollary 2. Theorem 3.
Proof. It is follows from Theorem 4.
If $\mathrm{I}=\mathrm{J}=$ id there we obtain the following theorem.
Theorem 5.Let S and T self mappings of a complete metric space such that for all x, y in X either

> Valeriu Popa
> $\mathrm{F}(\mathrm{d}(\mathrm{Sx}, \mathrm{Ty}), \mathrm{d}(\mathrm{x}, \mathrm{y}), \mathrm{d}(\mathrm{x}, \mathrm{Sx}), \mathrm{d}(\mathrm{y}, \mathrm{Ty}), \mathrm{d}(\mathrm{x}, \mathrm{Ty}), \mathrm{d}(\mathrm{y}, \mathrm{Sx})) \leq 0$
if $d(x, S x)+d(y, T y) \neq 0$ or $d(S x, T y)=0$ otherwise. Then S and T have a unique common fixed point.
Remark 2. By Theorem 5 and Ex. 2 for $\mathrm{b}=\mathrm{c}=0$ we obtain Theorem 2 of [3]. By Theorem 5 and Ex. 3 we obtain Theorem 3 of [4] because the condition $\left(\mathrm{K}_{2}\right)$ is not necessary in the proof.

References

[1] Z. Ahmad and A. J. Asad, Common fixed point of compatible and (A) type compatible mappings, Math. Notae, 4 (1999-2002), 67-74.
[2] B. C. Dhage, On common fixed points and coincidentally commuting mappings in D - metric spaces, Indian J. Pure Appl. Math. 30 (4) (1999), 395 406.
[3] B. Fisher, Common fixed point and constant mappings satisfying a rational inequality, Math. Seminar Notes 6 (1978), 29 - 35.
[4] B. Fisher, Theorems of mappings satisfying a rational inequality, Comment. Math. Univ. Carolinae 19 (1978), $37-44$.
[5] M. Imdad, S. Kumar and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Radovi Mat. 11 (2002), $135-143$.
[6] G. S. Jeong and B. E. Rhoodes, Some remarks for improving fixed point theorems for more that two mappings, Indian J. Pure Appl. Math. 28 (9) (1997), 1177 - 1196.
[7] G. Jungck, Compatible mappings and common fixed points, Internat J. Math. Math. Sci. 9 (1986), 771 - 779.
[8] G. Jungck, Compatible fixed point for non-continuous non-self mappings on non-numeric spaces, Far East J.Math. Sci. 4(2)(1996),192-212.
[9] G. Jungck, P. P. Murthy and Y. J, Cho, Compatible mappings of type (A) and common fixed points, Math. Japonica, 36 (1993), $381-390$.
[10] R. P. Pant, Common fixed points for non-commuting mappings, J. Math. Anal. Appl. 188 (1994), 436-440.
[11] R. P. Pant, Common fixed points for four mappings, Bull. Calcutta Math. Soc. 9 (1998), 281 - 286.
[12] H. K. Pathak and M. S. Khan, Compatible mappings of type (B) and common fixed point theorems of Gregus type, Czechoslovak Math. J., 45 (120) (1995), $685-698$.
[13] H. K. Pathak, Y. J. Cho, S. M. Kang and B. S. Lee, Fixed point theorems for compatible mappings of type (P) and application to dynamic programming, Le Matematiche (Fasc. I), 50 (1995), $15-33$.
[14] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Mathematica, 32 (1999), $157-163$.
[15] V. Popa, Some fixed point theorems for weakly compatible mappings, Radovi Mat. 10 (2001), 245 - 252.
[16] V. Popa, Coincidence and fixed point theorems for noncontinuous hybrid contractions, Nonlinear Analysis Forum, 7 (2) (2002), 153 - 158.

Four weakly compatible mappings
[17] S. L. Singh, V. Chadha and S. N. Mishra, Remarks on recent fixed point theorems for compatible mappings, Internat J. Math. Math. Sci. 19, 4 (1996), 801-804.

Department of Mathematics
University of Bacău
600114 Bacău, RUMANIA
E-mail: vpopa@ub.ro

