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Abstract
Pathfinding for a single agent is the problem of planning a
route from an initial location to a goal location in an environ-
ment, going around obstacles. Pathfinding for multiple agents
also aims to plan such routes for each agent, subject to different
constraints, such as restrictions on the length of each path or
on the total length of paths, no self-intersecting paths, no inter-
section of paths/plans, no crossing/meeting each other. It also
has variations for finding optimal solutions, e.g., with respect
to the maximum path length, or the sum of plan lengths. These
problems are important for many real-life applications, such as
motion planning, vehicle routing, environmental monitoring,
patrolling, computer games. Motivated by such applications,
we introduce a formal framework that is general enough to
address all these problems: we use the expressive high-level
representation formalism and efficient solvers of the declar-
ative programming paradigm Answer Set Programming. We
also introduce heuristics to improve the computational effi-
ciency and/or solution quality. We show the applicability and
usefulness of our framework by experiments, with randomly
generated problem instances on a grid, on a real-world road
network, and on a real computer game terrain.

Introduction
Pathfinding for a single agent is the problem of planning a
route from an initial location to a target location in an environ-
ment, going around obstacles. Pathfinding for multiple agents
(PF) also aims to plan such routes for each agent, but subject
to various constraints, such as no self-intersecting paths, no
intersection of paths/plans, no crossing/meeting each other,
no waiting idle, restrictions on the length of each path/plan
and on the total length of paths/plans, and requirements on
visiting multiple target locations. PF also has variations for
finding optimal solutions where the goal is to minimize the
maximum path/plan length, the sum of path/plan length, the
number of target locations visited, etc. Some of these PF
problems have been studied in the literature, but under dif-
ferent names. For instance, if it is required that the plans
of the agents do not interfere with each other then PF is
called multi-agent pathfinding problem. If it is required that
each agent visits multiple target locations then PF is called
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multi-robot routing problem. Assuming that agents are homo-
geneous and move one unit at a time, deciding whether a so-
lution of at most k moves to multi-agent pathfinding exists is
NP-complete (Ratner and Warmuth 1986); optimization vari-
ants of both problems are NP-hard (Lagoudakis et al. 2005;
Surynek 2010).

Despite their difficulty, PF problems have played a sig-
nificant role in different applications, such as motion plan-
ning (Bennewitz, Burgard, and Thrun 2002), vehicle rout-
ing and traffic management (Svestka and Overmars 1998;
Dresner and Stone 2008; Pallottino et al. 2007), air traf-
fic control (Tomlin et al. 1998), computer games (Silver
2005), disaster rescue (Kitano et al. 1999; Jennings, Whelan,
and Evans 1997), formation generation for multi-agent net-
works (Smith, Egerstedt, and Howard 2009), patrolling and
surveillance (Machado et al. 2002; Xu and Stentz 2011).

In these applications, PF is solved subject to various rel-
evant constraints. For instance, in computer games such as
Warcraft III, the routes of agents may intersect with each
other as long as the agent’s plans do not interfere with each
other (i.e., the agents can be at the same location in different
time steps, but not at the same time). On the other hand, in
environmental coverage or surveillance, it may be required
that the routes of agents do not intersect with each other at
all so that more areas are covered in a shorter amount of time
(note also the limited power supplied by batteries of robots).
In disaster rescue, it may be required that certain parts of the
world are checked by some agent (i.e., they should be covered
by some route) since it is more probable for some people to
be there. To prevent an agent to do all the work, a restriction
may be specified on the length of the route or the duration
of the plan for each agent. Furthermore, the maximum plan
length or the sum of plan lengths may be minimized to save
some battery power.

We introduce a formal framework that is general enough to
solve many variations of PF (including the ones mentioned
above) declaratively, with the possibility of guaranteed opti-
mality with respect to some criteria based on plan lengths, and
with the possibility of embedding heuristics. This framework
is based on Answer Set Programming (ASP) (Lifschitz 2008;
Brewka, Eiter, and Truszczynski 2011)—a knowledge rep-
resentation and reasoning paradigm with an expressive for-
malism and efficient solvers. The idea of ASP is to formalize
a given problem as a “program” and to solve the problem
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by computing models (called “answer sets” (Gelfond and
Lifschitz 1991)) of the program using “ASP solvers”, such
as CLASP (Gebser et al. 2007). The expressive formalism
of ASP allows us to easily represent variations of PF, as
well as sophisticated heuristics to improve the computational
efficiency and/or quality of solutions. Such a flexible elabora-
tion tolerant (McCarthy 1998) general framework is useful
in studying and understanding variations of PF and differ-
ent heuristics in different applications. Deciding whether an
ASP has an answer set for nondisjunctive programs is NP-
complete (Dantsin et al. 2001), therefore ASP is expressive
enough for solving many PF problems.

We show the applicability and effectiveness of our ASP-
based framework (from the point of view of computational
efficiency and quality of solutions) by experiments with ran-
domly generated problem instances on a grid, on a real-world
road network, and with a computer game terrain.

Pathfinding for Multiple Agents
We consider a general pathfinding problem (i.e., PF) where
multiple agents need to find paths from their respective start-
ing locations to their goal locations, ensuring that paths do
not collide with static obstacles and that no two agents collide
with each other, and view PF as a graph problem as follows.

Input:
• a graph G = (V,E),
• a positive integer k,
• a function h that maps every positive integer i≤ k to a

pair (vi, ui) of vertices in V ,
• a set O⊆V , and
• a function g that maps every positive integer i≤ k to a

positive integer li.
Output: For every positive integer i ≤ k with
h(i) = (vi, ui) and g(i) = li,
• a path Pi = 〈wi,1, . . . , wi,ni

〉 for some ni≤ li from
wi,1 = vi to wi,ni

=ui in G where each wi,j ∈ V \O,
• a function fi that maps every nonnegative integer less

than or equal to li to a vertex in Pi such that,
(i) for every wi,j , wi,j′ in Pi and for every nonnega-

tive integer t< li, if fi(t)=wi,j and fi(t+1)=wi,j′

then wi,j′ =wi,j or wi,j′ =wi,j+1; and
(ii) for different paths Pi and Pj and positive integers

ti≤ li, tj ≤ lj , if fi(ti)= fj(tj) then ti 6= tj .

Intuitively, graph G characterizes the environment (e.g., a
game terrain) where the agents move around, positive inte-
ger k denotes the number of agents, function h describes the
initial and goal locations of agents, set O denotes the parts
of the environment covered by the static obstacles, and func-
tion g specifies the maximum plan length li for each agent i.
A path Pi in G from an initial location vi to a goal location ui

characterizes the path that the agent i plans to traverse. The
accompanying function fi denotes which vertices in the path
are visited when; the conditions on fi makes sure that (i) the

agent visits consecutive vertices in Pi at consecutive time
steps, or waits at a vertex (e.g., to give way to other agents),
and that (ii) no two agents meet at the same place (collision).

An upper bound li on the plan length is specified as part
of the PF problem to avoid that one agent does all the work
in case some parts of the environment should be visited by
some agents. One can specify a very large li for each agent
to discard a tight bound on path lengths.

We define variations of PF by restricting solutions further
using the following constraints (ASP can handle these and
more constraints, which we omit for space reasons):
C No path Pi has a cycle.

This constraint can be useful in cases where robotic agents
shall not visit the same part of the environment many times
for a more efficient use of their batteries.

I No two different paths Pi and Pj (i< j) intersect with
each other.
This constraint can be useful in cases where it is sufficient
if only one robotic agent visits each part of the environ-
ment, also for a more efficient use of their batteries.

V Some specified vertices should be visited by some path Pi.
This constraint can be useful, for instance, in a disaster
rescue scenario, where it is essential that certain parts of
the environment are visited by some agent.

W Waiting of agents is not allowed (e.g., to minimize idle
time): for every path Pi and for every nonnegative integer
ti < li, if fi(ti) 6=ui, i.e., agent i has not yet reached its
goal ui, then fi(ti) 6= fi(ti+1).

X Agents cannot “pass through” each other (switch place):
for every two different paths Pi and Pj and for ev-
ery nonnegative time step t< min(li, lj), if fi(t)=wx,
fi(t+1)=wx′ , and fj(t)=wx′ then fj(t+1) 6=wx.

L The sum of the plan lengths is less than or equal to a given
positive integer: for each agent i, the smallest time step ti
such that f(ti)=ui denotes the length of its plan. Formally
the sum of plan lengths is

∑k
i=1 min{ti : f(ti)=ui}.

This constraint can be useful in cases where we want to
minimize the total time (and energy) spent by agents.
Arbitrary combinations of these constraints can be con-

sidered; for instance multi-agent pathfinding problems con-
sider X. Some of them, e.g., (Standley 2010; Standley and
Korf 2011; Sharon et al. 2011; Yu and LaValle 2013) fo-
cus on finding solutions where the sum of plan lengths is
as small as possible (as suggested by L). Problems studied
by patrolling/surveillance applications (Machado et al. 2002)
do not consider X, but since they focus on finding plans
that ensure some parts of the environment are visited by
some agent, they consider V and sometimes I (Xu and Stentz
2011). Multi-robot routing problems (Lagoudakis et al. 2005;
Kishimoto and Sturtevant 2008) where robots move one unit
at a time also consider V, for some allocation of target loca-
tions to robots, as well as L to minimize total path lengths.

An interesting variation of PF aims to reach all goals as
soon as possible. We call this problem TPF, it minimizes
maximum plan length over all agents, formally it minimizes
maxki=1 min{ti : f(ti)=ui}.
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Solving PF in ASP
We represent a PF problem as a program P in ASP, whose
answer sets correspond to solutions of the problem. We refer
readers to (Lifschitz 2008; Brewka, Eiter, and Truszczynski
2011), for syntax and semantics of programs.

We describe the input I =(G, k, h,O, g) of a PF instance
by a set FI of facts: edge(v, u) represents edges (v, u)∈E;
start(i, v) and goal(i, u) represent start and goal vertices of
each agent i≤ k (i.e., h(i)= (v, u)); finally clear(v) repre-
sents that v ∈V \O.

The output (Pi, fi) of PF characterizes for each agent i a
path plan such that the agent reaches the goal location from
its initial location and avoids obstacles. We represent path
plans by atoms of the form path(i, t, v) which specify that at
time step t, agent i is at vertex v, formally fi(t)= v.

The ASP program P defines path plans recursively. The
first vertex visited by agent i at step 0 is its initial location v:

path(i, 0, v)← start(i, v).
If a vertex v is visited by the agent i at step t (0 ≤ t < li,
recall g(i) = li), then either the agent waits at v or it moves
along an edge (v, u) to an adjacent vertex u:
1{ path(i, t+1, v), path(i, t+1, u) : edge(v, u) }1←

path(i, t, v).
We ensure that agents do not go through obstacles:

← path(i, t, v), not clear(v)
and that each agent i reaches its goal v:

← goal(i, v), not visit(i, v)
visit(i, v)← path(i, t, v)

where visit(i, v) describes that the path of agent i contains v.
We also ensure that agents do not collide with each other:

← path(i, t, v), path(i′, t, v)
(v ∈V, 1≤ i< i′≤ k, 0≤ t≤ li, lj)

The ASP program P is sound and complete.

Theorem 1. Given a problem instance I = (G, k, h,O, g),
for each answer set S of P ∪FI , the set of atoms of the form
path(i, t, v) in S encodes a solution (Pi, fi) (1 ≤ i ≤ k) to
the PF problem. Conversely each solution to the PF problem
corresponds to a single answer set of P ∪FI .

The atoms in P that include time steps only depend on
atoms of previous time steps. So we can use the splitting
set theorem and the method proposed in (Erdogan and Lifs-
chitz 2004) iteratively at each time step to eventually show
(by induction) that the answer sets for P ∪FI characterize
obstacle- and collision-free paths for agents.

Solving Variations of PF in ASP
To solve variations of PF in ASP, we simply add to the main
program P described above, a set of ASP rules which encode
the relevant constraints. For instance, to solve multi-agent
pathfinding, we add to P the ASP constraints describing X.
It is important to emphasize here that, we do not modify the
rules of the program P ; in that sense, our formulation of PF
in ASP is elaboration tolerant (McCarthy 1998). Constraints
are formulated as follows:

C (i.e., no cycles in a path) can be expressed in ASP by
the following constraint for each agent i∈ 1 . . . k:
← 2{path(i, 0, v), . . . , path(i, li, v)}, not goal(v). (v ∈V )

These constraints ensure that, for every agent i, no non-goal
vertex in the path Pi is visited twice or more by the agent i.

I (i.e., no intersection of paths) is encoded as
← visit(i, v), visit(i′, v) (v ∈V, 1≤ i< i′≤ k)

which ensures that no two agents i, i′ visit the same vertex v.
V (i.e., visit specified vertices) is represented in ASP by
← required(v), {visit(1, v), . . . , visit(k, v)}0 (v ∈ V )

where required(v) describes the vertices to be visited.
W (i.e., no waiting) can be formalized as
← path(i, t, v), path(i, t+1, v), not goal(i, v)

(v ∈ V, 1 ≤ i ≤ k, 0 ≤ t < li).

X (i.e., no swapping places) can be represented by the
following constraints for pairs of distinct agents i, j:
← path(i, t, v), path(i, t+1, w), path(j, t, w),

path(j, t+1, v) (i 6= j, (v, w)∈E, 0≤ t< li, lj).

L (i.e., the total plan length is restricted by a positive
integer z) can be formalized in ASP as follows

← totalPlanLength(t) (t > z)

where totalPlanLength(t) (“the sum of all plan lengths is t”)
is defined as follows:
totalPlanLength(t)← sum〈{x : planLength(i, x)}〉 = t
planLength(i, t)← path(i, t, v), goal(i, v), path(i, t−1, v′),

not goal(i, v′) (0 < t ≤ li, v, v
′ ∈ V, 1 ≤ i ≤ k).

Here the aggregate sum is used to find the total plan lengths;
and planLength(i, t) describes the plan length for agent i.

We can formalize TPF in ASP, by simply adding to the
formulation of PF in ASP (i.e., program P ), the rules above
that define planLength(i, x) and the following rules:

maxPlanLength(t)← max〈{x : planLength(i, x)}〉 = t
#minimize [ maxPlanLength(t) = t ].

The optimization variant of multi-agent pathfinding, which
minimizes the maximum plan length, can be represented by
adding Constraint X to the formulation of TPF in ASP.

A similar optimization variant of multi-robot routing with
target vertices (described by atoms target(v)) can be rep-
resented by adding to the formulation of TPF in ASP the
Constraint V and the rules
1{goal(i, v) : target(v)}1← (1 ≤ i ≤ k)
required(v)← target(v), {goal(1, v), . . . , goal(k, v)}0.

that allocate the given target vertices to agents.

Experimental Results
We performed experiments with various randomly generated
instances of PF to be able to understand
• how the input parameters affect the computation time and

solution quality (i.e., average path plan length);
• how adding constraints to the main problem formulation

affects the computation time and solution quality;
• how various heuristics affect the computation time and

solution quality.
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Table 1: PF and TPF on random 25× 25 grid graphs with a
variable number of obstacles o and agents k.

o k Grounding First Solution Optimal Solution
% sec sec (plan length) sec (plan length)

10

5 0.70 0.27 (30.4) 7.60 (27.4)
10 1.88 0.84 (31.2) 13.39 (29.7)
15 3.43 1.39 (32.9) 18.97 (31.6)
20 6.27 3.66 (33.4) 30.78 (32.6)

20

5 0.39 0.16 (28.0) 4.21 (26.0)
10 1.59 0.68 (31.5) 16.12 (29.6)
15 3.51 1.88 (38.0) 20.71 (36.0)
20 5.90 4.13 (35.8) 31.35 (33.8)

40

5 0.67 0.28 (58.8) 7.12 (54.5)
10 2.10 1.19 (63.8) 18.07 (59.6)
15 3.78 4.99 (62.0) 29.19 (57.8)
20 7.28 10.58 (69.7) 45.30 (66.6)

We randomly generated problem instances of PF on three
sorts of graphs: randomly generated grid graphs, a real road
network, and a computer game terrain.

• The grid graphs are of size 25 × 25. We varied the num-
ber of agents k=5, 10, 15, 20 and the percentage of grid
points covered by obstacles o=10, 20, 40.

• The road network (Xu and Stentz 2011) is a graph with 769
vertices and 1130 edges. We considered k=5, 10, 15, 20.

• The computer game terrain (Sturtevant 2012) is a map
(called battleground.map) of a computer game Warcraft
III. It is a 512 × 512 grid-based graph which consists of
262144 vertices and 523264 edges, where 92268 of the
vertices are not covered by obstacles. In our experiments,
for k=5, 10, 15, 20, 25, we sampled k start and goal con-
figurations with Euclidean distance of at most 25.

For grid graphs and the road network, we used a timeout of
1000 CPU seconds and a memory limit of 4GB. For the larger
computer game dataset, we limited memory usage to 10GB.

We used the ASP solver CLASP (Version 2.1.1) with the
grounder GRINGO (Version 3.0.5) on a machine with four
1.2GHz Intel Xeon E5-2665 8-Core Processors and 64GB
RAM. We used CLASP in single-threaded mode with the
command line --configuration=handy as this config-
uration performs best in the majority of cases. CPU times are
reported in seconds. In tables, each row gives averages over
10 randomly generated instances, for CPU times and plan
lengths.

We assumed that the maximum plan length for every agent
is identical: for every i, g(i) = li = l. In our experiments,
we started with l=30, and increased it by 10 (until l=80)
if the solver proved that there exists no plan for that l. We
repeated this until l=80 and above that we considered the
problem unsolved.

Experiments on Artificial Grid Graphs The goal of
these experiments is to understand how the parameters of
instances (n×n: grid size, k: number of agents, o: percentage
of obstacles) affect the computation time.

Table 1 shows results of our experiments, where we vary
the number of agents and the percentage of blocked vertices
in the grid graph. Every row in the table presents three CPU
times: 1) for grounding, 2) for finding some solution (possi-

Table 2: PF/TPF with combinations of C,W,X on random
25×25 grids with k=15 agents and o=20% obstacles.

C W X Grounding First Solution Optimal Solution
sec sec (length) sec (plan length)

3.30 2.56 (34.8) 19.09 (34.4)
x 3.71 12.98 (38.1) 37.52 (34.4)

x 11.24 3.35 (36.7) 32.19 (34.4)
x 3.64 18.74 (39.0) 48.96 (34.4)
x x 3.85 27.82 (39.0) 66.31 (34.4)

x x 11.62 18.30 (39.0) 70.02 (34.4)
x x 11.61 34.33 (38.6) 103.28 (34.4)
x x x 11.59 33.32 (39.0) 116.13 (34.4)

bly non-optimal, but less than the given upper bound l on the
plan length), and 3) for finding an optimal solution. The sec-
ond CPU time (for finding the first solution) is included in the
third CPU time (for an optimal solution). Plan lengths (solu-
tion quality) are presented in parentheses. For instance, with
o=40% of obstacles and k=20 agents, GRINGO grounds
the instances in 7.28 seconds, CLASP computes some solu-
tion to PF in 10.58 seconds with a plan length of 69.7; finding
an optimal solution (of length 66.6) takes 45.30 seconds.

We observe from Table 1 that increasing the number of
agents increases both the grounding time and the solution
time (first and optimal solution). The number of obstacles,
on the other hand, primarily influences the plan length of an
optimal solution, e.g., with 20 agents the average optimal plan
length is 33.8 steps for 20% obstacles, compared to 66.6 steps
for 40% obstacles. While the plan length increases with more
obstacles, the time spent to find such a solution stays fairly
stable between 10% and 20% obstacles, and increases to less
than twice with 50% obstacles. Solution time is primarily
determined by the number of agents.

Experiments with Constraints The goal of these experi-
ments is to understand the effect of constraints on the compu-
tation time and the solution quality (average plan length). We
considered variations of PF with all combinations of C, W,
and X, according to which paths must not have cycles, agents
are forbidden to wait idle, and head-on collisions of agents
are forbidden, respectively. Table 2 shows the results of these
experiments, sorted by the overall time to compute an op-
timal solution (i.e., by the sum of Grounding and Optimal
Solution).

We observe from Table 2 that C and W marginally increase
the grounding time; and, contrary to our expectations, W
and C do not improve the quality of the initial solution, or
reduce the solution time by constraining the problem more. X
significantly increases the grounding time; however, among
all constraints, it has the least effect on the time for finding
initial solutions. All constraints significantly increase the
time to find optimal solutions; their combinations increase
this time even more.

Which constraints to add to the main formulation should be
decided on a case-by-case basis depending on the actual appli-
cation. For instance, since graph representations are discrete
abstractions of an environment, and the computed discrete
paths characterize the continuous trajectories followed by the
agents, X may be ignored in some applications where the
agents do not necessarily follow straight paths. It may not be
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Table 3: PF/TPF with redundancy elimination (E) and circle
heuristics (R) on random 25×25 grid graphs with k=15
agents and o=20% obstacles.

E R Grounding First Solution Optimal Solution
sec sec (plan length) sec (plan length)

3.48 2.44 (34.8) 19.32 (34.4)
x 16.71 5.23 (36.9) 56.24 (34.4)

x 1.87 0.95 (37.1) 14.47 (34.5)†

x x 17.18 2.11 (38.4) 30.33 (34.5)‡
† 2 instances unsatisfiable, ‡ 2 instances out of memory

possible for two agents to move in opposite directions on an
edge (v, u) in the given graph, but it may be possible in the
environment for one agent to move from v to u and the other
agent to move from u to v following different continuous
trajectories. On the other hand, for some other applications
where robots move via narrow roads, X may be required.

We also experimented with other constraints: Adding I
to the ASP formulation of PF increases the computation
time in many problems. Note that since I ignores the time
of an agent visiting a vertex, it may be too strong for many
PF applications. Adding L to the ASP formulation of PF
similarly increases the computation time in many problems.

Experiments with Heuristics We utilized the “circle
heuristic” (Erdem and Wong 2004) to improve the computa-
tional efficiency in terms of computation time and consumed
memory. The circle heuristic identifies, for each agent, a sub-
graph of the given graph that is more “relevant” for that agent
to search for a path: we introduce two “circles” with a given
radius around the start and the goal positions of the agent,
and require that the path connecting the start and the goal
positions is contained in the union of these two circles. The
radius can be defined as a constant, or a function of some
distance between the start and the goal positions. By pre-
processing, for each agent i, we identify the relevant edges
(v, u) of the graph and represent them as facts of the form
relevantEdge(i, v, u); and replace in P all atoms of the form
edge(v, u) by relevantEdge(i, v, u).

We also experimented with a “redundancy elimination”
heuristic to eliminate certain redundant moves of agents;
moving from vertex u to v via other vertices is not allowed if
an edge (u, v) exists, except if the agent is waiting at u or v:

← path(i, t, u), path(i, t′, v), edge(u, v),
not path(i, t+1, u), not path(i, t′−1, v).

where 0 ≤ t < t′ < li, t+1 < t′, 1 ≤ i ≤ k, v, u ∈ V ,
and v 6=u. This heuristic intuitively removes redundancies
in paths, and thus it is expected to improve the quality of
solutions by making average plan lengths smaller. Note that
there still may be redundancies if the specified maximum
plan length is not small enough.

To analyze the effect of adding these heuristics, we consid-
ered randomly generated instances of PF, over 25× 25 grid
graphs with o=20% obstacles and k=15 agents. With the
circle heuristic, for each agent i, we considered a radius of
dEDi

2 e+3 where EDi is the Euclidean distance between the
start and the goal locations of agent i.

Table 3 shows the results of our experiments. Each row in

Table 4: PF/TPF with circle heuristics (R) on a road network.
k Grounding First Solution Optimal Solution

sec sec (plan length) sec (plan length)
5 1.02 0.16 (29.5) 4.97 (24.4)

10 1.39 0.59 (32.0) 11.65 (29.4)
15 3.30 1.14 (35.6) 18.16 (32.5)
20 4.42 1.68 (34.9) 22.35 (32.7)
25 7.60 4.13 (39.2) 37.73 (34.6)

Table 5: PFW/TPF with circle heuristics (R) on game map.
k Grounding First Solution Optimal Solution

sec sec (plan length) sec (plan length)
5 22.94 0.29 (34.8) 9.07 (29.0)

10 56.48 0.81 (34.7) 23.14 (33.0)
15 109.09 1.25 (45.7) 29.45 (45.7)
20 80.76 1.14 (35.3) 26.71 (35.3)
25 119.90 1.82 (40.3) 40.48 (40.3)

this table shows averages over the same set of instances used
in our experiments with constraints (Table 2). Here E and R
denote the redundancy elimination and the circle heuristics.

We observe that, since the redundancy elimination heuris-
tic adds further constraints to the problem, the grounding
time increases. These constraints, furthermore, do not con-
strain the search space enough to allow the solver engine
to find solutions faster; therefore, the solution time also in-
creases. Contrary to what we expected, solution quality also
becomes worse with redundancy elimination. The additional
constraints seem to be misleading for the solver, resulting in
worse solution quality and worse efficiency.

With the circle heuristic, only some parts of the graph
are considered while computing a solution; therefore, this
heuristic significantly reduces both the grounding time and
the time to find an optimal solution. Recall, however, that
with a small value of the radius, the circle heuristic is neither
sound nor complete: the optimal solution found for PF with
the circle heuristic may not be an optimal solution for PF;
also there may be instances of PF that have some solutions,
but using the circle heuristic eliminates all solutions.

Experiments on a Real Road Network The results of our
experiments with randomly generated instances of PF on
the road network, using the circle heuristics, are shown in
Table 4.

We observe that, with an increasing number of agents,
grounding time does not increase as fast as the time to prove
optimality. Finding an initial solution is fast in these instances,
and plan length averages show that initial solutions are often
already optimal.

The time to prove optimality is greater than the time for
finding an initial solution; and quality of initial and optimal
solutions are close to each other. Therefore, on a road net-
work, it might be advantageous to try to find some solution
(rather than an optimal one).

We also observed that optimal solution lengths are as same
as the lengths of optimal solutions computed without using
the circle heuristic.

Experiments on a Real Game Terrain The results of ex-
periments with randomized instances of PFW on a game
terrain, using the circle heuristics, are shown in Table 5.
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We observe at Table 5 that, due to the larger grid size, the
problem instances are also bigger in terms of number of facts
that describe the map. Therefore grounding consumes a lot
of time for this setting. On the other hand, for applications
where the environment (e.g., game terrain map) does not
change, we can do grounding only once and reuse the ground
ASP program for different problem instances in the same
environment.

In this domain, an initial solution is found in a second,
whereas finding an optimal solution and proving its optimal-
ity take a significant amount of time. Fortunately, the average
plan length of initial solutions does not differ much from the
average plan length of optimal solutions. Therefore, comput-
ing only the initial solution might be sufficient in practice.

Furthermore, we observed that optimal solution lengths
are the same when they are computed with and without using
the circle heuristics.

Related Work
Our formal framework for PF is general enough to solve
variations of pathfinding problems with multiple agents, in-
cluding multi-agent pathfinding (MAPF) and multi-robot
routing. Many of these variants have been studied in the lit-
erature; thus a comprehensive comparison with the existing
approaches is not possible within limited space. Therefore,
we briefly discuss related work on MAPF, and report some
preliminary experimental results.

Most of the existing solutions to MAPF apply some sort
of A* search algorithm, with decoupled pathfinding or cen-
tralized pathfinding approach. In the former approach (Sil-
ver 2005; Dresner and Stone 2008; Wang and Botea 2008;
Jansen and Sturtevant 2008), a path is computed for each
agent independently; in case a conflict occurs (e.g., two
agents attempt to move to the same location), it is re-
solved by replanning one of the conflicting agents’ route.
Although this approach could be used to solve large MAPF
instances quickly, it lacks the optimality and completeness
guarantees. The latter approach (Ryan 2008; Surynek 2009;
Standley 2010) considers the multi-agent system as a single-
agent system by combining state spaces of each agent into
one state space and then use a search algorithm to find
paths for all agents simultaneously. Although the central-
ized approach can guarantee optimality and completeness,
it is not as efficient (in terms of computation time) as the
decoupled approach for large problems. More recently, some
decoupled pathfinding algorithms (Luna and Bekris 2011;
Wang and Botea 2011) are introduced to guarantee com-
pleteness for some graphs; and some (Standley and Korf
2011) optimality. Some centralized planners (Ryan 2010;
Khorshid, Holte, and Sturtevant 2011) use heuristics to find
suboptimal solutions to improve computational efficiency.
Our approach to MAPF is centralized, guarantees various
sorts of optimality (thanks to elaboration tolerant representa-
tion of PF and various constraints), soundness and complete-
ness (Theorem 1). As observed from experiments, with some
heuristics, the computational efficiency can be improved also.

It is important to emphasize here that, unlike our ASP-
based approach, the search-based methods above do not pro-
vide a formal framework; and thus it is hard to ensure and

verify various properties (e.g., constraints mentioned above)
over paths unless the modeling of the problem and the imple-
mentation of the algorithm are modified for each case.

One of the closest related work to ours is by Yu and LaValle
(2013): like our approach, the authors introduce a formal
framework for solving MAPF to minimize overall plan length
on arbitrary graphs with a centralized approach, but using
integer linear programming (ILP) instead of ASP. Differently
to Yu and Lavalle, our approach is general enough to solve
variations of PF, some of which are not (or not easily) repre-
sentable in ILP (e.g., acyclicity constraints). We compared
the ILP approach to ours using 180 randomly generated TPF
instances of 25x25 grid graphs with 0-40% obstacles, and
with either 10 or 20 agents (10 instances for each configu-
ration). We used 1000 seconds timeout and report averages
and standard deviation for finding optimal solutions. We ob-
served that memory usage was higher for ILP (<10GB) than
for ASP (<4GB). With 10 agents, ILP found optimal solu-
tions faster (3 seconds) than ASP (11 seconds); average plan
length was 27 steps. With 20 agents, ILP did not return a
solution for 7 of the 180 instances and solved the remaining
instances in 42 seconds on average (deviation 74 seconds),
while ASP timed out only for 2 of 180 instances and found
optimal solutions for the other instances in 50 seconds on
average (deviation 36 seconds); average plan length was 30
steps. We observed that an increased amount of obstacles de-
grades both ILP and ASP performance, however ILP perfor-
mance degrades much stronger. This is because ILP is based
on linear optimization with additional support for boolean
variables, while ASP is well-suited for finding solutions to
highly constrained boolean search spaces.

Although the approaches are quite different, we also
compared our (centralized, complete, optimal) ASP-based
approach with the state-of-the-art (decoupled, incomplete,
nonoptimal) MAPF solver MAPP (Wang and Botea 2011)
with some randomly generated instances of the game Bal-
dur’s Gate, described in (Wang and Botea 2011). Preliminary
results confirm our expectations (as also observed in previous
studies comparing decoupled and centralized approaches): in
terms of computation time MAPP performs better than our
approach as the number of agents and the grid size increases;
on the other hand, some problems with multiple conflicts
cannot be solved by MAPP while they can be solved by our
approach. A more detailed comparison is ongoing work.

Discussion and Conclusion
We have introduced a general formal framework to solve var-
ious pathfinding problems with multiple agents (PF), using
ASP. We have shown that, due to the expressive formalism
of ASP, we can easily represent PF and its variations sub-
ject to different constraints on the paths, and heuristics to
improve computational efficiency and quality of solutions.
Such a flexible elaboration tolerant framework is important
in studying and understanding PF and its applications in
different domains (e.g., motion planning, vehicle routing, en-
vironmental monitoring, patrolling/surveillance, computer
games). In particular, that our framework can be applied to
any sort of graphs (e.g., not necessarily grid graphs or trees)
is advantageous for various robotic applications.
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