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Gardens, St Andrews, Fife KY16 9LZ, UK; 2Statistics in Ecology, Environment andConservation, Department of Statistical

Sciences, and AfricanClimate andDevelopment Initiative, University of Cape Town, Rondebosch 7701,South Africa; 3Sea
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Summary

1. Acoustic monitoring can be an efficient, cheap, non-invasive alternative to physical trapping of individuals.

Spatially explicit capture–recapture (SECR) methods have been proposed to estimate calling animal abundance

and density fromdata collected by a fixed array ofmicrophones.However, thesemethodsmake some assumptions

that are unlikely to hold inmany situations, and the consequences of violating these are yet to be investigated.

2. We generalize existing acoustic SECRmethodology, enabling these methods to be used in amuch wider vari-

ety of situations. We incorporate time-of-arrival (TOA) data collected by the microphone array, increasing the

precision of calling animal density estimates. We use our method to estimate calling male density of the Cape

PeninsulaMoss FrogArthroleptella lightfooti.

3. Our method gives rise to an estimator of calling animal density that has negligible bias, and 95% confidence

intervals with appropriate coverage. We show that using TOA information can substantially improve estimate

precision.

4. Our analysis of the A. lightfooti data provides the first statistically rigorous estimate of calling male density

for an anuran population using amicrophone array. This method fills a methodological gap in themonitoring of

frog populations and is applicable to acoustic monitoring of other species that call or vocalize.

Key-words: anura, bootstrap, frog advertisement call, maximum likelihood, Pyxicephalidae, spa-

tially explicit capture–recapture, time of arrival

Introduction

Population size is one of the most important variables in ecol-

ogy and a critical factor for conservation decision-making.

Distance sampling and capture–recapture are both well-estab-

lished methods used for the estimation of animal abundance

and density. Both approaches calculate estimates of detection

probabilities, and these provide information about how many

animals in the survey area were undetected. Estimates of abun-

dance and density are then straightforward to calculate. One

particular point of difference is that distance sampling uses

locations of detected individuals in space, while typically cap-

ture–recapture records the initial capture, and subsequent

recaptures, of individuals at various points in time. The rela-

tively recent introduction of spatially explicit capture–recap-

ture (SECR) methods (Efford 2004; Borchers & Efford 2008;

Royle &Young 2008; Royle et al. 2013; see Borchers 2012; for

a non-technical overview) has married the spatial component

of distance sampling and the temporal nature of capture–

recapture approaches. Indeed, Borchers et al. (in press) linked

the two under a unifyingmodel to show that they exist at oppo-

site ends of a spectrum of methods, which vary with the

amount of spatial information employed.

Data collected from SECR surveys are records (known as

the capture histories) of where and when each individual was

detected. Detection may occur in a variety of ways, for exam-

ple, by physical capture, or from visual recognition of a partic-

ular individual. SECRmethods treat animal activity centres as

unobserved latent variables, and the positions of detectors that

did (and did not) detect a particular individual are informative

about its location; an individual’s activity centre is likely to be

close to the detectors at which it was detected.

Efford, Dawson & Borchers (2009) first proposed the appli-

cation of SECR methods to detection data collected without

physically capturing the animals themselves, but from an

acoustic survey using an array of microphones (see section 9.4,

Royle et al. 2013; for a summary of acoustic SECRmethods).

This is appealing when the species of interest is visually cryptic

and difficult to trap physically, but is acoustically detectable.

Moreover, it is less disruptive and invasive than physical cap-

ture. When individuals can be detected (virtually) simulta-*Correspondence author. E-mail: bcs5@st-andrews.ac.uk
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neously on multiple detectors (e.g. by virtue of the same call

being recorded at multiple microphones), then ‘recaptures’ (or,

more accurately, ‘redetections’) occur at different points in

space rather than across time, thus removing the need for mul-

tiple survey occasions. This has the advantage of substantially

reducing the cost of fieldwork. In this case, the capture histo-

ries simply indicate which microphones detected each call, and

no longer have a temporal component. The latent locations are

no longer considered activity centres, but simply the physical

location of the individual when the call was made. The use of

SECR for these data is advantageous over competing

approaches (e.g. distance sampling) as these often assume that

the locations can be determined without error, and this does

not hold inmany cases.

The method of Efford, Dawson & Borchers (2009) used sig-

nal strengths (i.e. the loudness of a received call at a micro-

phone) to improve estimates of individuals’ locations:

microphones that received a stronger signal of a particular call

are likely to be closer to the latent source locations than those

that received a weaker signal. Such additional information is

capable of improving the precision of parameter estimates

(Borchers et al. in press).

Naturally, acoustic detection methods are unable to esti-

mate the density of non-calling individuals. Any density esti-

mates obtained from acoustic surveys therefore correspond to

the density of calling individuals, or density of calls themselves

(i.e. calls per unit area per unit time), rather than overall popu-

lation density. If the proportion of individuals in the popula-

tion that call is known (or can be estimated), then it is

straightforward to convert estimated calling animal density to

population density. Otherwise, the utility of measures related

to abundance or density (e.g. relative abundance indices) has

been shown for a variety of taxa, of which only subsets of the

populations are acoustically detectable.

For example, females do not call for almost all anuran spe-

cies. It is therefore only possible to obtain an estimate of calling

male density from an acoustic survey. Nevertheless, qualitative

estimates of call density (i.e. density recorded on a categorical

scale) for frog populations have been found to correlate well

with capture–recapture estimates (Grafe &Meuche 2005), and

male chorus participation is the best known determinant of

mating success in many frog species (Halliday & Tejedo 1995).

As a result, call density is often used as a proxy for frog density

(e.g. Corn, Muths & Iko 2000; Crouch & Paton 2002; Pellet,

Helfer &Yannic 2007).

Further examples of taxa for which measures related to

abundance and density have been estimated using acoustic

methods include birds (e.g. Buckland 2006; Celis-Murillo,

Deppe & Allen 2009; Dawson & Efford 2009), cetaceans (e.g.

Harris et al. 2013; Martin et al. 2013), insects (e.g. Fischer

et al. 1997) and primates (e.g. Phoonjampa et al. 2011). See

Marques et al. (2013) for an overview of the use of passive

acoustics for the estimation of population density.

While the method of Efford, Dawson & Borchers (2009)

shows promise in estimating calling animal abundance and

density using fixed arrays of acoustic detectors, a major practi-

cal issue was not addressed in this work: the method as

described is only appropriate if each individual is only detect-

able on a single occasion (e.g. by virtue of making exactly one

call). The likelihood presented assumes independent detections

between calls, thus independence between call locations. This

is unlikely to hold when individuals emit more than a single

call, as locations of calls made by the same individual are

almost certainly related. This issue was not explicitly acknowl-

edged, and as a result, the subsequent analyses presented by

Marques et al. (2012) and Martin et al. (2013), which apply

the method of Efford, Dawson & Borchers (2009), are prob-

lematic. Additionally, the analysis of Dawson & Efford (2009)

used an approach that is unlikely to be appropriate in many

scenarios.We outline these studies below.

Marques et al. (2012) and Martin et al. (2013) applied

acoustic SECR methods to data collected by underwater hy-

drophones, which detected vocalizations from minke whales

Balaenoptera acutorostrata Lac�ep�ede. As the location of a

whale’s call is likely to be close to the location of its previous

call, this analysis suffers the assumption violation mentioned

above. The consequences of this violation are not clear.

Furthermore, calls were treated as the unit of detection

meaning that each call (rather than each individual) was given

its own capture history. The resulting density estimate was

therefore of call density rather than calling whale density. Dis-

tance sampling analyses have previously used independently

estimated call rates to convert from call density to calling ani-

mal density (e.g. Buckland 2006), and Efford, Dawson & Bor-

chers (2009) suggest using the same approach. The efficacy of

this approach in an SECR setting is yet to be investigated, and

a way of estimating variance of animal density estimates gener-

ated in this way has not yet been proposed.

Dawson & Efford (2009) estimated density of singing oven-

birds Seiurus aurocapilla (Linnaeus) using small arrays of

microphones. Of all calls attributed to the same individual,

only the first was retained for analysis. Assuming indepen-

dence between locations of retained calls was therefore appro-

priate, and the resulting density estimate was of singing bird

density. However, there are two potential problems with this

practice: first, it can only be carried out in situations where

individuals are recognizable from their calls, and on many sur-

veys, this is not the case. Second, recall that the likelihood

assumes each individual is only detectable on a single occasion.

Therefore, any detections retained for analysis must be detec-

tions of the first call the individual made over the course of the

survey, and not only the first call that was detected. In general,

it is not known when a call is undetected, and so one cannot be

sure that the first detected call is the first call. Retaining calls

that were the first detected call, but not the first emitted call,

can result in positive bias in calling animal density estimates.

Putting the method of Efford, Dawson & Borchers (2009)

into practice is therefore problematic. It is necessary to investi-

gate the consequences of violating assumptions of call location

independence and propose suitable estimators based on acous-

tic detection data from amicrophone array. In this manuscript

we present a general method that gives rise to estimators of

calling animal density. We also develop methodology that can

be used to estimate variance of the proposed estimators. We

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 38–48
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show by simulation that both perform well under reasonable

assumptions.

An additional improvement is possible, which we also incor-

porate into our estimator. While Efford, Dawson & Borchers

(2009) suggest the use of received signal strengths to further

inform call locations (in addition to detection locations), Bor-

chers et al. (in press) demonstrate the utility of time-of-arrival

information in this regard. Multichannel arrays are capable of

recording the precise times at which a signal is detected by each

individual microphone, and subtle differences between these

times are informative about the location of the sound source.

For example, a call’s source location is likely to be closest to

the microphone with the earliest detection time. The use of

such auxiliary data informative on call locations in acoustic

SECR is further motivated by Fewster & Jupp (2013), who

show that incorporating response data from additional sources

leads to estimators that are asymptotically more efficient.

Indeed, we show via simulation that our estimator has less bias

and is more precise when it incorporates time-of-arrival data.

We use our method to estimate calling male density of the

Cape Peninsula Moss Frog Arthroleptella lightfooti (Bouleng-

er) from an acoustic survey. The genus Arthroleptella (moss

frogs; family Pyxicephalidae) are tiny (adults are typically 7–

8 mm total length), visually cryptic and inhabit seepages on

mountain tops in South Africa’s Western Cape Province

(Channing 2004). Due to the region’s topography, many spe-

cies are severely range restricted, endemic to individual moun-

tains, such that most of the genus are on the IUCN red list (1

Critically Endangered, 1 Vulnerable, 3 Near Threatened and 2

Least Concern;Measey 2011).

Individuals are extremely hard to find (approximately 3–4

person-hours per individual) and therefore prohibitively

expensive to monitor via direct observation. However, males

can be heard calling throughout the austral winter fromwithin

montane seepages, making an acoustic survey ideal. Move-

ment of individuals is minimal over the course of such surveys;

during physical searches, frogs appear to call from the same

precise locations (Measey, pers. obs.). Currently, these popula-

tions are monitored with a subjective estimate of calling male

abundance (Measey et al. 2011). Such subjective methods are

typically employed in anuranmonitoringmethodologies (Dor-

cas et al. 2009). These estimates have no corresponding mea-

sure of estimate uncertainty. Additionally, there is no formal

way of accurately determining the survey area within which

individuals are detected, and so estimates of calling male den-

sity are not available. Indeed, Dorcas et al. (2009) conclude

that current auditory monitoring approaches to surveying

anuran populations are restricted in their ability to estimate

abundance or density. At present, no method exists that is

capable of generating both point and interval estimates of

either call or calling male density in a statistically rigorous

manner. For the genus Arthroleptella (among others), this

problem is further compounded by the lack of any method

capable of identifying individuals from their calls, so it is not

known how many different individuals have been detected.

Themethodwe present overcomes these problems.

Materials andmethods

OVERVIEW

Ourmethod has threemain components:

1. An acoustic SECR survey fromwhich call density is estimated.

2. Estimation of the average call rate, allowing for conversion of the

call density estimate into a calling animal density estimate.

3. Aparametric bootstrap procedure for variance estimation.

Once call density is estimated in Step 1, establishing an estimate for

the mean call rate in Step 2 allows for the estimation of calling animal

density. Measures of parameter uncertainty (such as standard errors

and confidence intervals) are calculated using a parametric bootstrap

approach. Parameter estimates from both Step 1 and Step 2 are

required in order to carry out this procedure.

The SECRmodel we present for Step 1 assumes that individual calls

are identifiable, that is, it is knownwhether or not two detections at dif-

ferent microphones are of the same call. Some acoustic pre-processing

is required in order to ascertain how many unique calls were detected

across the array and which of these were detected by each of the micro-

phones. The details of this process will vary from study to study

depending factors such as the acoustic properties of the focal species’

calls. We later describe a simple method used for the application to A.

lightfooti, which is suitable for our survey.

We do not assume that individuals are identifiable, that is, our

method does not require knowledge of whether or not two detected

calls weremade by the same animal. This is more difficult than identify-

ing calls; there is less information available from which to determine

individual identification, and one must contend with between-call vari-

ation inwhatever acoustic properties of the calls aremeasured.

NOTATION AND TERMINOLOGY

We consider a survey of duration T with k microphones placed at

known locations within the survey region A � R2. Vocalizations from

members of the focal species are detected by these microphones, and

measurements of the received signal strength and time of arrival are col-

lected for each detection.Adetection is defined to be a received acoustic

signal of a call that has a strength above a particular threshold, c, so

that is easily identifiable above any background noise. Detections with

strengths below this threshold are discarded.

The observed data comprise the number of unique calls detected, nc,

capture histories of the detected calls, Ω, recorded signal strengths, Y,

and times of arrival measured from some reference point (typically the

beginning of the survey),Z. These are defined as follows.

Let xij be 1 if call i 2 f1; . . .; ncg was detected at microphone

j 2 {1,. . .,k}, and 0 otherwise. We denote xi=(xi1,. . .,xik) as the cap-

ture history for the ith call on the k detectors, and Ω contains the cap-

ture histories for all nc calls. If the ith call was detected by the jth

microphone, then we also observe yij and zij, the measured signal

strength and the recorded time of arrival from the start of the survey,

respectively. The sets of all these observations are given by Y and Z,

and yi and zi contain the signal strength and time-of-arrival informa-

tion associated with the ith call.

The detected calls have unobserved locations X ¼ ðx1; . . .;xnc Þ,
where xi 2 A provides the Cartesian coordinates of the location at

which the ith call wasmade.We also use x generically to denote a partic-

ular locationwithin the survey region. Note that locations of calls emit-

ted by the same individual cannot be considered independent. As it is

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 38–48
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not knownwhich calls were made by the same individual, call locations

in general are not independent.

The parameter vector h=(Dc,c,/) is estimated from the acoustic sur-

vey data. The scalarDc is call density (calls per unit area per unit time),

which is assumed to be constant across the survey area covered by the

array (although see the discussion for comments on modelling spatial

variation in calling animal and call density), while the vectors c and /
contain parameters associatedwith the signal strength and time-of-arri-

val processes, respectively.

The detection function and the effective sampling area (ESA) play

important roles in both SECR and distance sampling, and so they are

worth briefly introducing here. The detection function g(d;c) gives the
probability that a call is detected by a microphone, given that their

respective locations are separated by distance d. This is usually amono-

tonic decreasing function as calls further fromamicrophone are usually

less detectable. Here, we use the signal strength detection function (Ef-

ford, Dawson & Borchers 2009; further detail provided in below), and

this depends on the signal strength parameters c. Assuming indepen-

dence across microphones, the probability that a call made at x is

detected at all is therefore p�ðx; cÞ ¼ 1�Qk
j¼1 1� gðdjðxÞ; cÞ, where

dj(x) is the distance between the location x and the jth microphone. The

ESA depends on the detection function and is given by a(c)=∫Ap�(x;c)dx
(Borchers &Efford 2008; Borchers 2012).

The average call rate of callingmembers of the population at the time

of the survey, lr, is estimated from a separate, independent sample of nr

call rates, r ¼ ðr1; � � � ; rnr Þ. If r is used to estimate a parametric distribu-

tion for population call rates, then the vector w holds the associated

parameters. The final parameter of interest is calling animal density,Da.

Throughout this manuscript, we do not explicitly differentiate

between a random variable and its observed value, instead this should

be clear from its context. Likewise, we use the function f(�) to generi-

cally denote any probability density function (PDF) or probability

mass function (PMF)without explicit differentiation. The randomvari-

able(s) that f(�) is associated with should be clear from its argument(s).

From Equation (2) onwards, we omit the indexing of parameters in

PDFs and PMFs for clarity.

CALL DENSITY ESTIMATOR

The estimator we propose for h is based on an SECRmodel, which we

describe in this section.

The full likelihood is the joint density of the data collected from the

acoustic survey, as a function of themodel parameters:

LðhÞ ¼ fðnc;X;Y;Z; hÞ
¼ fðnc;Dc; cÞ fðX;Y;Zjnc; c;/Þ:

eqn 1

Note that Dc does not appear in the second term of Equation (1).

This is a consequence of assuming that call density is constant over the

survey area (Borchers &Efford 2008).

SECRapproaches often assume that the number of animals detected

is a Poisson randomvariable, as animal locations are considered a reali-

zation of a Poisson point process. Because we do not know how many

unique individuals have been detected, the distribution of the random

variable nc is not known (indeed, it is certainly not a Poisson random

variable if individuals call more than once, see Appendix S3). This issue

is linked to the dependence of within-animal call locations; indepen-

dence in call locations implies that said locations are a realization of a

Poisson point process, but any dependence violates this.

We use the so-called conditional likelihood approach of Borchers &

Efford (2008), which we extend here to include signal strength and

time-of-arrival information. This allows for estimation of h without

any distributional assumption on nc, by conditioning on nc itself.

Parameters c and / can be estimated directly using this likelihood,

which is the second term in Equation (1):

Lnðc;/Þ ¼ fðX;Y;ZjncÞ: eqn 2

Once the estimate bc has been obtained, an estimate ofDc can then be

calculated using a Horvitz–Thompson-like estimator. This is accom-

plished by dividing the number of detected calls by the estimated ESA

and the survey length, that is

bDc ¼ nc
aðbcÞT: eqn 3

Estimates for SECR model parameters that are obtained via

maximization of the full likelihood are in fact equal to those

obtained via maximization of the conditional likelihood and use of

a Horvitz–Thompson-like estimator (Borchers & Efford 2008), so

there is no practical difference in the two approaches if we are only

interested in point estimates (though note that this only holds when

density is assumed constant across the survey area). Indeed, specify-

ing the distribution for the number of detections (here denoted as

nc) only serves to allow calculation of estimate uncertainty; here,bDc depends on nc, and so uncertainty in bDc is subject to the vari-

ance of nc.

Let us now describe the conditional likelihood, Equation (2), in fur-

ther detail. The capture histories, Ω, received signal strengths, Y, and

times of arrival,Z, all depend on the call locationsX: the closer a call is

made to a microphone, the higher the probability of detection, the lou-

der the expected received signal strength, and the earlier the expected

measured time of arrival. We therefore obtain the joint density ofΩ,Y

andZ, conditional on nc, bymarginalizing overX:

Lnðc;/Þ ¼
Z
Anc

fðX;X;Y;ZjncÞ dX

¼
Z
Anc

fðX;Y;ZjX; ncÞ fðXjncÞ dX

¼
Z
Anc

fðY;ZjX;X; ncÞ fðXjX; ncÞ fðXjncÞ dX:

By assuming independence between the detected calls’ recorded sig-

nal strengths and times of arrival, conditional on X (i.e. the time of a

call’s detection does not depend on its strength), we obtain

Lnðc;/Þ ¼
Z
Anc

fðYjX;X; ncÞ fðZjX;X; ncÞ fðXjX; ncÞ fðXjncÞ dX:

The conditional likelihood presented above is intractable for two

reasons: (i) in general, the joint density of the call locations, fðXjncÞ, is
unknown as we are unable to allocate calls to individuals – the depen-

dence between call locations is not known and (ii) the integral is of

dimension 2nc, usually rendering any method of its approximation too

computationally expensive to be feasible.

Instead, we compute the simplified likelihood that overcomes these

two problems by treating call locations as if they are independent. Justi-

fication for this is that treating non-independent data as if they are inde-

pendent often has minimal effect on the bias of an estimator (though

variance estimates may be affected substantially). This gives

fðXjncÞ ¼
Qnc

i¼1 fðxiÞ and results in a separable integral, allowing for

the evaluation of a product of nc 2-dimensional integrals instead of a

single 2nc-dimensional integral:

Lsðc;/Þ ¼
Ync
i¼1

Z
A

fðyijxi; xiÞ fðzijxi;xiÞ fðxijxiÞ fðxiÞ dxi: eqn 4

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 38–48
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Estimates for c and / are found by maximizing the log of the simpli-

fied likelihood function, that is

ðbc; b/Þ ¼ arg maxc;/ log Lsðc;/Þð Þ; eqn 5

and our estimator forDc remains as shown in Equation (3).

In situations where call locations can be considered independent, the

conditional and simplified likelihoods are equivalent. Otherwise, the

simplified likelihood is not a true likelihood per se and should not be

treated as such. That is, any further likelihood-based inference (such as

the calculation of standard errors based on the curvature of the log-

likelihood surface at the maximum likelihood estimate, or likelihood-

based information criteria) should not be directly used.

The following sections focus on providing further details about each

term that appears in the integrand of Equation (4).

Signal strength

The use of signal strength to improve estimator precision in SECR

models was first proposed byEfford,Dawson&Borchers (2009).

Assuming independence between received signal strengths (see the

discussion for comments on this point), the first component of the inte-

grand in Equation (4) is

fðyijxi; xiÞ ¼
Yk
j¼1

fðyijjxij;xiÞ:

The expected received signal strength of the ith call at the jth micro-

phone can be any sensible monotonic decreasing function of dj(xi), the

distance between the jth microphone and the location of the ith call.

Here, we simply use

EðyijjxiÞ ¼ h�1ðb0s � b1sdjðxiÞÞ;

where h�1(�) is the inverse of a link function (typically chosen to be

either the identity or log function). See Dawson & Efford (2009) for

alternative specifications of the expected signal strength. We account

forGaussianmeasurement error in the received signal strengths, that is

yijjxi �NðEðyijjxiÞ;rsÞ:

The parameter vector c therefore comprises b0s, b1s and rs that have

direct signal strength interpretations: b0s is the source signal strength of

calls (on the link function’s scale), b1s is the loss of strength per metre

travelled due to signal propagation (on the link function’s scale), and

rs is the standard deviation of the normal distribution used to account

for signal measurement error.

However, recall that yij is only observed if the received signal strength

exceeds the microphone threshold of detection, that is, if and only if

yij>c (or, equivalently, xij=1). Otherwise, yij is discarded and xij is set

to 0. Therefore, we set f(yij|xij=0,xi) to 1, and (yij|xij=1,xi) is a random

variable from a truncated normal distribution, giving

fðyijjxij ¼ 1;xiÞ ¼ 1

rs
fn

yij � EðyijjxiÞ
rs

� �
1� U

c� EðyijjxiÞ
rs

� �� ��1

;

eqn 6

where fn(�) andΦ(�) are the PDF and the cumulative density function of

the standard normal distribution, respectively.

Probability of detection

Based on the previous section, Efford, Dawson & Borchers (2009) pro-

posed the signal strength detection function, to be used when signal

strength information has been collected by the detectors during an

SECR survey. This takes the form

gðd; cÞ ¼ 1� U
c� h�1ðb0s � b1sdÞ

rs

� �
;

thus giving the probability of a call’s received signal strength exceeding

c (and, therefore, the probability of detection).

The ith capture history, xi, is only observed if the ith call is detected,

that is if
Pk

j¼1 xij [ 0. Thus, we observe xi conditional on detection,

and so f(xi|xi) must incorporate the probability of detection in the

denominator. Assuming independent detections of each call across all

microphones, the third component of the integrand in Equation (4) is

therefore

fðxijxiÞ ¼
Qk

j¼1 fðxijjxiÞ
p�ðxi; cÞ :

Asxij is 1 if the i
th call is detected by the jth microphone, and 0 other-

wise, we have

fðxijjxiÞ ¼ gðdjðxiÞcÞ xij ¼ 1;
1� gðdjðxiÞcÞ xij ¼ 0:

�
eqn 7

Time of arrival

A single detection time on its own is not informative on call location. It

is only differences between precise arrival times that provide informa-

tion about the relative position of a call in relation to the locations of

the microphones at which it was detected. Time-of-arrival data are

therefore only informative for calls detected at two or more micro-

phones; the arrival times, zi, depend on xi through mi, the number of

microphones that detected the ith call, that is mi ¼
Pk

j¼1 xij, mi 2 {1,

⋯,k}. Therefore, f(zi|xi,xi)�f(zi|mi,xi), andwe set f(zi|mi=1,xi) to 1.

Information about call locations improves the precision of parame-

ter estimates, though here we do not assume that times of arrival allow

perfect triangulation of call locations. Instead, we account for uncer-

tainty in recorded times of arrival due to Gaussian measurement error,

controlled by the parameter rt. For calls detected at two or more

microphones, inference can be made bymarginalizing over the time the

call was made, a latent variable, and this integral is available in closed

form (see the online supplementary material of Borchers et al. in

press),

fðzijmi [ 1;xiÞ ¼ ð2pr2
t Þð1�miÞ=2

2T
ffiffiffiffiffi
mi

p exp
X

fj:xij¼1g

ðdijðxiÞ � diÞ2
�2r2

t

0
@

1
A:

eqn 8

The term dij(xi) is the expected call production time, given call loca-

tion xi, and the time of arrival collected by detector j, that is dij(xi)
=zij�dj(xi)/v, where v is the speed of sound. The average across all detec-

tors onwhich a detectionwasmade is di

Call locations

We assume individuals’ locations are a realization of a homogeneous

Poisson point process across the survey area, A. As the dependence

between call locations is not clear, it is not possible to specify their joint

density, f(X), from data collected by the acoustic survey alone. Under

the simplified likelihood (Equation 4), this is now tractable:X itself is a

realization of a filtered homogeneous Poisson point process – the inten-

sity of emitted calls is constant across the survey area, but the intensity

of detected calls is highest closest to the microphones. The filtering is
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therefore through the detection probability surface. We now have

fðXÞ ¼ Qnc
i¼1 fðxiÞ, and f(xi) is proportional to the intensity of the point

process, that is f(xi)/p�(xi;c). As a(c)=∫Ap�(x;c)dx, the ESA is the nor-

malizing constant, andwe obtain

fðxiÞ ¼ p�ðxi; cÞ
aðcÞ :

We have now provided details for all terms in the integrand of the

simplified likelihood, Equation (4).

CALL ING ANIMAL DENSITY ESTIMATOR

Although call density,Dc, may be informative in situations where a spe-

cies’ call rate is of primary interest, it is usually the density of calling

individuals per unit area,Da that is required.

First used in distance sampling by Hiby (1985), a common method

used to obtain an estimate for calling animal density from call density

involves dividing call density by the average call rate across the calling

population, that is bDa ¼ bDc=blr (see Buckland et al. 2001; pp. 191–

197). See Appendix S2 for justification for this estimator from its

asymptotic properties.

If lr is not known a priori, then it must be estimated separately from

call rate data, r, collected independently of the acoustic survey. In the

simplest case, the sample mean r ¼ n�1
r

Pnr
i¼1 ri is an estimator for lr. If

the average call rate is known to vary (e.g. perhaps due to covariates

such as rainfall, season or temperature), then it is important to observe

r at the same time as the acoustic survey. Alternatively, given call rate

data collected across a range of such covariates, a model could be fitted

to estimate the average call rate for specific conditions of a future sur-

vey, thereby reducing future field effort.

In any case, for calculation of variance estimates (below), one has to

simulate call rate data from whatever model is used to estimate lr. In
the case of taking a simple random sample of nr call rates, this can be

done using the empirical distribution function (EDF). Otherwise, if a

parametric model has been fitted to r (potentially using covariates, as

described above), then such data can be generated from fðr; bwÞ.

THE BOOTSTRAP PROCEDURE

We calculate estimate uncertainty (i.e. standard errors and confidence

intervals for the model parameters) using a parametric bootstrap. By

combining parameter estimates calculated from the acoustic survey

and the call rate data, we can simulate data in a way that mimics the

real data generation process, including dependencies in call locations.

Here, we use the superscript * to denote simulated data or parameters

estimated from simulated data.We propose the following algorithm:

1. Simulate animal locations as a realization of a homogeneous Pois-

son point process with intensity bDa.

2. Determine the number of calls made by each individual by simulat-

ing call rates from either the EDFof r or fðr; bwÞ.
3. GenerateX* by repeating each location from Step 1 the appropriate

number of times, given by Step 2.

4. ObtainΩ* by simulating from fðxijjx�i ; bcÞ (Equation (7)). Omit all

rows fromΩ* andX* that are associated with undetected calls.

5. ObtainY* by simulating from fðyijjx�
ij ¼ 1;x�i ; bcÞ (Equation (6)) and

Z* by simulating from fðzijx�
i ;x

�
i ;
b/Þ (Equation (8)) for all detections.

6. Calculate bh� fromΩ*,Y* andZ* using Equations (3) and (5).

7. Obtain r* by simulating from either its EDF or fðr; bwÞ, calculate bw�

and therefore bl�
r .

8. Calculate bD�
a ¼ bD�

c=bl�
r .

9. Repeat the above steps R times and save the parameter estimates

from each iteration.

Here, we treat Da as the sole parameter of interest, but in practice,

the following holds for any other estimated parameter. Let the saved

density estimates from the simulated data bebD�
a ¼ ð bD�

a1;
bD�
a2; . . .;

bD�
aRÞ. Bias can be estimated by subtracting the

parameter estimate from the mean of the estimates from the bootstrap

samples (Davison & Hinkley 1997), that is D
�
a � bDa, where

D
�
a ¼ R�1

PR
i¼1 D

�
i .

Confidence intervals can be calculated using any suitable bootstrap

confidence interval method, many of which are outlined by Davison &

Hinkley (1997). The simplest approach is to calculate confidence inter-

vals based on a normal approximation, using SDð bD�
aÞ as the standard

error. Note that the normal approximation may be more suitable for a

transformation of bDa (e.g. logð bDaÞ), and so a back-transformation of

a confidence interval based on this transformed parameter may have

better coverage properties. Other possible approaches include the so-

called basic and percentile methods, although note that the latter

requires R to be larger in comparison with the normal approximation

and basicmethods.

Note that Step 5 above makes the assumption that individuals do

not move over the course of the survey. See the discussion for com-

ments on accounting for animalmovement.

APPLICATION TO ARTHROLEPTELLA L IGHTFOOTI

We use the method presented above to generate estimates of call and

callingmale density ofA. lightfooti, and estimate associated variances.

Equipment and survey design

The data we use were generated from a 25-s subset of a recording car-

ried out on 16May 2012.

The recording was made using an array of six Audio-Technica

AT8004 handheld omni-directional dynamic microphones, connected

to a DR-680 8-Track portable field audio recorder via Hosa Technol-

ogy STX-350F Professional 1/4 inch TRS male to XLR female cables.

Each of the six microphones were placed in microphone holders which

were fastened atop 1-m-tall wooden dowels. The immediate vicinity

was vacated during the recording. The configuration of our array is

shown in Fig. 1

Acoustic pre-processing

The open-source software package PAMGUARD (Gillespie et al.

2009; see www.pamguard.org) was used in order to identify calls of

A. lightfooti males, which have a signature frequency of 3.8 kHz. The

first 600 s of the recording were ignored in case any disturbance to the

frogs during set-up affected calling behaviour. Furthermore, a detec-

tionwas only recorded if the strength of the received signal was above a

threshold of 130 units. Along with signal strengths, precise times of sig-

nal arrival (accurate to 2�083910�5 s) were also recorded for each

detection.

In order to construct the observed Ω, Y and Z, it was necessary to

determine which detected sounds on different microphones were of the

same call from the same frog. As individuals are not recognizable

from their calls, this was done as follows: if two calls were detected

within d/330 seconds of one another by two microphones that were d

metres apart, then they are assumed to have the same source (using

330 ms�1 as the speed of sound in air).
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Note that this approach to call identification will never result in

detections of the same call being attributed to different frogs; however,

there is potential for calls from different frogs to be falsely identified as

the same individual. This is unlikely, however, as calls from males are

temporally negatively correlated; they tend to call in turn in an attempt

to increase their likelihood of being heard by a female (Altwegg&Mea-

sey, pers. obs.).

Bootstrap details

No individual call rate data were collected concurrently with the acous-

tic survey. Instead, we use call rate data collected at another time and

location so that we are able to demonstrate the methods described

above. Call rate data were obtained by finding locations of 8 individual

callingmales and placing amicrophone in close proximity; this ensured

that all calls they emitted were detected and were easily identifiable

from calls of othermales.

We ran the bootstrap procedure for 10 000 iterations in order to

reduce the relative Monte Carlo error associated with the standard

error (calculated using equation (9) in Koehler, Brown & Haneuse

2009) to below 1%.

SIMULATION STUDY

We test our method using a simulation study. A total of 1000 data sets

were independently simulated using Steps 1–5 and Step 7 from the

bootstrap procedure. Values used for the simulation parameters were

set at the corresponding estimates obtained from the real data analysis.

For each simulated data set, we use the method we outline above to

obtain both point estimates and confidence intervals forDa andDc. We

used 500 bootstrap repetitions for each iteration in order to prevent the

simulation from being prohibitively time-consuming. For comparison,

we also calculate confidence intervals based on the approach of Efford,

Dawson&Borchers (2009), which ignores the dependence between call

locations.

We also conduct a simulation study to investigate the impact of using

time-of-arrival information in addition to the signal strength data. A

total of 10 000 data sets were independently simulated, the same way

as above, and two estimates of both Da and Dc were obtained from

each: one from a model that used time-of-arrival information and

another from amodel that did not.

SOFTWARE IMPLEMENTATION

Implementation of themethods we present was accomplished using the

R package admbsecr (Stevenson & Borchers 2014; see https://git-

hub.com/b-steve/admbsecr). This software can be used to obtain

parameter estimates via numerical maximization of the log of the sim-

plified likelihood. Optimization is carried out by a call to an executable

generated byADModel Builder (Fournier et al. 2012). Numerical inte-

gration is used to approximatemarginalization over call locations.

The code used to carry out analysis of the A. lightfooti data can be

found inAppendix S1

Results

REAL DATA ANALYSIS

A total of 225 unique calls were detected by the six micro-

phones over the course of the 25-s survey.

Density parameter estimates, their associated standard

errors and estimated biases (obtained from the bootstrap pro-

cedure) are provided in Table 1. We use bc to plot the detection

function, shown in Fig. 2. To illustrate the utility of the time-

of-arrival information, we plot uncertainty surrounding the

estimation of a location of one of the detected calls in Fig. 1.

Normal QQ plots for bD�
a and bD�

c both indicated approxi-

mate normality, and so confidence intervals based on a normal

approximation using the standard errors shown in Table 1

were deemed to be appropriate. Setting the nominal coverage

at 95%, this approach gave an interval of (239�42, 492�75) for
Da and an interval of (65�06, 133�23) forDc;Da is calling males

per hectare andDc is calls per hectare per second.

SIMULATION STUDY

We show the performance of a number of confidence interval

calculation methods in Table 2. Coverage is only significantly

different (at the 5% level) to the nominal 95% coverage rate

for both intervals calculated using the basic bootstrap method,

and for na€ıve confidence intervals that rely on call locations

being independent (as per the method of Efford, Dawson &

Borchers 2009).

●

●
●

●

●
●

●

●
●

●

●
●

SS & TOA
SS
TOA
None

5 m

Fig. 1. Estimated locations of a detected call from SECR models with

various levels of supplementary information. Crosses show the micro-

phone locations, while circled crosses indicate the microphones at

which this particular call was detected. Each contour shows the area

within which the call was estimated to have originated with a probabil-

ity of 0�9. As more additional data are used, the area inside the contour

decreases, representing amore precise location estimate.

Table 1. Parameter estimates, standard errors and estimated biases

from analysis of theArthroleptella lightfooti data.Dc is in calls per hect-

are per second, Da is in calling males per hectare, rt is in milliseconds,

and lr is in calls per individual per 25 s

Parameter Estimate Standard error Bias (%)

Dc 99�15 17�39 0�59
b0s 156�57 1�81 �0�14
b1s 2�67 0�18 �0�22
rs 11�50 0�44 �0�07
rt 1�96 0�12 0�60
Da 366�08 64�63 0�62
lr 6�77 0�12 0�01
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Estimates of bias, variance and mean square error of the

estimators investigated in the second simulation study are

shown in Table 3. The estimator that utilizes time-of-arrival

data is more precise and less biased. Estimated sampling distri-

butions of the estimates obtained both with and without the

time-of-arrival information are shown in Fig. 3.

Discussion

SUMMARY

The method we have proposed to estimate calling animal den-

sity from a fixedmicrophone array relies on maximizing a sim-

plified likelihood (Equation 4). We then use a parametric

bootstrap to account for dependence between call locations.

In our simulation studies, parameter estimates were shown

to have negligible bias (in all cases, bias was estimated at sub-

stantially less than 1% of the estimate sizes; see Tables 1 and

3). Note that this is despite the simplified likelihood treating

call locations as independent. Our findings suggest that density

estimates obtained via acoustic SECR methods are robust to

this violation. The bootstrap confidence interval methods gen-

erated intervals with coverage close to their nominal level

(Table 2). Indeed, these easily outperformed the method that

does not account for dependence among call locations in the

construction of confidence intervals.

Using time-of-arrival information led to decreased bias and

substantially increased precision in density estimates (Fig. 3,

Table 3) in comparison with the approach of Efford, Dawson

& Borchers (2009). In applications like ours, time-of-arrival

data are far more informative on animal location than trap

location and signal strength information (Fig. 1). With more

information on where calls are located, the detection function

parameters can be estimated more precisely. In turn, this

results in higher precision estimates of the ESA, call density

and calling animal density.

ANIMAL MOVEMENT

The approach we present here assumes that calls made by the

same individual are associated with the same location, which is

a reasonable assumption for our case study of A. lightfooti. A

natural extension is to account for animal movement. We out-

line twoways of doing this here.

The first is to adjust our bootstrapmethod. This requires the

fitting of a movement model (e.g. Jonsen, Flemming & Myers

2005; McClintock et al. 2012; see King 2014; for an overview)

to independently collected data, explaining between-call ani-

mal movement patterns. Rather than the bootstrap procedure

allocating all calls to the same location, movement can be

introduced using parameter estimates from the movement

model, resulting in appropriate variance estimates. However,

we recognize that this may represent an infeasible amount of

field effort in addition to the acoustic survey.

If individuals can be identified from their calls, then the analy-

sis of Ergon & Gardner (2013) suggests an alternative way for-

ward. A new SECR approach was used to analyse live-trapping

data of field volesMicrotus agrestis (Linnaeus), where individu-

als’ home range centres moved (due to a dispersionmodel) from

one survey session to the next. Similar approaches could possi-

bly be used to account for animal movement in acoustic SECR

Table 2. Coverage of various confidence interval methods for the

parameters Da and Dc. Nominal coverage was set at 95%. The basic,

normal, and percentile methods rely on the bootstrap procedure. The

naı̈ve method assumes independence between call locations and cannot

be used to calculate a confidence interval for $D_a$

CImethod Da Dc

Basic 0�924 0�927
Normal 0�942 0�941
Percentile 0�942 0�946
Na€ıve – 0�729

With TOA
Without TOA

200
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Fig. 3. Estimated sampling distributions of bDa for models with and

without time-of-arrival information incorporated. The dotted vertical

line shows the value ofDa used to generate the simulated data.

Table 3. Performance of Da estimators with and without the use of

time-of-arrival data. Calculated bias is bEð bDa �DaÞ as a percentage of
Da. CV gives the coefficient of variation as a percentage.MSE gives the

mean square error. The simulated data were generated with Da set at

366�08

Estimator Bias (%) CV (%) MSE

With TOA 0�62 17�65 4181�73
Without TOA 2�93 23�08 7256�95
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Fig. 2. Estimated detection function, gðd; bcÞ, from the Arthroleptella

lightfooti data.
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surveys. There are complications, however, associated with

detections in continuous time rather than allowing movement

across discrete sessions: one must integrate over all possible

paths an individual could have taken between detection occa-

sions, considerably increasing computational complexity.

INFERENCE VIA THE CONDIT IONAL L IKEL IHOOD

It would be beneficial to propose estimators based on themaxi-

mization of the conditional likelihood (Equation 2) rather

than the simplified likelihood (Equation 4). Such an approach

would deal directly with call location dependence, removing

the need to collect data or make restrictive assumptions about

call rates and animal movement. Under a classical framework,

this would also result in maximization of a true likelihood,

allowing for use of further likelihood-based inference.

It is not clear how this could be achievedwhen animal identi-

fication is not possible; a solution to this so-called unknown

identification problem would present a significant break-

through. One possible approach is to use a reversible jump

Markov chain Monte Carlo procedure under a Bayesian

framework. The number of unique detected individuals, as well

as the allocations of calls to individuals, would vary from itera-

tion to iteration. Alternatively, inference could potentially be

made using methods that deal with the estimation of parame-

ters from intractable likelihoods (e.g. the synthetic likelihood

approach ofWood 2010).

Otherwise, if animal identities can be determined, possible

methods of incorporating animal movement and call rate into

the conditional likelihood are a little clearer. The dependence

between latent locations of calls from the same individual is

obvious under the assumption of no animal movement, and

potentially estimable via amovementmodel otherwise.

Direct estimation of the average call rate, lr (and therefore

calling animal density), is also likely to be possible from the

acoustic survey. In order to obtain this, one must specify a dis-

tributionwithmean lr for the number of calls made by individ-

uals to account for the call production process. This is then

filtered by the detection process, giving rise to the observed

data and call identities.

FURTHER GENERALIZAT IONS

Our method is more general than that of Efford, Dawson &

Borchers (2009), as we do not rely on assumptions regarding

independence of call locations for variance estimation. Further

generalizations are possible, and we outline two of them here.

First, our method assumes that individuals all emit calls with

the same strength, b0s, which may not hold. Secondly, there is

the issue of directional calling: the orientation of an individual

may result in the loss of strength per metre, b1s, due to signal

propagation at a lower rate in some directions. Our method

assumes signal propagation occurs uniformly across all direc-

tions.

It is likely that further latent variables will be required to

fit models appropriate for either case, that is latent call

source strengths or latent individual orientations, respec-

tively. With additional latent variables comes further com-

putational complexity: under a classical framework, these

must be integrated out of the likelihood. A Bayesian

approach presents a viable alternative; latent variables can

be sampled from rather than marginalized over, which is

potentially simpler.

SPATIOTEMPORAL CHANGES IN DENSITY

In some situations, it is not necessarily animal density that is of

particular ecological interest, but rather temporal or spatial

variation in density. Ourmethod can be used tomake inference

in either case. Independent microphone arrays set out at vari-

ous points in time and space will generate separate density esti-

mates, from which temporal and spatial shifts of animal

abundance can be determined.

There is also potential for an alternative: in general, SECR

methods are capable of directly estimating a density intensity

surface, rather than a constant intensity over the survey area.

We have skirted this issue for brevity; assuming a constant den-

sity is reasonable inmany cases over small survey areas.

ANALYSIS OF ARTHROLEPTELLA L IGHTFOOTI DATA

Regarding the survey ofA. lightfooti, our method obtained an

estimate of 366�08 calling males per hectare. Alternative meth-

ods used to monitor abundance of threatened species in the

genus Arthroleptella make use of auditory estimates (Measey

et al. 2011). Trained practitioners stand at a set locale and lis-

ten to an assemblage, placing call abundance into a category

(Dorcas et al. 2009); the assemblage calling in this study was

assessed using this method, falling into the highest category,

>100 individuals. It is difficult to compare the two estimates as

this abundance cannot be converted into a density.

Our estimates of call density and calling male density are

associated with coefficients of variation of approximately

17�5% from just 25 s worth of recording using only six micro-

phones (Table 1). The relatively high precision of bDa is in part

due to the fact that variance in the recorded call rates, r, was

very low as individual A. lightfooti call at very regular inter-

vals. This allowed for a precise estimate of lrwhichwas used in
the calculation of bDa. Uncertainties associated with our den-

sity estimators decrease as survey length and nr increase (see

Appendix S2, fig. 1).

CONCLUDING REMARKS

Our method advances acoustic SECR methodology by

improving estimator precision via time-of-arrival information

and by proposing an unbiased estimator for calling animal

density. Our confidence intervals account for dependence in

call locations, which had previously been ignored. Our analy-

sis here is the first to provide reliable point and interval esti-

mates of both the call and calling male density of a frog

species from an acoustic survey. This approach is general and

can be applied to estimate calling animal density for a wide

variety of species.
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