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Abstract

Genetic association studies often collect data on multiple traits that are correlated. Discovery of
genetic variants influencing multiple traits can lead to better understanding of the etiology of
complex human diseases. Conventional univariate association tests may miss variants that have
weak or moderate effects on individual traits. We propose several multivariate test statistics to
complement univariate tests. Our framework covers both studies of unrelated individuals and
family studies and allows any type/mixture of traits. We relate the marginal distributions of
multivariate traits to genetic variants and covariates through generalized linear models without
modeling the dependence among the traits or family members. We construct score-type statistics,
which are computationally fast and numerically stable even in the presence of covariates and
which can be combined efficiently across studies with different designs and arbitrary patterns of
missing data. We compare the power of the test statistics both theoretically and empirically. We
provide a strategy to determine genome-wide significance that properly accounts for the linkage
disequilibrium (LD) of genetic variants. The application of the new methods to the meta-analysis
of five major cardiovascular cohort studies identifies a new locus (HSCB) that is pleiotropic for
the four traits analyzed.
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Introduction

Pleiotropy, the influence of one gene on multiple traits, is a widespread phenomenon in
complex human diseases [Sivakumaran et al., 2011]. Recent years have seen a heightened
interest in discovering genetic variants with pleiotropic effects [Gottesman et al., 2012;
Lawson et al., 2011; Paaby and Rockman, 2012; Watanabe et al., 2000]. The joint analysis
of multiple traits can increase statistical power by aggregating multiple weak effects and
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provide new biological insights by revealing pleiotropic variants [Amos and Laing, 1993;
Jiang and Zeng, 1995].

The advent of large-scale genetic association studies, particularly genome-wide association
studies (GWAS), poses tremendous challenges in analyzing multiple traits. First, there are a
huge number of genetic variants to be tested, which may entail considerable computation
burden. The inclusion of covariates (e.g., ancestry variables to account for population
stratification) may make the computation even more intensive. Second, complex diseases are
characterized by a wide variety of traits, some of which are continuous (i.e., quantitative)
and some of which are discrete. Third, it is desirable to combine results from multiple
studies, some of which may consist of unrelated individuals and some of which may consist
of families; the genetic variants and the traits may not be uniformly measured in all studies.
Fourth, it is necessary to adjust for multiple testing, but the conventional Bonferroni
correction may be overly conservative.

There exist several statistical methods for association analysis of multiple traits, but none of
them addresses all the above issues. Ferreira and Purcell [2009] suggested canonical
correlation analysis, which is computationally fast but does not accommodate covariates.
Liu et al. [2009] suggested a Wald statistic based on generalized estimating equations (GEE)
[Liang and Zeger, 1986] for the mixture of one continuous trait and one binary trait. Their
method does not accommodate family data, and the Wald statistic requires fitting a
regression model for each genetic variant, which can be time consuming. Yang et al. [2010]
suggested a linear combination of univariate test statistics with data-dependent weights by
estimating the weights from part of the data and calculating the test statistic from the
remaining data. The P-values are assessed by permutation, which is computationally
demanding. Maity et al. [2012] proposed a kernel machine method for joint analysis of
multiple genetic variants, which is equivalent to testing the variance component in a
multivariate linear mixed model. Recently, van der Sluis et al. [2013] proposed a method
called “trait-based association test that uses extended Simes procedure” (TATES). The
Simes procedure was originally designed to alleviate the conservativeness of the Bonferroni
correction; the TATES extends the Simes procedure to the multivariate-trait analysis by
harnessing the correlations among the traits.

In this paper, we provide a very general framework for association analysis of multiple
traits, which simultaneously tackles all the aforementioned challenges. Our framework
covers both studies of unrelated individuals and family studies and allows any type/mixture
of traits. To enhance robustness, we relate the marginal distributions of multivariate traits to
genetic variants and covariates through generalized linear models without parametric
modeling of the dependence among the traits or family members; we account for the
dependence in constructing the test statistics by estimating the correlations empirically from
the data. We develop score-type statistics, which are computationally fast and numerically
stable even in the presence of covariates and which can be combined efficiently across
studies with different designs and arbitrary patterns of missing data. We consider various
types of multivariate test statistics and compare their power both theoretically and
empirically. We provide a strategy to determine genome-wide significance that properly
accounts for the linkage disequilibrium (LD) of genetic variants. We demonstrate the
usefulness of the new methods through extensive simulation studies and an application to
five GWAS studies involving cardiovascular traits.

Methods

In this section, we present our general framework for association tests with multivariate
traits. We first construct the marginal models and the corresponding score-type statistics.
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We then show how to combine those statistics to form multivariate test statistics. Finally, we
discuss meta-analysis and genome-wide significance thresholds.

Calculating Score Statistics and Their Covariance Matrix

We consider a single study with a total of n unrelated individuals, K (potentially correlated)
traits, and p covariates (including the unit component). For i = 1, …, n and k = 1, …, K, let
Yki be the kth trait of the ith individual. For i = 1, …, n, let Xi be the p-vector of covariates
for the ith individual, and let Gi denote the number of minor alleles (or the imputed dosage)
the ith individual carries at a particular test locus.

We assume that the marginal distribution of Yki is related to Xi and Gi through a generalized

linear model with mean  and dispersion parameter φk, where μk(·) is a
specific function, and βk and γk are unknown regression parameters. We adopt natural link
functions such that μk(x) = x for continuous traits and μk(x) = ex/(1 + ex) for binary traits.

To accommodate missing data, we let ξki indicate, by the values 1 versus 0, whether Yki is
observed or missing, and let ψi indicate, by the values 1 versus 0, whether Gi is observed or
missing. It is assumed that the covariates have no missing values. (We recommend to
exclude the covariates with substantial missingness and to replace the missing values with
their sample means for the remaining covariates.)

The score function for (βk, γk) takes the form

Thus, the score statistic for testing the null hypothesis that γk = 0 is

where βk̂ solves the equation

and φk̂ is a sample estimator of φk. For continuous traits,
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for binary traits, φk̂ = 1. Note that the construction of the Uks makes full use of the available
data by estimating βk and φk from all individuals with nonmissing trait values and is more
efficient than the traditional complete-case analysis.

By taking the Taylor series expansion of Sk(βk, 0) at βk = β̂k and applying the law of large
numbers, we can show that Uk is asymptotically equivalent to the following sum of n-
independent terms:

where Ak and Bk are the limits of  and

, respectively, and . Define the score vector

It follows from the multivariate central limit theorem that U is asymptotically K-variate
normal with mean 0 and with a covariance matrix that can be estimated by

where

and

Note that β̂k and B ̂k (k = 1, …, K) do not depend on the SNP genotypes and thus need to be
calculated only once (before looping through all the SNPs). Note also that, given the β̂ks, the
calculations of U and V do not involve solving any equations. Thus, the implementation of
the proposed score-type statistics is orders of magnitude faster than that of the conventional
Wald statistics. In addition, the score-type statistics are numerically more stable and
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statistically more accurate than the Wald statistics, especially when the minor allele
frequency (MAF) is low [Lin and Tang, 2011].

We now extend the above results to family studies. Suppose that we have a total of n
families, with ni members in the ith family. For i = 1, …, n, j = 1, …, ni and k = 1, …, K, let
Ykij denote the kth trait for the jth member of the ith family, Xij denote the p-vector of
covariates for the jth member of the ith family, and Gij denote the number of minor alleles
(or the imputed dosage) which the jth member of the ith family carries at a particular test
locus. We assume that the marginal distribution of Ykij is related to Xij and Gij through the
same marginal generalized linear regression model as in the case of unrelated individuals.

Let ξkij indicate whether Ykij is observed or missing, and let ψij indicate whether Gij is
observed or missing. It is assumed that there are no missing values in the covariates. Under
the independence working assumption [Liang and Zeger, 1986], the (pseudo-likelihood)
score statistic for testing the null hypothesis that γk = 0 is

where βk̂ solves the equation

for continuous traits, and φk̂ = 1 for binary traits. Again, define U = [U1, …, UK]T. It follows
from the above arguments for the case of unrelated individuals that U is asymptotically K-
variate normal with mean 0 and a covariance matrix that can be estimated by V ≡ {Vkl; k, l =
1, … K}, where

Note that the relatedness of family members is accounted for through the empirical
correlations of the Ukis.

Performing Multivariate Association Tests

To test the global null hypothesis that γ1 = γ2 = · · · = γK = 0, we calculate the quadratic form
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which is asymptotically chi-squared with K degrees of freedom. This is a global test statistic
that is consistent (i.e., having the power of 1 as the sample size tends to ∞) against any
alternative hypotheses.

To enhance power against alternative hypotheses under which genetic effects are similar
among the K studies, we calculate a test statistic with one degree of freedom along the lines
of O’Brien [1984]. Specifically, let Z be the standardized version of U and let R be the

correlation matrix of U. That is,  (k = 1, …, K) and Rkl = Vkl/(Vkk Vll)
1/2 (k, l =

1, …, K). We then calculate

where e = [1, …, 1]T. This test statistic is asymptotically standard normal.

The test statistic T maximizes the noncentrality parameter among all linear combinations of
the Zks. Note that the score test statistic Zk is asymptotically equivalent to the Wald test
statistic, i.e., the estimate of γk divided by its standard error. Thus, T is optimal if the limits
of the Zks or the standardized γks are the same. To detect alternative hypotheses under which

the original γks are the same, we define  and Ckl = Vkl/(Vkk Vll)(k, l
= 1, …, K). Note that the limit of Uk/Vkk is approximately γk. We then calculate

where  and C = {Ckl; k, l = 1, …, K}. This test statistic is also
asymptotically standard normal. When using this test statistic, it is important to use
comparable scales for the K traits such that it is plausible for the γk to be equal. When using
either T or T′, it is important to code the trait values in such a way that the genetic effects on
the K traits are plausibly in the same direction.

If the effects of the SNP are similar among the K traits, then T and T′ will tend to be more
powerful than Q. If the effects are very different, then Q will likely be more powerful than T
and T′. In the Appendix, we derive the asymptotic distributions of Q, T, and T′ under
alternative hypotheses for the important special case of two continuous traits.

Combining Results From Multiple Studies

We wish to combine results from L-independent studies. For l = 1, …, L, let U(l) and V(l)

denote the score vector and its (estimated) covariance matrix from the lth study. Then the

overall score vector is , and its covariance matrix is estimated by

. Note that  is the (pseudo-likelihood) score statistic in the joint
analysis of the individual-level data of the L studies (allowing nuisance parameters to be
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different among the studies). Thus, meta-analysis of score statistics is equivalent to the joint
analysis of individual-level data. When there are multiple studies, K pertains to the total
number of distinct traits, some of which may not be measured in certain studies. (For L = 2,
we may have four traits that are common between the two studies, two traits that are
measured only in the first study, and three traits that are measured only in the second study.
Then K = 9.) Given U and V, we can calculate Q, T, and T′ in the same manner as in the case
of a single study.

Determining Genome-Wide Significance

Suppose that we have a total of m SNPs. For j = 1, …, m, let Qj be the value of Q for the jth
SNP. If the critical value q0 for the m test statistics satisfies

then the family-wise error rate will be α. We estimate q0 by Monte Carlo simulation. At
each test locus, we calculate

where W1, …, Wn are independent standard normal random variables. Let Ũj and Vj be the
values of Ũ and V for the jth SNP. Define

The joint distribution of (Q1, …, Qm) can be approximated by that of (Q̃1, …, Q̃m) [Lin,
2005]. Thus, we determine q0 by the following equation

We simulate the normal random sample (W1, …, Wn) 10,000 times while holding the
observed data fixed and set q0 to be the 10,000(1 − α)th largest value of the resulting
max j=1, …, m Q ̃j’s. We may convert the critical value q0 to the P-value threshold p0 by
referring q0 to the chi-squared distribution with K degrees of freedom. We can determine the
genome-wide significance thresholds for T, T′, and Zk(k = 1, …, K) in a similar manner.

Results

Simulation Studies

We conducted simulation studies to evaluate the performance of the proposed test statistics.
We set G to be the number of minor alleles for a SNP with MAF of 0.4 and set X to be
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normal with mean 0.1G and unit variance. We generated two continuous traits under the
bivariate linear model: Y1 = 1 + 0.5X + γ1G + ε1 and Y2 = 1 + X + γ2G + ε2, where ε1 and ε2

are zero-mean normal with variances  and , respectively, and with correlation ρ =
0.5. We set α to 10−4. To evaluate the type I error, we simulated 10 million data sets under
γ1 = γ2 = 0. To evaluate the power, we simulated 10,000 data sets under various
combinations of γ1 and γ2. Each simulated data set consists of 1,000 unrelated individuals.
In addition to the three multivariate test statistics, Q, T, and T′, we considered two versions
of univariate tests, Uni-B and Uni-corr, which adjust for multiple testing (between the traits)
by adopting the Bonferroni correction (i.e., dividing the nominal significance level by the
number of traits) and by accounting for the correlation between Z1 and Z2 (using the
multivariate normal distribution of U), respectively. We also included the TATES method
(van der Sluis et al., 2013).

The results are summarized in Table 1. The type I error for the TATES is inflated by about
12%. The type I errors for the other five tests are below the nominal significance level. The
Q test has reasonable power against all 12 alternatives. As expected, T′ is more powerful
than the other tests when γ1 is close to γ2, and T is more powerful than the others when γ1/σ1

and γ2/σ2 are close to each other. The Uni-B is expected to have lower power than Uni-corr,
but the two tests perform very similarly due to the relatively weak correlation between the
two traits. The differences between the two tests become more pronounced as the correlation
increases; see supplementary Table SI. The TATES has slightly higher power than Uni-B
and Uni-corr but also has inflated type I error, especially when the correlation is high.

We also considered the mixture of a binary trait and a continuous trait. We simulated the
binary trait under the logistic regression model logit{P(Y1 = 1)} = −1 + 0.5X + γ1G and
simulated the continuous trait under the linear model Y2 = 1 + X + γ2G + ε, where ε is
normal with mean 2Y1 and unit variance. (The Pearson correlation between the two traits is
about 0.65.) As shown in Table 2, Q tends to have higher power than the two univariate
tests. As expected, T′ is more powerful than the other tests when γ1 = γ2, and T outperforms
the others when the means of Z1 and Z2 are similar. Again, the TATES has higher power
than Uni-B and Uni-corr but at the expense of inflated type I error.

We also considered four continuous traits with a compound-symmetry correlation structure
for the error terms. The results are shown in supplementary Table SII. The basic conclusions
remain the same. We added the MANOVA method implemented in R to the case of no
covariates. As shown in supplementary Table SIII, MANOVA has slightly higher type I
error and power than the Q test. This is consistent with the general phenomenon that the
likelihood ratio test is more liberal than the score test [Lin and Zeng, 2011]. Finally, we
considered family studies with 250 families (two parents and two children in each family)
and two continuous traits. As shown in supplementary Table SIV, the conclusions are
similar to the case of unrelated subjects.

Cardiovascular Studies

We analyzed the GWAS data on the Caucasian samples from the Atherosclerosis Risk in
Communities (ARIC) study, the Coronary Artery Risk Development in Young Adults
(CARDIA) study, the Cardiovascular Health Study (CHS), the Multi-Ethnic Study of
Atherosclerosis (MESA), and the Framingham Heart Study (FHS), the sample sizes being
9,068, 1,433, 3,892, 2,286, and 2,789, respectively. The FHS is a family study, and the
others consist of unrelated individuals. Each individual was genotyped on 250,000 SNPs.
We considered four cardiovascular traits: diabetes status, high-density lipoprotein (HDL),
low-density lipoprotein (LDL), and triglycerides; the first trait is binary whereas the other
three are continuous. These traits are major players in the development of coronary artery
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diseases and metabolic syndrome [Grundy, 2012; Holmes et al., 1981]. We aimed to identify
genetic factors underlying these traits. Since the HDL is “good” cholesterol, we used
negative values of HDL in the analysis.

We performed single-SNP analysis with the following covariates: age, gender, study centers,
and the top 10 principle components for ancestry. We calculated the score-type statistics and
their covariance matrices for each study and then combined the results of the five studies.
The (unadjusted) P-values of the univariate and multivariate tests are displayed in Figures 1
and 2, respectively. The genome-wide significance thresholds based on the Bonferroni
correction and the Monte Carlo procedure are marked in both figures.

We first examine the results based on the Bonferroni correction. For the four traits, more
than 10 regions are above the Bonferroni threshold in the Uni-B test (Fig. 1). Compared to
Uni-B, the Q test identifies one new signal that is located on chromosome (Chr) 9 (Fig. 2).
The signal on Chr9 identified by the Q test is an accumulation of weak/moderate signals for
individual traits. The gene at this locus encodes a protein called ABCA1, which is involved
in cellular cholesterol removal (Lawn et al., 1999). This gene was previously found to be
associated with metabolic syndrome (Avery et al., 2011). Table 3 lists all the loci discovered
by the Q test. (The P-values from the univariate-trait analysis are also shown.) The T and T′
tests did not identify any additional signals that achieve genome-wide significance, but the
two tests yielded more extreme P-values for several SNPs than the univariate tests.

Not surprisingly, the Monte Carlo procedure reduced the genome-wide significance
thresholds for all tests. For the univariate test on the HDL, one SNP on Chr20 becomes
significant by the Monte Carlo criterion. For the T test, one SNP (rs5752792) on Chr22 is
above the Monte Carlo threshold. This SNP resides near gene HSCB, which is mainly
expressed in liver, muscle and heart [Sun et al., 2003] and is involved in the biogenesis of an
elementary metabolic function unit [Rouault and Tong, 2008]. The expression pattern and
biological function of HSCB strongly suggest that this gene is pleiotropic.

We have provided a very general and flexible approach to association testing with
multivariate traits. An earlier version of this approach (focusing on the Q test for continuous
traits) was recently used to successfully identify genes associated with metabolic syndrome
[Avery et al., 2011]. The new application presented in this paper further demonstrates the
usefulness of the proposed approach. It only took several hours to calculate all the P-values
shown in Figures 1 and 2. We have posted our software online at http://dlin.web.unc.edu/
software.

When the number of traits is very large, we recommend to reduce the dimension through
principal component analysis [Avery et al., 2011]. Although we have focused on main
effects of genetic variants, our approach can be easily modified to test gene–environment
interactions. It can also be extended to perform burden tests on rare variants (Lin and Tang,
2011).

Univariate-trait analysis and multivariate-trait analysis are complementary to each other.
The former is easier to implement and can be used to rapidly screen a large number of
genetic variants. The multivariate-trait analysis provides a useful tool to uncover pleiotropic
variants that have weak or moderate effects on individual traits. This is particularly
important for dissecting the genetic basis of complex diseases, as most of the genetic
variants with strong effects and high MAFs might have already been identified.

There is no uniformly most powerful test for analyzing multivariate traits. If the effects of a
genetic variant are similar across the traits, then T and T′ are generally preferable. If the
effects are considerably different or even in opposite directions, then Q is preferable. The
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theoretical results of the Appendix offer useful insights into the relative power of the three
test statistics and can be used to determine the power and sample size for future studies.

For family data, we adopted the marginal models with an independence working correlation
matrix. A more efficient approach would be a random-effect model which utilizes the family
relationships. We adopted marginal models instead of random-effects models for several
reasons. First, the association tests under marginal models are more robust to model
misspecification. Second, it is much faster to fit marginal models than random-effects
models. Third, marginal models can easily handle mixtures of continuous and binary traits.

Adjustment for multiple testing is an important issue in genetic association analysis. The
Monte Carlo procedure considered in this paper accounts for the correlations among the test
statistics and is thus less conservative than the conventional Bonferroni correction. Some
existing methods, such as the TATES, may yield inflated type I error. We have focused on
determining the genome-wide significance threshold rather than calculating individual
adjusted P-values. The former only requires several thousands Monte Carlo samples
whereas the latter would entail millions of Monte Carlo samples to estimate extremely small
P-values. If the number of SNPs is small, the joint distribution of the test statistics can be
evaluated through numerical integration [Conneely and Boehnke, 2007, 2010].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Asymptotic Distributions of Q, T, T′ for Two Quantitative Traits

We consider a study of unrelated individuals and two quantitative traits satisfying the
bivariate linear model:

where ε1i and ε2i are bivariate zero-mean normal with covariance matrix

He et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



In the absence of missing values, the score statistic for testing γk = 0 takes the form

where βk̂ and  are the least-squares estimators of βk and . Simple algebraic manipulation
yields

Assume that γk is in the order of n−1/2. By the multivariate central limit theorem and the law
of large numbers, (U1, U2)T is approximately bivariate normal with mean

and covariance matrix

where .

It follows from the above result that Q is approximately chi-squared with 2 degrees of
freedom and with noncentrality parameter

In addition, T is approximately normal with mean

and unit variance, and T′ is approximately normal with mean
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and unit variance.

In the special case of γ1/σ1 = γ2/σ2 = s,

Clearly, . It can be shown that , where the equality holds if and only if σ1 = σ2

(assuming that |ρ| < 1).

In the special case of γ1 = γ2 = γ,

Note that . It can be shown that , where the equality holds if and only if σ1 =
σ2 (assuming that |ρ| < 1).
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Figure 1.
Univariate tests of the diabetes status and the LDL, HDL, and triglyceride levels in the
ARIC, CARDIA, CHS, MESA, and FHS GWAS studies. Genome-wide significance
thresholds based on the Bonferroni correction and the Monte Carlo procedure are shown in
green and blue, respectively.
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Figure 2.
Multivariate tests of the diabetes status and the LDL, HDL, and triglyceride levels in the
ARIC, CARDIA, CHS, MESA, and FHS GWAS studies. Genome-wide significance
thresholds based on the Bonferroni correction and the Monte Carlo procedure are shown in
green and blue, respectively.
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