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Abstract—Parallel MRI (pMRI) and compressed sensing MRI
(CS-MRI) have been considered as two distinct reconstruction
problems. Inspired by recent k-space interpolation methods, an
annihilating filter-based low-rank Hankel matrix approach is
proposed as a general framework for sparsity-driven k-space in-
terpolation method which unifies pMRI and CS-MRI. Specifically,
our framework is based on a novel observation that the transform
domain sparsity in the primary space implies the low-rankness
of weighted Hankel matrix in the reciprocal space. This converts
pMRI and CS-MRI to a k-space interpolation problem using a
structured matrix completion. Experimental results using in vivo

data for single/multicoil imaging as well as dynamic imaging con-
firmed that the proposed method outperforms the state-of-the-art
pMRI and CS-MRI.

Index Terms—Annihilating filter, cardinal spline, compressed
sensing, parallel MRI, pyramidal representation, structured low
rank block Hankel matrix completion, wavelets.

I. INTRODUCTION

M
AGNETIC resonance imaging (MRI) is an imaging sys-

tem that sequentially acquires k-space data correspond-

ing to the Fourier transform of an object. This enables us to

apply various advanced signal processing techniques. Recently,

compressed sensing theory [1], [2] has been extensively em-

ployed in accelerated MRI [3]–[5]. Compressed sensing algo-

rithms can restore original signals from much less k-space data

by exploiting the sparsity of an unknown image in the total

variation (TV) or wavelet transform domains, and incoherent

sampling schemes such as Gaussian random or Poisson disc are

usually required. Accurate MRI reconstruction from less data

makes compressed sensing a hot topic in the research commu-

nity; thus, it has been applied across many different application

areas such as in pediatric imaging [6], dynamic cardiac MRI

[7]–[9], perfusion imaging [10], angiography [11], and so on.
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On the other hand, parallel MRI (pMRI) [12]–[14] exploits

the diversity in the receiver coil sensitivity maps that are mul-

tiplied by an unknown image. This provides additional spatial

information for the unknown image, resulting in accelerated MR

data acquisition through k-space sample reduction. Representa-

tive parallel imaging algorithms such as SENSE (sensitivity en-

coding) [12] or GRAPPA (generalized autocalibrating partially

parallel acquisitions) [13] require regularly sampled k-space

data for computationally efficient reconstruction. Moreover, ad-

ditional k-space data, the so-called auto calibration (ACS) lines,

are often required to estimate the coil sensitive maps or GRAPPA

kernels [13].

Because the aim of the two approaches is an accelerated

acquisition by reducing the k-space data, extensive research

efforts have been made to synergistically combine the two for

further acceleration. One of the most simplest approaches can

be a SENSE type approach that explicitly utilizes the estimated

coil maps to obtain an augmented compressed sensing problem:

min
f

‖W f‖1 subject to g =

⎡

⎢
⎣

g1

...

gr

⎤

⎥
⎦ =

⎡

⎢
⎣

A[S1 ]
...

A[Sr ]

⎤

⎥
⎦ f (1)

where f and gi denote the unknown image and the k-space

measurements from the i-th coil, respectively; A is a subsam-

pled Fourier matrix; W is a sparsifying transform, and [Si ]
denotes a diagonal matrix whose diagonal elements come from

the i-th coil sensitivity map. The multichannel version of k-t

FOCUSS [7] is one of the typical examples of such approaches.

On the other hand, l1-SPIRiT (l1- iTerative Self-consistent Par-

allel Imaging Reconstruction) [15] utilizes the GRAPPA type

constraint as an additional constraint for a compressed sensing

problem:

min
F

‖ΨF‖1,2

subject to G = AF, VEC(F ) = M · VEC(F )

where ‖ · ‖1,2 denotes the (1, 2)-mixed norm of a matrix,

F = [ f1 f2 . . . fr ], G = [g1 g2 . . . gr ] denote the unknown

images and their k-space measurements for the given set of

coils, and Ψ denote a discrete wavelet transform matrix, and M
is an image domain GRAPPA operator, and VEC(·) is the vec-

torization operator. In both approaches, an accurate estimation

of coil sensitivity maps or GRAPPA kernel is essential to fully

exploit the coil sensitivity diversity.

In order to overcome these difficulties, calibration-less paral-

lel imaging methods have been extensively investigated, among
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which SAKE (simultaneous autocalibrating and k-space estima-

tion) [16] represents one of the first steps. In SAKE, the missing

k-space elements are reconstructed by imposing the data con-

sistency and the structural maintenance constraints of the block

Hankel structure matrix. However, the origin of the low rankness

in the Hankel structured matrix for the case of a single coil mea-

surement was not addressed, so it was not clear whether SAKE

could outperform the compressed sensing approach when it is

applied to single coil data. Haldar [17], [18] later discovered

that a Hankel structured matrix constructed by a single coil k-

space measurement is low-ranked when an unknown image has

finite support or a slow-varying phase. Based on this observa-

tion, he developed the so called LORAKS (Low-rank modeling

of local k-space neighborhoods) algorithm [17] and its paral-

lel imaging version, P-LORAKS (Low-rank modelling of local

k-space neighborhoods with parallel imaging data) [18]. How-

ever, it was not clear how the existing theory can deal with large

classes of image models that are not finite supported but can be

sparsified using various transforms such as wavelet transforms

or total variations (TV), etc.

Therefore, one of the main goals of this paper is to develop

a theory that unifies and generalizes k-space low-rank methods

to also allow for transform sparsity models which are critical

for practical MRI applications. Toward this goal, we show that

the transform domain sparsity in the signal space can be di-

rectly related to the existence of annihilating filters [19]–[21]

in the weighted k-space. Interestingly, the commutative relation

between an annihilating filter and weighted k-space measure-

ments provides a rank-deficient Hankel structured matrix, whose

rank is determined by the sparsity level of the underlying signal

in the transform domain. Therefore, by performing a low-rank

matrix completion approach, the missing weighted k-space data

in the Hankel structured matrix can be recovered, after which the

original k-space data can be recovered by removing the weights.

Interestingly, our new framework is so general that it can gen-

eralize the existing compressed sensing MR approaches in very

unique ways. For example, even though the original authors did

not explicitly mention, C-based LORAKS in [17] indeed uti-

lizes a special case of annihilating filter that exploits the image

domain sparsity in term of finite support condition. Moreover,

if an image can be sparsified with wavelet transforms, the low

rank structured matrix completion problem can be solved us-

ing a pyramidal decomposition after applying scale dependent

k-space weightings. In addition, we show that there exist addi-

tional inter-coil annihilating filter relationships that are unique in

pMRI, which can be utilized to construct a concatenated Hankel

matrix that is low ranked.

Another important advantage of the proposed algorithm is

that, compared to the existing CS-MRI, the reconstruction er-

rors are usually scattered throughout the entire images rather

than exhibiting systematic distortion along edges because the

annihilating filter relationships are specifically designed for es-

timating the edge signals. Given that many diagnostic errors are

caused by the systematic distortion of images, we believe that

our annihilating filter-based low rank Hankel matrix approach

(ALOHA) framework may have a great potential in clinical

applications.

The remainder of this paper is as follows. Section II-B dis-

cusses the relationship between the transform domain sparsity

and the low-rankness of Hankel structured matrix in weighted

k-space. In Section III, pyramidal decomposition and paral-

lel imaging version of the proposed method will be provided.

Section IV then explains the implementation detail. Experimen-

tal results are provided in Section V, which is followed by the

discussion in Section VI and conclusion in Section VII.

II. THEORY

A. Notations

A (n − d + 1) × d Hankel structured matrix generated from

an n-dimensional vector x = [x[0], . . . , x[n − 1]]T ∈ C
n has

the following structure:

H (x) =

⎡

⎢
⎢
⎢
⎣

x[0] x[1] · · · x[d − 1]
x[1] x[2] · · · x[d]

...
...

. . .
...

x[n − d] [n − d + 1] · · · x[n − 1]

⎤

⎥
⎥
⎥
⎦

. (2)

where d is called the matrix pencil parameter. We denote the

space of this type of Hankel structure matrices as H(n, d).
An n × d wrap-around Hankel matrix generated from an n-

dimensional vector u = [u[0], . . . , u[n − 1]]T ∈ C
n is defined

as:

Hc(u) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u[0] u[1] · · · u[d − 1]
u[1] u[2] · · · u[d]

...
...

. . .
...

u[n − d] u[n − d + 1] · · · u[n − 1]

u[n − d + 1] u[n − d + 2] · · · u[0]
...

...
. . .

...

u[n − 1] u[0] · · · u[d − 2]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that n × d wrap-around Hankel matrix is equivalent to the

standard Hankel matrix with respect to an augumented vector

with the periodic boundary expansion:

ũ =

⎡

⎢
⎣uT u[0]u[1] . . . u[d − 2]

︸ ︷︷ ︸

(d−1)

⎤

⎥
⎦

T

∈ C
n+d−1 .

Therefore, the two terms - wrap-around Hankel matrix and Han-

kel matrix with periodic boundary conditions - will be used

interchangeably.

B. Transform Domain Sparsity and Low-Rankness in

Weighted k-Space

Here, we describe the relationship between transform domain

sparsity and low rankness of weighted Hankel matrix, which is

the key idea of the proposed algorithm. For better readability,

the theory here is outlined by assuming 1-D signals, but the

principle can be extended for multidimensional signals [22].

Note that typical signals of our interest may not be sparse

in the image domain, but can be sparsified in a transform do-

main. For example, consider a L-spline signal model [23], [24].
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Specifically, the signal f of our interest is assumed to satisfy the

following partial differential equation:

Lf = w (3)

where L denotes a constant coefficient linear differential equa-

tion (or whitening operator in [23], [24]):

L := aK ∂K + aK−1∂
K−1 + · · · + a1∂ + a0 (4)

and w is a driving continuous domain sparse signal or sparse

innovation given by

w(x) =

r−1∑

j=0

cjδ (x − xj ) xj ∈ [0, τ ]. (5)

Here, without loss of generality, we set τ = n for a positive

integer n ∈ Z. This model includes many class of signals with

the finite rate of innovations [19]–[21]. For example, if the

underlying signal is piecewise constant, we can set L as the first

differentiation. In this case, f corresponds to the total variation

(TV) signal model, and this TV signal model will be extensively

used throughout the paper.

Now, by taking the Fourier transform of (3), we have

ŷ(ω) := F{Lf(x)} = l̂(ω)f̂(ω) =
r−1∑

j=0

aje
−iωxj (6)

where

l̂(ω) = aK (iω)K + aK−1(iω)K−1 + . . . + a1(iω) + a0 .

In the standard Nyquist sampling, we should measure discrete

set of Fourier samples from a deterministic grid, whose grid size

should be set to the Nyquist limit ∆ = 2π/n to avoid aliasing

artifacts; so the discrete spectrum can be represented as

ŷ[k] := ŷ(ω)|ω=k∆ = l̂[k∆]f̂ [k∆] =

r−1∑

j=0

cje
−i2πkxj /n ,

(7)

for k ∈ [0, . . . , n − 1]. The discrete spectral sampling model in

Eq. (7) implies that the unknown signal in the image domain is

a periodic streams of Diracs with a period n, which is indeed a

signal with the finite rate of innovation (FRI) with rate ρ = 2k/n
[19]–[21]. Therefore, theoretical results from the FRI sampling

theory can be used [19]–[21], which tells us that we can find a

minimum length annihilating filter ĥ[k] such that

(ĥ ∗ ŷ)[k] =

r∑

l=0

ĥ[l]ŷ[k − l] = 0, ∀k. (8)

The specific form of the minimum length annihilating filter ĥ[k]
for the case of (7) can be found in [19], which has the following

z-transform

ĥ(z) =

k∑

l=0

ĥ[l]z−l =

r−1∏

j=0

(1 − e−i2πxj /nz−1) , (9)

whose filter length is r + 1 [19].

Now, let y = [ ŷ[0] . . . ŷ[n − 1] ] and min{n − d + 1, d} >
r. Suppose, futhermore, that a Hankel structure matrix H (ŷ) ∈

H(n, d) is constructed by

H (ŷ) =

⎡

⎢
⎢
⎢
⎣

ŷ[0] ŷ[1] · · · ŷ[d − 1]
ŷ[1] ŷ[2] · · · ŷ[d]

...
...

. . .
...

ŷ[n − d] ŷ[n − d + 1] · · · ŷ[n − 1]

⎤

⎥
⎥
⎥
⎦

(10)

then we can show the following key result:

Theorem 2.1: Let r + 1 denote the length of the minimum

size of annihilating filters that annihilates discrete Fourier data

ŷ[k]. Assume that min{n − d + 1, d} > r. Then, for a given

Hankel structured matrix in (10), we have

RANKH (ŷ) = r, (11)

where RANK(·) denotes a matrix rank.

Proof: See our companion paper [25].

Indeed, the proof of Theorem 2.1 informs us that the explicit

form of the Fourier samples ŷ[k] given by

ŷ[k] :=

p−1
∑

s=0

m s −1∑

l=0

cs,lk
lds

k for 0 ≤ k ≤ n − 1,

with

r =

p−1
∑

s=0

ms

is necessary and sufficient condition to have a rank-r Hankel

matrix. Accordingly, we concluded that the signals with the

finite rate of innovation (FRI) correspond to this class signals

[25].

We further showed that for the case of the cardinal spline

cases (where the knots {xj} are located on the uniform grid), the

k-space data is also periodic; accordingly, a wrap-around Hankel

matrix can be equivalently obtained from the periodic boundary

condition [25]. Moreover, the spectral weighting comes from

the DFT of the discrete whitening filter that has attenuating

behaviour at high frequency regions, which makes the algorithm

more robust to noise boosting. See [25] for more details. This

cardinal spline model will be used throughout the paper for

MR specific applications, where the unknown images should be

reconstructed on a fixed grid.

Now, it is important to emphasize that Theorem 2.1 implies

the following relationship:

FRI signals
F

=⇒ low-ranked weighted Hankel structured

matrix,

where F denotes the Fourier transform. Therefore, if some

of k-space data of a FRI signals are missing, we can con-

struct an appropriate weighted Hankel matrix with missing

elements, which are recovered based on low rank matrix

completion [26]–[30]:

(P ) minm∈Cn RANKH (m)

subject to PΩ(m) = PΩ(ŷ) , (12)

where

ŷ = l ⊙ f̂
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and ⊙ denotes the Hadamard product, and l̂ and f̂ denotes

the vectors composed of discrete samples of l̂(ω) and f̂(ω),
respectively. By solving (P ) we can obtain the missing data

m(ω) = l̂(ω)f̂(ω) in the Fourier domain. Then, the missing

spectral data f̂(ω) can be obtained by dividing by the weight,

i.e. f̂(ω) = m(ω)/l̂(ω), when l̂(ω) 	= 0. As for the signal f̂(ω)

at the spectral null of the filter l̂(ω), the corresponding ele-

ments should be specifically obtained as sampled measurements,

which can be easily done in MR acquisition.

C. Sampling Rate, Stability and Compressibility

Among various algorithm to solve matrix completion problem

(P ), one of the most well-characterised approaches is a convex

relaxation approach using the nuclear norm [26], [27], [29], [30].

More specifically, the missing k-space elements can be found

by solving the following nuclear norm minimization problem:

(P1) minm∈Cn ‖H (m)‖∗ (13)

subject to PΩ(m) = PΩ(ŷ)

where ‖ · ‖∗ denotes the matrix nuclear norm. Therefore, the

remaining question is to verify whether the low-rank matrix

completion approach (P1) does not compromise any optimality

compared to the standard Fourier CS with the l1 sparsity penalty,

which is the main interest in this section.

Toward this goal, we first derive an algebraic bound. Consid-

ering that min{n − d + 1, d} ≥ r + 1 to allow rank deficient

Hankel matrix, we have n ≥ r + d ≥ 2r + 1. In fact, by tak-

ing all n samples as measurements, we can obtain the bunched

sampling pattern used in the classical sampling theory of FRI

signals [19]–[21], where the number of required samples are

equal to

m ≥ 2r + 1. (14)

Note that the minimum sampling rate in (14) is indeed equal

to the algebraic bound of the standard compressed sensing ap-

proach [1], [2]. Second, we are interested in deriving the perfor-

mance guarantee with random Fourier samples. Here, the notion

of the incoherence plays a crucial role. We recall the definitions

using our notations. Suppose that M ∈ C
n1 ×n2 is a rank-r ma-

trix whose SVD is UΣV ∗. M is said to satisfy the standard

incoherence condition with parameter µ if

max
1≤i≤n1

‖U ∗ei‖2 ≤
√

µr

n1
, max
1≤j≤n2

‖V ∗ej‖2 ≤
√

µr

n2
, (15)

where ei denotes the standard unit coordinate vector with 1

at the i-th elements, and zeros in all other locations. Then, by

extending the result by Chen and Chi [31], we obtained a general

performance guarantee [25]:

Theorem 2.2 ([25]): Let Ω = {j1 , . . . , jm} be a multi-set

consisting of random indices where jk ’s are i.i.d. following the

uniform distribution on {0, . . . , n − 1}. Suppose that a Hankel

matrix is constructed from ŷ ∈ C
n is of rank-r and satisfies the

standard incoherence condition in (15) with parameter µ. Then,

there exists an absolute constant c1 such that ŷ is the unique

minimizer to (13) with probability 1 − 1/n2 , provided

m ≥ c1µcsr logα n, (16)

where α = 2 and cs := n/d if the Hankel matrix has the wrap-

around property; α = 4 and cs := max{n/(n − d + 1), n/d},

otherwise.

Proof: See our companion paper [25].

In compressed sensing MRI, the reconstruction image grid

is always fixed; therefore, cardinal spline model that has knot

locations on a fixed grid is more appropriate. Therefore, the

results in (16) implies that the required number of samples are

proportional to the sparsity level up to log2(n) factor. Consider-

ing that the standard compressed sensing analysis showed that

the required number of Fourier samples in the l1 minimization

approach is proportional to the sparsity level up to logq (n) fac-

tor for some integer q [1], [2], the result in (16) is comparable

to the standard CS-MRI approach.

In practice, we observed that the number of k-space samples

are only a few times the sparsity level, which are not far from

the algebraic bound (14). This will be again confirmed by the

empirical verification in our paper. Moreover, controlled numer-

ical experiments in [25] confirmed that the proposed low-rank

matrix completion approach is consistently better than the stan-

dard CS in various signal models. This suggests an important

observation: by reformulating the compressed sensing problem

as a low rank Hankel structured matrix completion problem in

the measurement domain, we may not expect any performance

loss.

In Theorem II.3 of our companion paper [25], we also con-

sidered the recovery of ŷ from its partial entries with noise, and

derived a more improved version of the stability results than that

of Chen and Chi [31]. Note that the stability result in [25] can

be used to show the compressibility of the proposed structured

low-rank matrix completion method. In the compressed sens-

ing literatures, the compressibility implies that the dominant

r-coefficients can be stably recovered by compressed sensing

algorithms even though the underlying signal is not perfectly

r-sparse [1], [2]. More specifically, let y(x) be s-sparse FRI sig-

nal. Suppose, furthermore, that the sampling rate in (16) is only

sufficient to recover r-dominant sparse coefficients with r < s.

Then, the contribution of the remaining s − r non-zero coeffi-

cients works as noises in the Fourier domain with an appropriate

noise bound δ. Therefore, the stability result in [25] guarantees

the stable recovery of r-dominant sparse coefficients, implying

that the proposed method can be used to recovery signals which

is not perfectly r-sparse. Recall that this compressibility is one

of the most basic and fundamental components of compressed

sensing, making CS approaches very effective for reconstructing

MR image that is not perfectly sparse [1], [2].

III. ALOHA FOR ACCELERATED MRI

Inspired by the theoretical finding in the previous section,

this section will explain two realizations of the low-rank ma-

trix completion approaches that are useful for MR applications.

The first one is wavelet-based pyramidal decomposition ap-

proach and the second one is a generalization for multichannel
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parallel MRI. Note that these are particular instances of the

ALOHA algorithm and other variations of ALOHA may

be possible for various scenarios as demonstrated in recent

applications [32]–[34].

A. ALOHA for Wavelet Sparse Signals

One of the technical issues associated with the wavelet anal-

ysis is that the standard wavelet multi-resolution analysis are

usually conducted on fixed grid; so, the signal model in (3)

should be modified. Toward this goal, we found that a cardinal

spline model [23], [24], [35] is very useful.

A cardinal spline is a special case of a non-uniform spline

where the knots are located on the integer grid. More specifically,

a function f(x) is called a cardinal L-spline if and only if

Lf(x) = w(x), (17)

where the operator L is continuous domain whitening operator

and the continuous domain sparse innovation signal w(x) is

given by

w(x) :=
∑

p∈Z

a[p]δ(x − p) , (18)

whose singularities are located on integer grid. Here, we assume

that the number of nonzero coefficients {a[n]} on the integer

grid is r.

One of the main advantages of using cardinal setup over the

non-uniform splines is that we can recover signals by exploit-

ing the sparseness of sampled signal rather than exploiting off

the grid singularity. More specifically, consider “L-compatible”

generalized wavelets which, at a given resolution level s, are

such that1

ψs(x) = L∗φs(x). (19)

Here, L∗ is the adjoint operator of L and φs(x) is some smooth-

ing kernel with good localization properties. Then, the wavelet

analysis gives us

us(x) = 〈f, ψs(· − x)〉
= 〈f(·),L∗φs(· − x)〉
= 〈Lf(·), φs(· − x)〉
= 〈w(·), φs(· − x)〉 = (φ̄s ∗ w)(x)

=
∑

i∈Z

a[i]φ̄s(x − i) (20)

where φ̄s(x) = φs(−x). Note that us(x) is indeed a smoothed

version of continuous domain innovation w(x) in (18), because

all the sparsity information of the innovation w(x) is encoded

in its coefficients {a[i]}, and aside from the interpolant φ̄s(·),
us(x) in (20) still retains the same coefficients of the original

innovation (18).

In particular, if the underlying L-cardinal spline signal is a

TV signal, i.e. L = d
dx , then we can define the s-scale wavelet

1The analysis in the following is significantly influenced by the theory of
sparse stochastic processes [35], so we follow the original authors’ notation.

Fig. 1. (a) Haar wavelet basis, and the (b) associated hierarchical triangular
basis [35]. Note that absolute scale is ignored for simplicity.

as

ψs(x) = 2−s/2ψHaar

( x

2s

)

, (21)

where the centered Haar wavelet is given by

ψHaar(x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1, −1

2
≤ x < 0

−1, 0 ≤ x <
1

2
0, otherwise

(22)

For the given Haar wavelet, the corresponding smoothing kernel

φ(x) that satisfes

ψHaar(x) = L∗φ(x) , (23)

is given by [23], [24]:

φ(x) = − ∧ (2x),

where ∧ (x) :=

⎧

⎪⎨

⎪⎩

x − 1, −1 ≤ x < 0

−x + 1, 0 ≤ x < 1

0, otherwise

(24)

because L∗ = −L = − d
dt for TV signal model. Note that ∧(2x)

in (24) is the triangular function with the support size of 1 as

shown in Fig. 1(b), which is associated with the Haar wavelet

basis in Fig. 1(a) thanks to Eq. (23).

One of the most fundamental and novel observations made

in this paper is that the basis composed of triangular functions

allow us to analyze the following sampled signal ws(x) rather

than directly analysing us(x):

ws(x) = us(x)
∞∑

p=−∞
δ (x − 2sp)

=

∞∑

p=−∞
us [p]δ(x − 2sp) (25)
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where

us [p] := us(t)|t=2s p .

In the following, we will discuss the property of ws(x) for s = 0
and s > 0, respectively.

1) When s = 0: In this case, we have

w0(x) =

∞∑

p=−∞
u0 [p]δ(x − p)

=
∞∑

p=−∞
(φ0 ∗ a)[p]δ(x − p)

=

∞∑

p=−∞
a[p]δ(x − p)

where we use the fact that φ0(x) = φ0(−x) in (24) and its

support size is 1. This implies that w0(x) has the same sparsity

level as the underlying innovation w(x), implying that w0(x) is

a stream of r-Diracs. Therefore, by combining the relationship

in [20], for the finite supported signal w(x) with the support size

n, the resulting Fourier spectrum becomes the discrete Fourier

transform (DFT) such that

ŵ0 [k] = ŵ0(e
iω )
∣
∣
ω=2πk/n

= ψ̂∗
0 [k]f̂ [k]

where ψ̂∗
0 [k] and f̂ [k] denote the DFT spectrum of ψ0(−x)

and f(x), respectively. Because ψ̂∗
0 [k] can be computed de-

terministically, we can construct a Hankel matrix H (ŵ0) =

H (ψ̂
∗
0 ⊙ f̂). Moreover, thanks to the sparsity preservation, we

have

RANKH (ŵ0) = RANKH (ψ̂
∗
0 ⊙ f̂) = r. (26)

In addition, due to the periodicity of DFT spectrum, we can use

the following wrap-around Hankel matrix:

Hc(ŵ0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŵ0 [0] ŵ0 [1] · · · ŵ0 [d − 1]
ŵ0 [1] ŵ0 [2] · · · ŵ0 [d]

...
...

. . .
...

ŵ0 [n − d] ŵ0 [n − d + 1] · · · ŵ0 [n − 1]

ŵ0 [n − d + 1] ŵ0 [n − d + 2] · · · ŵ0 [0]
...

...
. . .

...

ŵ0 [n − 1] ŵ0 [0] · · · ŵ0 [d − 2]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (27)

where the bottom block is an augmented block. As discussed

before, this can be easily constructed as the standard Hankel

matrix by imposing the periodic boundary conditions. Since the

bottom block can be also annihilated using the same annihilating

filter, we can see the rank of the wrap-around Hankel expansion

is the same as the original Hankel structured matrix:

RANKHc(ŵ0) = RANKH (ŵ0) = r.

Fig. 2. (a) Best case where the sparsity is reduced by half across scale, and
(b) the worst case where the sparsity is persevered across scale.

Therefore, the missing DFT coefficients can be interpolated

using the following low-rank matrix completion:

ming∈Cn ‖Hc(g)‖∗
subject to PΩ(g) = PΩ (̂l ⊙ f̂) , (28)

where l̂ = ψ̂∗
0 .

2) When s > 0: First, we consider s = 1. In this case, we

have

w1(x) = u1(x)

∞∑

p=−∞
δ(x − 2p)

=

∞∑

p=−∞
u1(2p)δ(x − 2p)

=
∞∑

p=−∞
(φ1 ∗ a)[2p]δ(x − 2p)

Then, as shown in Figs. 2(a) and 2(b), we can easily see that

the sparsity level of the sequence (φ1 ∗ a)[2p] does not increase

and, furthermore, in many cases, it is reduced nearly by half.

On the other hand, the spectrum of w1(x) has aliasing

components due to the downsampling by factor 2, so we have

ŵ1 [k] =
1

2

(

ψ̂∗
1 [k]f̂ [k] + ψ̂∗

1 [k + n/2]f̂ [k + n/2]
)

(29)

whose period is reduced by n/2. Because of the reduction of

the period, in constructing the Hankel matrix (27), we only

need to consider the low frequency spectrum up to n/2, which

can reduce the complexity of the structured matrix completion.

However, one key technical challenge is due to the aliasing

component in (29) which also aliases into the low frequency

part.

To deal with this problem, we propose the following approach.

Specifically, let flow (x) denote the ideal low-pass part of the

signal f(x) by zeroing out the DFT spectrum above n/2, i.e.

flow (x) = hlow (x) ∗ f(x),

where hlow (x) denotes the ideal low-pass filter. Then, for L =
d
dx , it is easy to show the following:

Lflow (x) = hlow (x) ∗ Lf(x) = hlow (x) ∗ w(x),
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because the differentiation and the linear operator L commutes.

Therefore, for given φ(x) in (24), we have

ulow
s (x) = 〈flow (·), ψs(· − x)〉

= 〈flow (·),L∗φs(· − x)〉
= 〈(hlow ∗ w)(·), φs(· − x)〉

=
∑

i∈Z

a[i](hlow ∗ φs)(x − i)

and the corresponding sampled signal becomes

wlow
1 (x) = ulow

1 (x)

∞∑

p=−∞
δ(x − 2p)

=

∞∑

p=−∞
(φ1 ∗ a ∗ hlow )[2p]δ(x − 2p) (30)

The role of ideal low pass filter is doubling the resolution, so

the non-zero coefficient of (φ1 ∗ a ∗ hlow )[p] increases approx-

imately twice than (φ1 ∗ a)[p]. However, in (30), the discrete

signals are down-sampled by factor of two with zero-padding,

so we can assume that the net sparsity level may not increase

from using only ideal low-pass signals. On the other hand, one

of the important benefits of using this trick is that we no more

have aliasing component in its DFT spectrum:

ŵlow
1 [k] =

1

2

(

ψ̂∗
1 [k]f̂ low [k] + ψ̂∗

1 [k + n/2]f̂ low [k + n/2]
)

=
1

2
ψ̂∗

1 [k]f̂ low [k], k = 0, . . . , n/2 − 1, (31)

because the frequency content of f low above n/2 is zero. There-

fore, the missing DFT coefficients at s = 1 can be formulated

using the following reduced size low-rank matrix completion

problem:

ming∈Cn / 2 ‖Hc(g)‖∗ (32)

subject to PΩ(g) = PΩ (̂l ⊙ f̂ low ) ,

where l̂ = ψ̂∗
0 and f̂ low denotes the Fourier samples at only

below n/2. Note the computational complexity reduction due

to the reduced Hankel matrix size. For the scale s > 2, we can

perform similar procedure.

Accordingly, the resulting algorithm is a pyramidal decom-

position of a low rank Hankel matrix completion algorithm as

shown in Fig. 3 to decouple the aliasing components in wavelet

analysis by slightly compromising sparsity level. Here, the low-

rank matrix completion is solved from the lowest scale, i.e.

s = 0, up to the highest scale (see caption of Fig. 3 for more

discussion of the figures). Here, a care needs to be taken be-

cause the low frequency k-space data corresponding to the scal-

ing function coefficients should be acquired additionally during

MR data acquisition. This information as well as the annihilat-

ing filter size then determines the the depth of the pyramidal

decomposition as will be discussed in detail later in Discussion

(see Supplement Material).

There are several advantages of using wavelet approaches

compared to the direct operator weighting in ALOHA frame-

Fig. 3. ALOHA implementation using pyramidal decomposition. Construc-
tion of Hankel matrices from (a) kx -ky data by assuming that 2-D dydadic
wavelet transform of images is sparse, and (b) k − t subsampled data by assum-
ing that dynamic images can be sparsified using spatial wavelet and temporal
Fourier transform. In the box, each reconstruction unit at the s-scale (the s-
scale ALOHA) is illustrated, which consists of five steps: (1) the k-space region
extraction, (2) k-space element by element weighting using s-scale wavelet

spectrum 1√
2s ψ̂∗(2s ω), (3) low-rank Hankel matrix completion, (4) k-space

unweighting by dividing the interpolated k-space data using the s-scale wavelet
spectrum, and (5) the k-space data replacement using the interpolated data. Note
that for the case of dynamic MRI, one dimensional weigting is required along
the phase encoding direction, whereas 2-D weighting is necessary for the case
of static imaging. In the figure, H † corresponds to the pseudo-inverse opera-
tion that takes the average value from the Hankel matrix and putting it back to
the original k-space domain. The color coding in the Hankel structure matrix
indicates the values of weighting.

work. First, the pyramidal decomposition structure for low rank

matrix completion can significantly reduce the overall compu-

tational complexity. Moreover, it has been observed in [35] that

the wavelet approach is more robust for noise and the model mis-

match, which is also consistently observed in ALOHA frame-

work as will be discussed later. Finally, in solving the s-scale

of structured matrix completion, rather than starting from zero-

initial guess for the missing k-space data, they can be initialised

using the values estimated at the lower scale, i.e. s − 1. This

significantly accelerates the convergence of the algorithm.

Before we finish this section, it is worth to mention that

a similar fine-to-coarse scale wavelet coefficients reconstruc-

tion was recently proposed in Fourier compressed sensing

problem [36].

B. Generalization to Parallel MRI

Beside the low-rank property originating from sparsity in the

transform domain, there exists an additional low-rank relation-

ship that is unique in parallel MRI. The relationship we de-

scribed here has similarity to SAKE and P-LORAKS when the

image itself is sparse, and our contribution is its generalization

to transform domain sparse signals and theoretical verification.



JIN et al.: GENERAL FRAMEWORK FOR COMPRESSED SENSING AND PARALLEL MRI USING ANNIHILATING FILTER BASED LOW-RANK 487

Here, to allow seamless integration with wavelet analysis, the

following theory is derived based on the cardinal spline models

and wavelet analysis in the previous section.

In pMRI, the unknown image gi(x) from the i-th coil can be

represented as

gi(x) = si(x)f(x), i = 1, . . . , Nc , (33)

where si(x) denotes the i-th coil sensitivity map, f(x) is an

unknown image, and Nc denotes the number of coils. To make

the algorithm general, we impose the most basic assumption: the

coil sensitivity map is bounded, i.e. |si(x)| < ∞, ∀i. The main

goal of parallel imaging is, then, to exploit the common signal

f(x) that is measured through multiple channels. There are two

distinct scenarios: 1) gi(x) is sparse by itself, and 2) gi(x) can

be sparsified by applying transform such as total variations. In

the following we investigate the two scenario separately.

1) Sparse Signals: Under the cardinal setup, to model the

image domain sparse signal on a fixed grid, we again assume

that gi(x) is a stream of Diracs given by

gi(x) =
∑

l∈Ii

gi [l]δ(x − l), i = 1, . . . , Nc ,

where Ii is a non-zero index set on the integer grid. Now, define

the union of index set

If =

N c⋃

i=1

Ii , r = |If |,

where | · | denotes the cardinality of a set. Because the coil

sensitivity map is bounded, Eq. (33) implies that f(x) is a

stream of r-Diracs whose non-zero coefficients exist only on

the index set If :

f(x) =
∑

l∈If

f [l]δ(x − l),

and, accordingly, we have

gi(x) =
∑

l∈If

si [l]f [l]δ(x − l), where si [l] = si(x)|x= l .

Then, under the usual assumption of the finite supported signal

with the support size n, the resulting spectrum becomes DFT

spectrum represented by

ĝi [k] = f̂ [l] ⊛ ŝi [l] =

n−1∑

l=0

f̂ [l]ŝ[(k − l)n ], (34)

where (·)n denotes the mod operation, because the multiplica-

tion in the discrete-time domain becomes periodic convolution

in the DFT domain. Therefore, a Hankel matrix Hc(ĝi) with

the matrix pencil size d and the periodic boundary condition can

have the following decomposition:

Hc(ĝi) = Hc(f̂)C(ŝi) ∈ C
n×d (35)

where Hc(f̂) is n × n wrap around Hankel matrix and C(ŝi) are

given by

Hc(ŵ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f̂ [0] f̂ [1] · · · f̂ [n − 1]

f̂ [1] f̂ [2] · · · f̂ [0]

...
...

. . .
...

f̂ [n − 1] f̂ [0] · · · f̂ [n − 2]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ C
n×n .

and

C(ŝi) =

⎡

⎢
⎢
⎢
⎢
⎣

ŝi [0] ŝi [1] · · · ŝi [d − 1]

ŝi [n − 1] ŝi [0] · · · ŝi [d − 2]

...
...

. . .
...

ŝi [1] ŝi [2] · · · ŝi [d]

⎤

⎥
⎥
⎥
⎥
⎦

∈ C
n×d .

Then, for a given horizontally augmented matrix Yh :

Yh =
[
Hc(ĝ1) . . . Hc(ĝN c

)
]
∈ C

n×(N c d) . (36)

with H (ĝi) ∈ C
n×d , we have the following decomposition:

Yh = Hc(f̂)
[
C(ŝ1) . . . C(ŝN c

)
]
. (37)

Due to the rank inequality RANK(AB) ≤ min{RANK(A),
RANK(B)}, we therefore have the following rank bound:

RANKYh ≤ RANK Hc(f̂) = |If | = r , (38)

where the equality comes from Theorem 2.1.2 Therefore, if

the matrix pencil size d is chosen such that Ncd > r, then the

concatenated matrix becomes low-ranked.

Note that the decomposition structure in (37) implies the

following inter-coil annihilating filter relationship:

ĝi [k] ⊛ ŝj [k] − ĝj [k] ⊛ ŝi [k] = 0, i 	= j,

which are quite often used in multi-channel deconvolution prob-

lems [37]. This is because
(
N c

2

)
combination of the vertically

augmented sensitivity filter vectors with the appropriate +1,−1
weighting live in the null space of [C(ŝ1) . . . C(ŝN c

) ] (accord-

ingly, in the null space of Yh ) [37].

2) TV Signals: Similar to the previous section, we also as-

sume that gi(x) is a cardinal L-spline model (17) where L = d
dx .

Because si(x) is bounded and the following chain rule holds:

Lgi(x) = si(x)Lf(x) + f(x)Lsi(x) , i = 1, . . . , Nc ,

the cardinal L-spline model assumption implies that both Lf(x)
and Lsi(x) are also cardinal L-splines:

Lf(x) = w(x) :=
∑

l∈Ia

a[l]δ(x − l) (39)

Lsi(x) = bi(x) :=
∑

l∈Ib i

bi [l]δ(x − l) (40)

2In this special instance, we do not even need Theorem 2.1. This is because

n × n-Hankel matrix Hc (f̂ ) becomes circulant, so the rank of the circulant
matrix is equal to the non-zero elements after taking DFT.
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where Ia and Ibi
denote the index sets where a[l] and bi [l] are

non-zero, respectively. We further define the union set

Ib =

N c⋃

i=1

Ibi
. (41)

Then, the wavelet analysis at the 0-th scale using centered Haar

wavelet gives us

ui
0(x) = 〈gi(·), ψ0(· − x)〉

= 〈gi(·),L∗φ0(· − x)〉
= 〈Lgi(·), φ0(· − x)〉
= 〈si(·)Lf(·), φ0(· − x)〉 + 〈f(·)Lsi(·), φ0(· − x)〉

=
∑

l∈Ia

a[l]si(l)φ0(x − l) +
∑

l∈Ib i

bi [l]f(l)φ0(x − l)

(42)

where we use φ̄0(x) = φ0(x) for the case of centred triangu-

lar basis. Recall that one of the main advantages of cardinal

spline model is that the sparsity level is still preserved after

discretization, so we can analyze the following signal:

wi
0(x) = ui

0(x)
∑

l∈Z

δ(x − l) (43)

=
∑

l∈F
a[l]si [i]δ(x − l) +

∑

l∈Si

bi [l]f [i]δ(x − l) (44)

where si [i] := si(x)|x=i and f [i] := f(x)|x=i . We further de-

fine a truncated sequences ftr [l]:

ftr [l] =

{

f [l], l ∈ Ib

0, otherwise
, (45)

where Ib is defined in (41). Then, for the finite supported signal

with the support size n, the resulting spectrum becomes DFT

spectrum such that

ŵi
0 [k] = ψ̂∗

0 [k]ĝi [k]

= DFT {a[l]si [l] + bi [l]ftr [l]} (46)

= ŵ[k] ⊛ ŝi [k] + f̂tr [k] ⊛ b̂i [k] (47)

where ŵ[k] denotes the DFT spectrum of (39), and f̂tr [k] is the

DFT spectrum of the sequence in (45). Then, the n × d Hankel

matrix with the periodic boundary condition constructed from

ŵi
0 [k] can be decomposed as

Hc (̂l ⊙ ĝi) = Hc(ŵ)C(ŝi) + Hc(f̂tr)C(b̂i) (48)

where l̂ = ψ̂
∗
0 and Hc(ŵ) ∈ C

n×n and C(ŝi) ∈ C
n×d are given

by

Hc(ŵ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ŵ[0] ŵ[1] · · · ŵ[n − 1]

ŵ[1] ŵ[2] · · · ŵ[0]

...
...

. . .
...

ŵ[n − 1] ŵ[0] · · · ŵ[n − 2]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

and

C(ŝi) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ŝi [0] ŝi [1] · · · ŝi [d − 1]

ŝi [n − 1] ŝi [0] · · · ŝi [d − 2]

...
...

. . .
...

ŝi [1] ŝi [2] · · · ŝi [d]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ C
n×d .

Similarly, we can define Hc(f̂tr) ∈ C
n×n and C(b̂i) ∈ C

n×d .

Then, a horizontally augmented matrix Yh can be decomposed

as following:

Yh =
[

Hc (̂l ⊙ ĝ1) · · · Hc (̂l ⊙ ĝN c
)
]

(49)

= Hc(ŵ)
[
C(ŝ1) · · · C(ŝN c

)
]

+Hc(f̂tr)
[

C(b̂1) · · · C(b̂N c
)
]

(50)

where l̂ = ψ̂
∗
0 . Due to the rank inequality RANK(AB) ≤

min{RANK(A), RANK(B)} as well as RANK(A + B) ≤
RANK(A) + RANK(B), the rank of the concatenated matrix

is, therefore, given by

RANKYh ≤ RANK Hc(ŵ) + RANK Hc(f̂tr)

= |Ia | + |Ib | (51)

where |Ia | and |IB | denote the cardinality of the sets Ia

and Ib defined in (39) and (41), respectively. Therefore, if

Lf(x) and Lsi(x), i = 1, . . . , Nc are sufficiently sparse such

that |Ia | + |Ib | < Ncd, then the resulting concatenated Hankel

matrix becomes low-ranked. The analysis can be also extended

for the scale s ≥ 1 by combining the discussion in the previous

section.

3) Low-Rank Matrix Completion: Due to the aforemen-

tioned low-rankness of the concatenated matrix, the multichan-

nel version of the ALOHA can be formulated as

min{m i }r
i = 1

RANK
[
Hc(m1) · · · Hc(mr )

]
(52)

subject to PΩ(mi) = PΩ (̂l ⊙ ĝi), i = 1, . . . , Nc .

Before we finish this section, we like to investigate the fea-

sibility of the different concatenation order. More specifically,

one could construct a vertically augmented matrix Yv :

Yv =

⎡

⎢
⎣

Hc (̂l ⊙ ĝ1)
...

Hc (̂l ⊙ ĝN c
)

⎤

⎥
⎦ ∈ C

N c n×d . (53)

Due to the wrap-around structure of the individual Hankel ma-

trix, note that Yv is not a transpose of Yh . Accordingly, the

analysis in the previous section does not hold and we cannot

utilize the low-rankness from the inter-coil relationship.

However, if we stack Hankel matrix without wrap-around

property (i.e. H (̂l ⊙ ĝi) ∈ C
(n−d+1)×d are used in (53) in-

stead of Hc (̂l ⊙ ĝi)), then due to the special structure of the

Hankel matrix, Yv becomes the transpose of Yh ; accordingly,

by interchanging the role of n − d + 1 and d, one can make the

rank of Yv equal to that of Yh . However, the theoretical analysis

of the concatenated Hankel matrices without wrap around prop-

erty turns out to be quite involved due to the boundary condition



JIN et al.: GENERAL FRAMEWORK FOR COMPRESSED SENSING AND PARALLEL MRI USING ANNIHILATING FILTER BASED LOW-RANK 489

and data truncation; and even more, it is even not necessary

in accelerated MR except for the super-resolution imaging (see

[22]), because the image should be recovered on a fixed grid

rather than on a continuum which makes the cardinal spline

model more appropriate. Under this condition, the performance

of the resulting rank minimization for the vertical stacking ap-

proach becomes deteriorated as will be shown in Discussion

(see Supplement Material).

IV. IMPLEMENTATION DETAILS

A. 2D Hankel Structured Matrix Construction

In 3D imaging or dynamic acquisition of MR data, the readout

direction is usually fully sampled and the other two encoding

directions are under sampled, so the problem becomes a 2-D

imaging problem. Thus, this section presents an explicit way

of constructing a 2D Hankel structured matrix. Specifically, if

ĥ[n,m] is a p1 × q1 size 2D annihilating filter, then the corre-

sponding annihilating filter relation is given by

(ĥ ∗ f̂)[n,m] =

p1 −1
∑

i=0

q1 −1
∑

j=0

ĥ[i, j]f̂ [n − i,m − j] = 0, (54)

for all n,m ∈ Ω. Let n1 × m1 k-space data matrix be defined

by

F̂ :=

⎡

⎢
⎢
⎣

f̂ [0, 0] · · · f̂ [0,m1 − 1]

...
. . .

...

f̂ [n1 − 1, 0] · · · f̂ [n1 − 1,m1 − 1]

⎤

⎥
⎥
⎦

=
[

f̂0 · · · f̂m 1 −1

]
.

Similarly, we define p1 × q1 annihilating filter matrix Ĥ . Then,

(54) can be equivalently represented as

H (F̂ )ĥ = 0, (55)

where a 2-D Hankel structured matrix H (F̂ ) is constructed as

⎡

⎢
⎢
⎢
⎣

H (f̂0) H (f̂1) · · · H (f̂q1 −1)

H (f̂1) H (f̂2) · · · H (f̂q1
)

...
...

. . .
...

H (f̂m 1 −q1
) H (f̂m 1 −q1 +1) · · · H (f̂m 1 −1)

⎤

⎥
⎥
⎥
⎦

(56)

with H (f̂j ) ∈ C
(n1 −p1 +1)×p1 given by

⎡

⎢
⎢
⎢
⎣

f̂ [0, j] f̂ [1, j] · · · f̂ [p1 − 1, j]

f̂ [1, j] f̂ [2, j] · · · f̂ [p1 , j]
...

...
. . .

...

f̂ [n1 − p1 , j] f̂ [n1 − p1 + 1, j] · · · f̂ [n1 − 1, j]

⎤

⎥
⎥
⎥
⎦

,

and the annihilating filter vector is given by

ĥ = VEC(Ĥ) , (57)

where the overline denotes an operator that reserves the order

of a vector. Similar to 1-D cases, we again impose a periodic

boundary condition to construct a wrap-around Hankel matrix.

Fig. 4. (a) Area where annihilation property holds. Various ways of con-
structing block Hankel matrices: (b) ALOHA, (c) SAKE, and (d) LORAKS. In
(d), NR denotes the number of neighborhood pixels.

Using this, we can construct an augmented matrix Y in (49)

from Nc -channels.

The augmented matrix structure H (F̂ ) illustrated in Fig. 4(b)

is similar to those of SAKE and C-based LORAKS/P-LORAKS

in Fig. 4(c) and (d), respectively, with the following differences.

Compared to SAKE, ALOHA stacks the multi-coil Hankel ma-

trices side by side. Second, unlike the SAKE and ALOHA,

C-based LORAKS uses an adjustable parameter R as the ra-

dius of non-separable neighborhoods according to the software

manual provided by the original authors. Moreover, the most im-

portant novelty of the proposed method is the k-space weighting

to construct a weighted Hankel structured matrix.

B. Hankel Structured Matrix Completion Algorithm

In order to solve Eqs. (12) and (52), we employ an SVD-free

structured rank minimization algorithm [38] with an initializa-

tion using the low-rank factorization model (LMaFit) algorithm

[39]. This algorithm does not use the singular value decom-

position (SVD), so the computational complexity can be sig-

nificantly reduced. Specifically, the algorithm is based on the

following observation [40]:

‖A‖∗ = min
U,V :A = U V H

‖U‖2
F + ‖V ‖2

F . (58)

Hence, (12) can be reformulated as the nuclear norm minimiza-

tion problem under the matrix factorization constraint:

min
U,V :H (m) = U V H

‖U‖2
F + ‖V ‖2

F

subject to PΩ(m) = PΩ(f̂). (59)

By combining the two constraints, we have the following

cost function for an alternating direction method of multiplier



490 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

(ADMM) step [41]:

L(U, V,m,Λ) := ι(m) +
1

2

(
‖U‖2

F + ‖V ‖2
F

)

+
µ

2
‖H (m) − UV H + Λ‖2

F (60)

where ι(m) denotes an indicator function:

ι(m) =

{

0, if PΩ(m) = PΩ(f̂)

∞, otherwise
.

One of the advantages of the ADMM formulation is that each

subproblem is simply obtained from (60). More specifically,

m(n+1) , U (n+1) and V (n+1) can be obtained, respectively, by

applying the following optimization problems sequentially:

min
m

ι(m) +
µ

2

∥
∥
∥H (m) − U (n)V (n)H + Λ(n)‖2

F

min
U

1

2
‖U‖2

F +
µ

2

∥
∥
∥H (m(n+1)) − UV (n)H + Λ(n)‖2

F

min
V

1

2
‖V ‖2

F +
µ

2

∥
∥
∥H (m(n+1)) − U (n+1)V H + Λ(n)‖2

F

(61)

and the Lagrangian update is given by

Λ(n+1) = Y (n+1) − U (n+1)V (n+1)H + Λ(n) .

It is easy to show that the first step in (61) can be reduced to

m(n+1) = PΩ c H
†
{

U (n)V (n)H − Λ(n)
}

+ PΩ(f̂), (62)

where PΩ c is a projection mapping on the set Ωc and H † cor-

responds to the Penrose-Moore pseudo-inverse mapping from

our block Hankel structure to a vector. Hence, the role of the

pseudo-inverse is taking the average value and putting it back

to the original coordinate. Next, the subproblem for U and V
can be easily calculated by taking the derivative with respect to

each matrix, and we have

U (n+1) = µ
(

Y (n+1) + Λ(n)
)

V (n)
(

I + µV (n)H V (n)
)−1

V (n+1) = µ
(

Y (n+1) + Λ(n)
)H

U (n+1)

(

I + µU (n+1)H U (n+1)
)−1

(63)

Note that the computational complexity of our ADMM

algorithm is dependent on the matrix inversion in (63), whose

complexity is determined by the estimated rank of the Hankel

matrix. Therefore, even though the Hankel matrix has large size,

the estimated rank is much smaller, which significantly reduces

overall complexity.

Now, for faster convergence, the remaining issue is how to

initialize U and V . For this, we employ an algorithm called

the low-rank factorization model (LMaFit) [39]. More specif-

ically, for a low-rank matrix Z, LMaFit solves the following

optimization problem:

min
U,V ,Z

1

2
‖UV H − Z‖2

F subject to PI (Z) = PI (H (f̂)) (64)

and Z is initialized with H (f̂) and the index set I denotes

the positions where the elements of H (f̂) are known. LMaFit

solves a linear equation with respect to U and V to find their

updates and relaxes the updates by taking the average between

the previous iteration and the current iteration. Moreover, the

rank estimation can be done automatically. LMaFit uses QR fac-

torization instead of SVD, so it is also computationally efficient.

Even though the problem (64) is non-convex due to the multi-

plication of U and V , the convergence of LMaFit to a stationary

point was analyzed in detail [39]. However, the LMaFit alone

cannot recover the block Hankel structure, which is the reason

we use an ADMM step afterward to impose the structure.

Note that the automatic rank estimation is another impor-

tant advantages over SAKE and LORAKS that require time

consuming full search or manual tuning for the rank estimation.

C. Reconstruction Flow

As shown in Fig. 3, the ALOHA framework in the present

work is comprised with several major steps: pyramidal decom-

position, k-space weighting, Hankel matrix formation, rank es-

timation, SVD-free low rank matrix completion, and k-space

unweighting. Here, we will explain these in more detail.

The pyramidal decomposition is performed as follows. First,

in static MR data acquisition illustrated in Fig. 3 a, the kx − ky

corresponds to the two phase encoding directions that are down-

sampled. Thus, the Hankel matrix is constructed from kx − ky

data. After a k-space interpolation from a finer scale, the data

at the current scale is defined to contain one-fourth of data

around zero frequency from that of the previous scale. Second,

in the case of dynamic MR imaging shown in Fig. 3(b), kx

samples from the readout direction are fully acquired, whereas

the ky directional phase encoding are downsampled along the

temporal direction t. Therefore, the data in ky − t space (or

simply, k − t space) are downsampled, from which we con-

struct a Hankel structure matrix. In pyramidal decomposition,

after a k-space interpolation from a finer scale, the ky − t
data in the current scale contains a half of the data from that

of the previous scale. Note that the wavelet decomposition

is performed only along the spatial domain, so the pyrami-

dal decomposition is only performed along ky direction. This

construction of Hankel matrix is due to the observation that

the dynamic signal is sparse in spatial wavelet and temporal

Fourier transform domain [32]. See more details in our recent

work [32].

In both cases, the estimated k-space data at the lower scale

are used to initialize the low rank matrix completion algorithm

at the current scale. This accelerates the convergence speed.

Moreover, due to the additional chance of refining the esti-

mates, more important k-space samples at the low frequency

regions are refined furthermore compared to the high fre-

quency k-space samples. Consequently, the overall compu-

tational burden of the low rank matrix competition algo-

rithm is significantly reduced while the overall quality is still

maintained.

The k-space weighting is performed using wavelets. Specif-

ically, we use a Haar wavelet expansion whose spectrum is
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given by

ψ̂0(ω) =
iω

2

(
sin ω/4

ω/4

)2

. (65)

The corresponding k-space weighting at the s-scale is given by

ψ̂∗
s(ω) =

−1√
2s

i2sω

2

(
sin 2sω/4

2sω/4

)2

. (66)

For the case of static MRI in Fig. 3(a), we use 2-D weighting

by assuming that the image is sparse in 2-D dyadic wavelet

transform domain. Care needs to be taken when applying the

weighting to 2D Fourier domain because there are two fre-

quency variables (ωx , ωy ). One could use a separable weight-

ing l̂(ωx , ωy ) = l̂(ωx)l̂(ωy ); however, the resulting problem is

that the missing k-space components along the frequency axis

ωx = 0 or ωy = 0 cannot be recovered. Consequently, we ap-

plied the weighting sequentially along each axis, i.e. we solve

(12) by applying l̂(ωx) first, which is followed by solving (12)

with l̂(ωy ). However, simultaneous weighting would be possi-

ble as demonstrated in a recent work for off-the-grid recovery of

piecewise constant image [22]. For the case of dynamic imaging

in Fig. 3(b), one dimensional weighting along the phase encod-

ing direction was applied as explained in detail in [32]. Finally,

after the k-space interpolation, the k-space unweighting is done

in k-space pixel-by-pixel by dividing the reconstructed value

with (66). Note that (66) has zero value at the DC frequency.

However, because we acquire the DC value as well as some of

the low frequency k-space data, the problem of dividing by zero

never happened.

We used TITAN GTX graphic card for graphic processor unit

(GPU) and i7-4770k CPU and the codes were written in MAT-

LAB 2015a (Mathwork, Natick). To accelerate the algorithm,

most part of the MATLAB codes except the LMaFit were im-

plemented using Compute Unified Device Architecture (CUDA)

for GPU. LMaFit step was implemented using the original au-

thors’ CPU version code.

D. MR Acquisition and Reconstruction Parameters

To assess the performance of ALOHA for single coil com-

pressed sensing imaging, k-space raw data from an MR head-

scan was obtained with Siemens Tim Trio 3T scanner using

balanced steady-state free precession (bSSFP) sequence. The ac-

quisition parameters were as follows: TR/TE = 10.68/5.34 ms,

208 × 256 acquisition matrix (partial Fourier factor 7/8, over-

sampling factor 50%), and number of slices is 104 with 2 mm

slice thickness. The field-of-view (FOV) was 178 × 220 mm2 .

We used the central coronal slice.

A retrospective down-sampling mask was generated accord-

ing to a two dimensional Gaussian distribution and the data

at the central 7 × 7 region around zero frequency were ob-

tained additionally. This is equivalent to assume a 3D imaging

scenario where the readout direction is fully sampled and the

downsampling is done in the remaining 2-D phase encoding

direction. Downsampling factors of four was used to generate

sampling masks. However, data was obtained as partial Fourier

measurements, so effective downsampling ratio was 4.13. The

2-D k-space weighting using (66) was used. The ALOHA recon-

struction was conducted using the following parameters: three

levels of pyramidal decomposition, and decreasing LMaFit tol-

erance values (5 × 10−2 , 5 × 10−3 , 5 × 10−4) at each level of

the pyramid. In addition, an initial rank estimate for LMaFit

started with one and was refined automatically in an increas-

ing sequence, the annihilating filter size was 23 × 23, and the

ADMM parameter was µ = 103 .

For the compressed sensing approach, we used two ap-

proaches with the same data and the same sampling masks:

(1) the sparsity in wavelet domain (which we denote l1-wavelet)

[3], and (2) the split Bregman method for the total variation [42].

In case of l1-wavelet approach, we implemented an ADMM

algorithm using wavelet domain sparsity. In addition, for com-

parison with the existing state-of-the art approach using Hankel

structured matrix completion algorithm, C-based LORAKS was

compared because it exploits the image domain sparsity. There

are other types of LORAKS such as G-based LORAKS and

S-based LORAKS, which may improve the quality of image

better than C-based LORAKS depending on situtation. How-

ever, because C based-LORAKS (from now on, referred as

‘C-LORAKS’) is similar to the ALOHA without weighting,

we use C-LORAKS as a reference to contrast why the proposed

ALOHA framework has many advantages. The implementation

of C-LORAKS was based on the source code available in the

original author’s homepage, which requires manual setting of

estimated ranks. We chose the rank for LORAKS that gave the

best reconstruction quality. In Discussion (see Supplementary

Material), we also provided reconstruction results by ALOHA

without weighting to control the confounds and confirm the

importance of the k-space weighting in constructing Hankel

matrix.

The parameters for the l1-wavelet and TV approaches

were optimized to have the best performance in terms of the

normalized mean square error (NMSE), which is defined by

NMSE(x) = ‖x − y‖2
2/‖y‖2

2 , where x and y denote the recon-

structed and the ground-truth images, respectively. C-LORAKS

parameters were also chosen manually to give the best

reconstruction quality.

To evaluate the performance of ALOHA in static parallel

imaging, k-space raw data from an MR headscan was obtained

with Tim Trio 3T scanner using 2D GRE sequence. The acquisi-

tion parameters were as follows: TR/TE = 8.6/4 ms, 231 × 512
acquisition matrix, and six z-slices with 7mm slice thickness.

The field-of-view (FOV) was 250 × 250 mm2 , and the num-

ber of coils was four. Retrospectively undersampled 2-D k-

space data at the acceleration factor of four were obtained ac-

cording to two dimensional Gaussian distribution in addition

to the 7 × 7 central region around zero frequency. The data

from 4 receiver coils were used. For comparison, we used the

identical data and sampling masks for SAKE with ESPIRiT

[16], [43]. Note that GRAPPA [13] requires ACS lines, so with

the additional 50 samples along ACS, the effective downsam-

pling ratio was 3.1, which is not good as the four time ac-

celeration in other algorithms. SAKE with ESPIRiT are com-

bined algorithm with both low rank matrix completion algo-

rithms for Hankel structured matrix collected from the ACS
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k-space data and SENSE algorithm for filling high-frequency

k-space [43]. SAKE with ESPIRiT was recently proposed to

reduce the computational burden of the original SAKE without

noticeable reconstruction quality loss by performing low rank

matrix completion only for the 65 × 65 central region, and af-

ter that coil sensitivities are estimated using the reconstruction

data. The estimated coil sensitivities are used to estimate the

remaining k-space missing data through ESPIRiT [43]. Accord-

ingly, the image quality from SAKE+ESPIRiT was quite similar

to that of SAKE with a slight NMSE loss, but the computational

time of SAKE was significantly higher than SAKE+ESPIRiT.

Therefore, reconstruction reconstruction SAKE with ESPIRiT

were only illustrated. The parameters for SAKE with ESPIRiT

were chosen such that they provided the best reconstruction

results. The parameters for the ALOHA are as follows: three

levels of pyramidal decomposition with decreasing LMaFit tol-

erances (10−2 , 10−3 , 10−4 ), and 5×5 annihilating filter. The

same LMaFit rank estimation strategy and ADMM parameter

used for single coil experiments were employed. We generated

the square root of sum of squares (SSoS) image from multi-coil

reconstructions.

We also validated the performance of ALOHA for acceler-

ated dynamic cardiac data in the k − t domain. A cardiac cine

data set was acquired using a 3T whole-body MRI scanner

(Siemens; Tim Trio) equipped with a 32-element cardiac coil

array. The acquisition sequence was bSSFP and prospective car-

diac gating was used. The imaging parameters were as follows:

FOV= 300 × 300 mm2 , acquisition matrix size= 128 × 128,

TE/TR = 1.37/2.7 ms, receiver bandwidth = 1184 Hz/pixel,

and flip angle = 40◦. The number of cardiac phases was 23

and the temporal resolution was 43.2ms. The k-t space samples

including four lines around zero frequency were retrospectively

obtained at the reduction factor of eight according to a Gaus-

sian distribution. For comparison, k-t FOCUSS [7], C-LORAKS

[17], and SAKE [16] was used. In case of C-LORAKS (single

coil) and SAKE (multi coil), these algorithms were applied

to k-t domain for dynamic reconstruction. The parameters in

k-t FOCUSS, C-LORAKS, and SAKE, were selected to give

the best NMSE values. For the ALOHA in single coil data,

the following parameters were used: three level of pyramidal

decomposition only along the phase encoding direction, de-

creasing LMaFit tolerances (10−1 , 10−2 , 10−3) at each scale,

and 13×7 annihilating filter. The same LMaFit rank estima-

tion strategy and ADMM parameter was µ = 10. The k-space

weighting in Eq. (66) was applied only along the phase encoding

direction.

Next, we investigated the synergetic improvement of dynamic

imaging from multi-channel acquisition. Four representative

coils out of 32 were used. The reason we chose only four coils

was to verify that the generalised ALOHA can maximally ex-

ploit the multi-channel diversity even with the small number of

coils. The four coils were chosen such that it covers every area

of images. The same four coils were used for all algorithms for

fair comparison. In the ALOHA, the annihilating filter size was

5 × 5. The same LMaFit rank estimation strategy and ADMM

parameter used before were employed. After the reconstructions

of k-space samples, the inverse Fourier transform was applied,

and the SSoS images were obtained by combining the recon-

structed images.

V. RESULTS

A. Static MR Experiments

Reconstructed results from a single coil brain data are shown

in Fig. 5 with the NMSE values. From the NMSE values, we

observed that the performance ALOHA was quantitatively supe-

rior to the performance of l1-wavelet and TV based compressed

sensing approach. The reconstruction results by ALOHA has

less perceivable distortion compared to those of l1-wavelet and

TV approaches. This can be easily observed from the magnified

images in the third and the fourth rows of Fig. 5. In the case

of TV, structural distortion around the image edges was easily

recognizable. The reconstruction results of l1-wavelets exhibits

Gibb’s ringing artifacts and distorted grey matter structure at the

cerebellum area (see the fourth row), whereas the C-LORAKS

resulted in a significant noise boost in the white matter area

(see the third row). On the other hand, ALOHA reconstruction

provided best edge structures without boosting noises.

Next, we compared our parallel imaging results with those

of the existing approaches for additional multichannel saggital

brain data set. The reconstruction results in Fig. 6 are from Gaus-

sian random sampling patterns at the acceleration factor of 4.

The NMSE results in Fig. 6 showed that ALOHA was most ac-

curate. From the magnified images at the second row of Fig. 6,

we observed that proposed method provided reconstruction re-

sults more accurately than other algorithms. More specifically,

in Fig. 6, we observed that the reconstruction by GRAPPA

and SAKE with ESPIRiT are much noisier compared to the

ALOHA reconstruction. Moreover, the overall reconstruction

errors from SAKE with ESPIRiT were higher than those from

ALOHA. The reconstruction time was 7.6 sec with our prelim-

inary GPU implementation of ALOHA. Note that the current

GPU implementation is only preliminary because we still use

the original CPU version of LMaFit algorithm from the original

authors. Accordingly, with an optimized GPU implementation

of LMaFit may further reduce the overall computational time,

which will be reported later.

On the other hand, the reconstruction time for GRAPPA,

SAKE and SAKE+ESPIRIT for this example were 9.8 sec,

118.4 sec, and 17.6 sec, respectively. For the case of SAKE,

unlike the SAKE+ESPIRiT, the Hankel structured matrix is

constructed using all k-space data similar to ALOHA, but

the computational time was significantly higher than ALOHA.

Accordingly, we found that our computation time was com-

petitive to the existing approaches even with much improved

reconstruction quality.

B. Dynamic MR Experiments

Using the sub-sampled k-space data at the acceleration

factor of eight, the average NMSE values of k-t FO-

CUSS, C-LORAKS, and ALOHA, were 1.616 × 10−2 , 1.363 ×
10−2 , and, 1.224 × 10−2 , respectively (see Fig. 7(a)). The

sub-sampled data was collected according to a Gaussian distri-
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Fig. 5. Comparison with l1 -wavelet compressed sensing, TV compressed sensing, C-LORAKS, and the proposed method at the four fold acceleration factors.
The data was acquired from a single channel coil. The first row shows reconstructed images, and the second row shows difference images between the ground-truth
and the reconstructions, and the third and last row show the magnified views of distorted regions in the reconstructed images.

Fig. 6. Parallel imaging results using GRAPPA, SAKE with ESPIRiT and the
proposed method at the four fold acceleration of Gaussian random sampling
pattern. The second row shows the magnified views corresponding to a white
box with a broken line. Note that GRAPPA requires ACS lines, so with the
additional 50 samples along ACS region, the effective downsampling ratio was
3.1.

bution and included the four center lines around zero frequency.

The average NMSE values were calculated using all temporal

frames. The temporal NMSE plot in Fig. 7(a) also confirmed

that the proposed method outperformed k-t FOCUSS and C-

LORAKS across all temporal frames. Moreover, as shown in

Fig. 7(a), the temporal profile of an heart area (indicated as a

broken purple line) by the proposed reconstruction was the most

accurate, which showed sharp transition to systole phase that

were comparable to the true one, whereas the temporal varia-

tion in the k-t FOCUSS and C-LORAKS reconstruction became

smoother and more blurry. Moreover, as indicated by the yellow

arrow in the magnified heart area, false muscle structures were

observed in the conventional approaches.

The NMSE values of the parallel dynamic imaging results

from k-t FOCUSS, SAKE, and the proposed method using

four coil k-space data were 8.75 × 10−3 , 4.983 × 10−3 and

3.571 × 10−3 , respectively, which quantitatively showed that

the proposed method outperformed k-t FOCUSS and SAKE

(see Fig. 7(b)). Reduced residual artifacts compared to the con-

ventional approaches were perceivable in the ALOHA differ-

ence images in Fig. 7(b). Moreover, the temporal profiles of the

proposed reconstruction showed much sharp transition to the

systole phase which were comparable to the true one, whereas

the dynamic slice profile from k-t FOCUSS and SAKE showed

smoother and more blurry transition as shown in Fig. 7(b). Fi-

nally, in the magnified view of the heart area in Fig. 7(b), we

can observed the broken heart muscle structures in the con-

ventional reconstruction, which was well-preserved in ALOHA

reconstruction.

VI. DISCUSSION

Discussion can be found in the Supplementary Material.
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Fig. 7. Reconstruction results from 8 fold accelerated dynamic MR data using (a) single coil and (b) four coils data set. Purple lines denote the regions
corresponding to y-t cross sections that are magnified along temporal axis. The second rows in both (a) and (b) show the difference images between the
ground-truth and the reconstructions. Yellow arrows indicate noticeable differences between results.

VII. CONCLUSION

In this paper, we proposed a general framework for annihi-

lating filter based low-rank Hankel matrix approach (ALOHA)

for static and dynamic MRI inspired by recent calibration-free

k-space methods such as SAKE and C-LORAKS. Because nat-

ural images can be much more effectively sparsified in the trans-

form domains, we generalized the idea to include signals that

can be sparsfied in the transform domains. Our analysis showed

that the transform domain sparsity can be equivalently repre-

sented as a low-rank Hankel structured matrix in the weighted

k-space domain, whose weighting function is determined solely

by the transform, not by the data. When signals are effectively

sparsified in dyadic wavelet transform, we showed that the

corresponding low rank Hankel matrix completion problem can

be implemented using a pyramidal decomposition, which sig-

nificantly reduces the overall computational complexity and

improves the noise robustness. For parallel imaging data, we

verified that by stacking Hankel matrix from each coil side by

side, we may exploit the coil sensitivity diversity.

Reconstruction results from single coil static MR imaging

confirmed that the proposed method outperformed the existing

compressed sensing frameworks. We further demonstrated su-

perior performance of the proposed method in static parallel

MR imaging even without calibration data. Furthermore, the

algorithm was successfully extended to dynamic accelerated

MRI along k-t domain with both single coil and multi coil dy-

namic MR data. Therefore, we concluded that the proposed algo-

rithm was very effective in unifying the compressed sensing and

parallel MRI.
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