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Abstract—In this paper, we developed a general framework for
the inversion of electromagnetic measurements in cases where
parametrization of the unknown configuration is possible. Due to
the ill-posed nature of this nonlinear inverse scattering problem, this
parametrization approach is needed when the available measurement
data are limited and measurements are only carried out from limited
transmitter-receiver positions (limited data diversity). By carrying
out this parametrization, the number of unknown model parameters
that need to be inverted is manageable. Hence the Newton based
approach can advantageously be used over gradient-based approaches.
In order to guarantee an error reduction of the optimization process,
the iterative step is adjusted using a line search algorithm. Further
unlike the most available Newton-based approaches available in the
literature, we enhanced the Newton based approaches presented in this
paper by constraining the inverted model parameters with nonlinear
transformation. This constrain forces the reconstruction of the
unknown model parameters to lie within their physical bounds. In
order to deal with cases where the measurements are redundant or
lacking sensitivity to certain model parameters causing non-uniqueness
of solution, the cost function to be minimized is regularized by adding
a penalty term. One of the crucial aspects of this approach is how
to determine the regularization parameter determining the relative
importance of the misfit between the measured and predicted data
and the penalty term. We reviewed different approaches to determine
this parameter and proposed a robust and simple way of choosing this
regularization parameter with aid of recently developed multiplicative
regularization analysis. By combining all the techniques mentioned
above we arrive at an effective and robust parametric algorithm. As
numerical examples we present results of electromagnetic inversion at
induction frequency in the deviated borehole configuration.
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1. INTRODUCTION

In inverse scattering problems, one aims to determine the shape,
location and material parameters of the object from measurements
of the (scattered) wavefield, when a number of waves are generated
such that they successively illuminate the domain of interest. Since
the wavefields itself depend on the material parameters, the inverse
scattering problem is essentially nonlinear. For simple forward
scattering models (mostly one-dimensional cases), a forward solver can
generate a database containing a full collection of scattered-field data
for a number of possible realizations of the scattering object, and one
can then select a particular realization with the best fit to the actually
measured data. But, in practice, the execution of such an enumerate
inversion method is often impossible due to the large number of discrete
unknown variables. Improvements of these Monte Carlo methods, see
e.g., [1], are obtained when certain probability is taking into account,
e.g., as in genetic algorithms [2]. The advantages of these inversion
schemes are the simplicity and the feature that the algorithm will
not trap into a local minimum. However, the major disadvantage
is the large number of forward solutions to be generated and stored.
Furthermore, presently, for a realistic full three-dimensional scattering
problem (including multiple scattering), the generation of a full class
of forward solutions is not feasible.

We therefore opt for an iterative approach, where the model
parameters are updated iteratively by a consistent minimization of
the misfit between the measured data and the predicted data. Since
the updates of the model parameters are determined from the misfit,
precaution has to be taken to overcome the ill-posed nature of the
inverse problem and to avoid the local minima of the nonlinear
problem. Two- and three-dimensional inverse scattering problem
have been studied with various optimization methods, in particular,
deterministic gradient type methods. Among the huge amount of
literature we only list a few without intention of review: [3–11,
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14, 15]. These gradient type methods are very attractive in case
where we deal with a huge amount of unknown parameters (pixel-
like/tomography inversion) and a large number of measurement data
collected from (ideally) all illumination angle is available (enough data
diversity) . When the number of available measurement data are
limited and collected only from limited possible transmitter-receiver
positions (limited data diversity), in order to arrive at a reliable
solution, parametrization of the problem is needed. These are cases
when one deal with Ground Penetrating Radar, geophysical borehole
applications and non-destructive evaluation of corrosion in the metal
pipe. By carrying out this parametrization, the number of unknown
model parameters that need to be inverted is manageable. With other
word, after this parametrization we end up with non under determined
system. For this parametric inversion the Newton-based approaches
are more appropriate than gradient-based methods because it have
faster convergence rates.

In this paper first we reviewed the Newton based methods by
putting them in a general framework. After that in order to enhance
the performance of these Newton based methods, we constrained
them with nonlinear transformations. This constrain forces the
reconstruction of the unknown model parameters to lie within the
physical bounds. In order to guarantee the error reducing nature
of the algorithm, we adjusted the iterative step using a line search
algorithm. In this way we prevent the algorithm to jumping around
between two successive iteration. Further since the problem is
essentially highly non-linear, some regularization is definitely needed.
The main problem of adding a regularization term is how we can
determine the appropriate regularization parameter or the Lagrange
multiplier. In this paper we review a number of way of choosing
this regularization parameter and proposed a new way for the Newton
based method to choose this parameter. This new approach of choosing
the regularization parameter is inspired by the work of [12, 13] on the
multiplicative regularization for gradient-type algorithm. Our analysis
shows that by posing our cost functional as a multiplicative functional
we found that the regularization parameter can be chosen proportional
to the original cost functional. This provides us with a robust way
to determine the weight for the regularization term. Finally we also
point out the relationship between the Newton based minimization
method and the Bayesian inference approach. As numerical examples,
we present inversion result from electromagnetic data at induction
frequency in single-well deviated borehole configuration.
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2. THE COST FUNCTION

We define the vector of residuals e(x) as a vector whose j-th element
is the residual error (also referred to as the data mismatch) of the j-th
measurement. The residual error is defined as the difference between
the measured and the predicted normalized responses:

e(x) =




e1(x)
...

eM (x)


 =




S1(x) −m1
...

SM (x) −mM


 = S(x) − m, (1)

where M is the number of measurements. The symbol mj is the
normalized observed response (measured data) and Sj is corresponding
the normalized simulated response as predicted by the vector of model
parameters, xT :

xT = [x1 x2 · · ·xN−1 xN ] = (y − yR)T , (2)

where N is the number of unknowns and the superscript T indicates
transposition. We represent the vector of model parameters x as
the difference between the vector of the actual parameters y and a
reference/background model yR. The reference model includes all a
priori information on the model parameters such as those derived from
independent measurements. We pose the inversion as the minimization
of the following cost (or objective) function, C(x), of the form [20]:

C(x) =
1
2

[
µ

{∥∥∥Wd · e(x)
∥∥∥2

− χ2
}

+
∥∥∥Wx · (x − xp)

∥∥∥2
]

(3)

The scalar factor µ (0 < µ < ∞) is a Lagrange multiplier. Its inverse
is called the regularization parameter or damping coefficient. It is
a tradeoff parameter determining the relative importance of the two
terms of the cost function. The determination of µ will produce an
estimate of the model x that has a finite minimum weighted norm
(away from a prescribed model xp) and which globally misfits the data
to within a prescribed value χ (determined from a priori estimates of
noise in the data). The second term of the cost function is included to
regularize the optimization problem. It safeguards against cases when
measurements are redundant or lacking sensitivity to certain model
parameters causing non-uniqueness of solution. It also suppresses any
possible magnification of errors in our parameter estimations due to
noise which is unavoidably present in the measurements. These error
magnifications may result in undesirable large variations in the model

parameters which may cause instabilities in the inversion. W
T

x ·Wx is
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the inverse of the model covariance matrix representing the degree of
confidence in the prescribed model xp and is also provided as a priori
information. It can also be used to bias certain parts of the model

x towards the prescribed model xp. W
T

d · Wd is the inverse of the
data covariance matrix, which describes the estimated uncertainties
(due to noise contamination) in the available data set. It describes
not only the estimated variance for each particular data point, but
also the estimated correlation between errors. It therefore provides a
point by point weighting of the input data according to a prescribed
criterion (hence, can be used to reduce the effect of outliers in the
data). If the measurement noise is stationary and uncorrelated, then
Wd = diagonal{1/σj} where σj is the root mean square deviation
(standard deviation) of the noise for the j-th measurement.

3. CONSTRAINED MINIMIZATION

To impose a priori information, such as positivity or maximum
and minimum bound (if they are available) on the inverted model
parameters, x, we constrained them using a nonlinear transformation:

xi = f(ci, xmin
i , xmax

i ), −∞ < ci < ∞, i = 1, 2, . . . , N, (4)

where xmax
i is an upper bound on the physical model parameter xi

and xmin
i is a lower bound. These nonlinear transformations map a

constrained minimization problem to an unconstrained one. Note that
this constraint will force the reconstruction of the model parameters
to lie always within their physical bounds.

Obviously there is an infinite number of nonlinear transformations
f(ci, xmin

i , xmax
i ) which can map a constrained minimization problem

to an unconstrained one. Among the many that were tried, the three
transformations, which were found to perform the best, are presented
in Appendix A.

4. NORMALIZATION OF THE VECTOR OF
RESIDUALS

We employ two possible forms of the cost function of Eq. (3) that puts
the various measurements on equal footings. The two forms differ in
the way we define the vector of residuals e(x). In the first form we
define e(x) as follows:

ej(x) =
Sj(x)
mj

− 1, (5)
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and hence

‖e(x)‖2 =
M∑
j=1

∣∣∣∣∣Sj(x)
mj

− 1

∣∣∣∣∣
2

(6)

In the second form we define:

ej(x) =
Sj(x) −mj

‖m‖ /M , (7)

and hence

‖e(x)‖2 =
∑M

j=1 |Sj(x) −mj |2(∑M
j=1 |mj |2

)
/M2

(8)

5. THE NEWTON MINIMIZATION APPROACH

To solve the above nonlinear optimization problem, we employ a
Newton minimization approach [17] which is based on a local quadratic
model of the cost function. The quadratic model is formed by taking
the first three terms of the Taylor-series expansion of the cost function
around the current k-th iteration (xk), as follows:

C(xk + pk) ≈ C(xk) + gT (xk) · pk +
1
2
pT
k · G(xk) · pk, (9)

where pk = xk+1 − xk is the step in xk towards the minimum of the
cost function C(x). The vector g(x) = ∇C(x) is the gradient vector
of the cost function C(x) and is given by the following expression:

g(x) = ∇C(x) =
[
gn ≡ ∂C

∂xn
, n = 1, 2, 3, . . . , N

]

= µJ
T
(x) · W

T

d · Wd · e(x) + W
T

x · Wx · (x − xp), (10)

where xn is the n-th component of the model vector x and J(x) is the
M ×N Jacobian matrix and is given by the following expression:

J(x) =
[
Jmn ≡ ∂em

∂xn
, m = 1, 2, 3, . . . ,M ; n = 1, 2, 3, . . . , N

]

=




∂S1/∂x1 · · · ∂S1/∂xj · · · ∂S1/∂xN
...

. . .
...

. . .
...

∂S/∂x1 · · · ∂S/∂xj · · · ∂S/∂xN
...

. . .
...

. . .
...

∂SM/∂x1 · · · ∂SM/∂xj · · · ∂SM/∂xN



, (11)
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and G(x) = ∇∇C(x) is the Hessian of the cost function C(x) which
is a real symmetric N × N matrix (not necessarily positive-definite)
given by:

G(x) = ∇∇C(x) =

[
Gmn ≡ ∂2C

∂xn∂xm
, n,m = 1, 2, 3, . . . , N

]

= µ

[
J
T
(x) · W

T

d · Wd · J(x) + Q(x)
]

+ W
T

x · Wx, (12)

where Q(x) =
∑M

m=1 fm(x)F
T

m(x) and fm(x) is the m-th element of
the weighted vector of residuals, f(x) = Wd · e(x), and Fm(x) =
∇∇fm(x) = [∂2fm/∂xi∂xj , i, j = 1, 2, 3, . . . , N ]. Note that the
full Hessian G(x) of the cost function C(x) includes second order
information that accounts for curvature. The minimum of the right-
hand side of Eq. (9) is achieved if pk is a minimum of the quadratic
function

φ(p) = gT (xk) · p +
1
2
pT · G(xk) · p (13)

The function φ(p) has a stationary point (a minimum, a maximum or
a saddle point also called point of inflection) at po, only if the gradient
vector of φ(p) vanishes at po, i.e.,

∇φ(po) = G · po + g = 0 (14)

Thus, the stationary point is the solution to the following set of linear
equations:

G · po = −g (15)

5.1. Case (1): G is Singular

Equation (15) can be expressed as follows:

g = −
N∑
j=1

Gjpj , (16)

where Gj are the columns of the N ×N matrix G and pj is the j-th
component of the vector po.

If G is singular, then some of the columns of G can be expressed
as a linear combination of others. Hence, the columns of G do not
constitute a complete set of basis vectors that are sufficient to represent
an arbitrary vector.
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If the vector g cannot be expressed as a linear combination of the
columns of G (i.e., g has a nonzero component in the null-space of
G), then the system of Eq. (15) is incompatible and does not have a
solution. Thus, the stationary point po does not exist and the function
φ is unbounded above and below (i.e., has neither a maximum nor a
minimum value). On the other hand, if the vector g can be expressed as
a linear combination of the columns of G, then the system of Eq. (15)
is compatible and has more than one solution.

5.2. Case (2): G Is Nonsingular

In this case, Eq. (15) has a unique solution given by:

po = −G
−1

· g = −
N∑
j=1

1
λj

(
vT
j · g

)
vj , (17)

whose norm is given by:

‖po‖ ≡
(
pT
o · po

)1/2
=


 N∑
j=1

1
λ2
j

(
vT
j · g

)2




1/2

, (18)

where λj and vj are the eigenvalues and the corresponding orthonormal
eigenvectors of the N ×N Hessian matrix G:

G · vj = λjvj , (19)

with
vT
i · vj = δij (20)

At the stationary point po, given by Eq. (17), we have from Eq. (9):

C(xk + po) ≈ C(xk) −
1
2
gT (xk) · G

−1
(xk) · g(xk)

= C(xk) −
1
2

N∑
j=1

1
λj

(
vT
j · g

)2
(21)

The stationary point po, given by Eq. (17), is either a minimum, a
maximum or a saddle point, depending on the definiteness of the matrix
G. If G(xk) is a positive definite matrix, then the quadratic model
of Eq. (9) is guaranteed to have a unique stationary point (given by
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Eq. (17)). Furthermore, and from Eq. (21), the direction of po is
guaranteed to be a descent direction, since

C(xk + po) − C(xk) ≈ −1
2

N∑
j=1

1
λj

(
vT
j · g

)2
< 0 (22)

In this case, we choose the search direction pk = po. On the other
hand, if G(xk) is indefinite (but nonsingular), then the quadratic model
of Eq. (9) is guaranteed to have a unique stationary point (given by
Eq. (17)). However, this stationary point is not necessarily a minimum.
Furthermore, and from Eq. (21), the direction of po is not necessarily
a descent direction, since C(xk + po) − C(xk) can be non-negative.

As we will discuss in a subsequent section, the conditioning
(singular or nonsingular nature) and the definiteness (positive/negative
definiteness or indefiniteness) of the matrix G can be adjusted by the
proper choice of µ.

The search direction pk which is given by the vector that solves
Eq. (15) is called the Newton search direction. The method in which
this vector is used as a search direction is called the full Newton search.
The full Newton minimization approach is known to have a quadratic
rate of convergence.

6. A MODIFIED NEWTON METHOD

In the case where G(xk) is indefinite (but nonsingular), the direction
of po, given by Eq. (17), is not necessarily a descent direction. One
popular strategy in modifying Newtons method is to construct a related
positive definite matrix K(xk) when G(xk) is indefinite. In this case
the search direction is given by the solution of:

K · po = −g (23)

One way of constructing such a positive definite matrix, is to construct
K(xk) such that it has the same eigenvectors as G(xk) and with
eigenvalues given by:

µj = |λj | (24)

This ensures that K(xk) = G(xk) if G(xk) is positive definite. The
constructed positive definite matrix K(xk) is hence given by the
following expression:

K =
N∑
j=1

|λj |vjvT
j , (25)
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and the corresponding search direction is given by:

po = −K
−1

· g = −
N∑
j=1

1
|λj |

(
vT
j · g

)
vj , (26)

whose norm is given by:

‖po‖ ≡
(
pT
o · po

)1/2
=


 N∑
j=1

1
λ2
j

(
vT
j · g

)2




1/2

, (27)

which is identical to that of the unmodified direction (see Eq. (18)).
For this search direction, we have from Eq. (9):

C(xk + po) − C(xk) ≈
N∑
j=1

1
|λj |

[
1 − 1

2
sgn(λj)

] (
vT
j · g

)2
< 0, (28)

thus, the direction of po, given by Eq. (26), is guaranteed to be a
descent direction. In this case, we choose pk = po.

7. THE GAUSS-NEWTON MINIMIZATION APPROACH

In the Gauss-Newton search method, one discards the second-order
derivatives (to avoid the expensive computation of second derivatives),
in which case the Hessian reduces to:

G(x) = W
T

x · Wx + µJ
T
(x) · W

T

d · Wd · J(x), (29)

which is a positive semi-definite matrix. If λj and vj are the eigenvalues
and the corresponding orthonormal eigenvectors of the N × N real
symmetric matrix G

G · vj = λjvj , vT
i · vj = δij , (30)

then

λj =
vT
j · G · vj

‖vj‖2 =
∥∥∥Wx · vj

∥∥∥2
+ µ

∥∥∥Wd · J · vj

∥∥∥2
≥ 0, (31)

hence as previously mentioned G is a positive semi-definite matrix.
As indicated before and as will be discussed in the next section, the
Hessian G can be constructed to be a positive definite matrix by the
proper choice of µ.
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The search direction pk which is given by the vector that solves
Eq. (15) with the Hessian approximated by Eq. (29) is called the
Gauss-Newton search direction. The method in which this vector is
used as a search direction is called the Gauss-Newton search. The
Gauss-Newton minimization approach has a rate of convergence which
is slightly less than quadratic but significantly better than linear. It
provides quadratic convergence in the neighborhood of the minimum.

8. THE STEEPEST-DESCENT METHOD

In the case of large-scale optimization problems and to avoid the direct
inversion of a large size matrix (the Hessian matrix G) as is required
by the Newton or Gauss-Newton minimization approaches, one can
employ an iterative linear solver, e.g., a Lanczos method or a conjugate-
gradient approach [18, 21]. However, these iterative approaches are
more efficient for sparse systems and tend to loose their advantage for
systems that have full matrices similar to the problem at hand where
the Hessian is a full matrix. Furthermore, the most computationally
expensive part of the inversion is not actually in inverting the Hessian
matrix but is by far in the evaluation of the elements of the Hessian
(or Jacobian).

An alternative approach to iterative solvers which does not require
inverting the Hessian, is the steepest-descent method where the search
direction is simply chosen to be along the negative of the gradient of
the cost function, i.e.,

pk = −γkg(xk) ≡ −γkgk, (32)

where γk is a positive step-length which must be chosen so that the
cost function C(xk+pk) is “sufficiently decreased” after each iteration.
It is thus clear that, unless the gradient vanishes, the search direction
of Eq. (32) is a descent direction, since pk and gk are trivially bounded
away from orthogonality (gT

k · pk = −γk|gk|2 = 0).
We choose the step-length that maximizes the reduction in the

cost function C(xk + pk). Substituting Eq. (32) in Eq. (9), we obtain:

C(xk + pk) ≈ C(xk) − γk|gk|2 +
1
2
γ2
k gT

k · Gk · gk, (33)

whose minimum occurs when:

γk =
|gk|2

gT
k · Gk · gk

(34)
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Thus the steepest-descent search direction is given by:

pk = xk+1 − xk = − |gk|2

gT
k · Gk · gk

gk

= − |gk|2∣∣∣Wx · gk

∣∣∣2 + µ
∣∣∣Wd · Jk · gk

∣∣∣2gk (35)

This steepest-descent direction is guaranteed to yield a convergent
algorithm, since:

• Unless the gradient vanishes, the search direction of Eq. (35) is
a descent direction, since pk and gk are trivially bounded away
from orthogonality:

gT
k · pk = − |gk|4∣∣∣Wx · gk

∣∣∣2 + µ
∣∣∣Wd · Jk · gk

∣∣∣2 = 0 (36)

• The cost function C(xk +pk) is “sufficiently decreased” after each
iteration:

C(xk+pk)−C(xk) ≈ −1
2

|gk|4∣∣∣Wx · gk

∣∣∣2 + µ
∣∣∣Wd · Jk · gk

∣∣∣2 < 0 (37)

Unfortunately, global convergence of an algorithm does not ensure that
it is an efficient method. For the quadratic approximation (Eq. (9))
of the cost function, with G(x) approximated by Eq. (29) (where it
becomes a real symmetric positive-definite matrix), it can be shown
that:

C(xk+1) − C(xo) ≈
(κ− 1)2

(κ+ 1)2
{C(xk) − C(xo)}, (38)

where xo is the value of the minimum of the cost function where g(xo)
vanishes and κ = λmax = λmin is the condition number of the Hessian
G. From Eq. (38), it is clear that the rate of convergence of the
steepest-descent method is linear as opposed to the quadratic rate of
convergence of the full Newton minimization approach. Furthermore,
the factor of reduction in the error at each iteration step can be very
close to unity, depending on the condition number of the Hessian
matrix G, so that there is a very small gain in accuracy at each
iteration. With the steepest descent, the iteration is forced to traverse
back and forth across the minimum rather than down towards the
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minimum. In practice, the steepest-descent method may typically
require hundreds of iterations to achieve very little progress towards
the final solution.

One way to improve the convergence rate of the steepest descent
method (also called gradient method) is by using a search direction
which is a linear combination of the current gradient and the previous
search direction. This type of method is called conjugate gradient. The
nonlinear conjugate gradient method is modelled after the conjugate
gradient method for linear equations see [22] or quadratic functionals,
where it can be proven to converge in exact arithmetic in a number of
steps N equal to number of unknowns. In classical conjugate gradient
method (the so-called Fletcher-Reeves conjugate gradient direction)
the search direction is given by

pk = γk sk, (39)

where

sk = −gk +
‖gk‖2∥∥gk−1

∥∥2 sk−1. (40)

Again by substituting Eq. (39) in Eq. (33), the weighting parameter
γk is given by

γk =
|sk|2

sTk · Gk · sk
. (41)

Since our problem is nonlinear in term of the inverted model
parameters, after a number of iterations, the effectiveness of these
Fletcher-Reeves direction will reduce. This means that we must restart
with the steepest descent direction and continue with new conjugate
gradient directions. A method for avoiding these restarting procedures
is the use of the Polak-Ribière conjugate gradient directions [22, 23].
They are obtained by changing Eq. (40) into

sk = −gk +
< gk,gk − gk−1 >∥∥gk−1

∥∥2 sk−1. (42)

When there are no changes in the inverted model parameters, we have
< gk, gk−1 >= 0 and the Polak-Ribière directions coincide with the
Fletcher-Reeves directions. However, when the iterative scheme does
not improve sufficiently, it means that gk ≈ gk−1. In this case we have
sk = −gk, the Polak-Ribière directions becomes the steepest descent
directions, and the updating is restarted automatically.
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9. LINE SEARCHES

The search vector pk of Eq. (15) is guaranteed to be a descent direction
for the approximated quadratic form of the cost function of Eq. (3) [i.e.,
is a descent direction for the approximated cost functions of Eq. (9)].
However, this step [i.e., the new iterate xk + pk] may not sufficiently
reduce the cost function of Eq. (3) and may not even decrease its
value, indicating that C(x) is poorly modeled by a quadratic form in
the vicinity of xk. One approach to alleviate this problem [16] is to
adopt a line-search algorithm where one searches for an appropriate
real positive step-length νk along the search direction, pk, which yields
an acceptable next iterate, xk+1 = xk+νkpk, that sufficiently decreases
the cost function. The search direction can be either a Newton, a
Gauss-Newton or a steepest-descent. However, in this section we will
only consider the Gauss-Newton search approach.

Essentially in the line search algorithm one wants to solve the
following problem:

νk = arg min
ν

{C(xk + νpk)}. (43)

Since ν is a scalar this minimization in principle can be carried out
by using any nonlinear minimization routine [21]. However, if the
function evaluation is expensive, a full nonlinear determination of νk
might not be feasible. Since it will require multiple calculation of the
cost function. It is therefore desirable to limit the number of such
evaluations as much as possible. In this case we adopt an algorithm
whereby a step-length νk > 0 is selected which reduces the cost function
such that the average rate of decrease from C(xk) to C(xk + νkpk) is
at least some prescribed fraction, α, of the initial rate of decrease at
xk along the direction pk, i.e.,

C(xk + νkpk) ≤ C(xk) + ανkδCk+1, (44)

where 0 < α < 1 is a fractional number which, in practice, is set quite
small (we will set α to 10−4) so that hardly more than a decrease in
function value is required. δCk+1 is the rate of decrease of C(x) at xk

along the direction pk and is given by:

δCk+1 =
∂

∂ν
C(xk + νpk)

∣∣∣∣
ν=0

= gT (xk) · pk (45)

The procedure we will adopt, is to first employ the full Gauss-Newton
search step and if νk = 1 fails to satisfy the criterion given by Eq. (44),
then backtrack (i.e., reduce νk) along the direction of the Gauss-
Newton step until an acceptable next iterate xk+1 = xk + νkpk is
found.
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If, at the (k + 1)-th iteration, ν
(m)
k is the current step-length

that does not satisfy the condition of Eq. (44), we compute the next
backtracking step-length, ν(m+1)

k , by searching for the minimum of the
following function:

f(ν) ≡ C(xk + νpk), (46)

which we approximate by a quadratic expression as

f(ν) ≈ a+ bν + cν2, (47)

where the real constants a, b, and c are determined from the current
information on the cost function C(x):

f(ν = 0) = C(xk), (48)
df

dν
(ν = 0) = δCk+1, (49)

and
f

(
ν = ν

(m)
k

)
= C

(
xk + ν

(m)
k pk

)
, (50)

from which we obtain

a = C(xk), (51)
b = δCk+1, (52)

and

c =
1

{ν(m)
k }2

[
C

(
xk + ν

(m)
k pk

)
− C(xk) − ν

(m)
k δCk+1

]
(53)

Thus, ν(m+1)
k , which is the minimum of f(ν), for m = 0, 1, 2, . . . is

given by:

ν
(m+1)
k = − b

2c
= −{ν(m)

k }2

2
δCk+1

C
(
xk + ν

(m)
k pk

)
− C(xk) − ν

(m)
k δCk+1

,

(54)
from which it is clear that if C(xk + ν

(m)
k pk) > C(xk), then

0 < ν
(m+1)
k <

1
2
ν

(m)
k <

1
2m+1

, m = 0, 1, 2, . . . (55)

whereas if C(xk + ν
(m)
k pk) > C(xk) + αν

(m)
k δCk+1, then

0 < ν
(m+1)
k <

1
2(1 − α)

ν
(m)
k <

1
[2(1 − α)]m+1

, m = 0, 1, 2, . . . (56)
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Thus, we start with ν
(0)
k = 1 and proceed with the backtracking

procedure of Eq. (54) until condition in Eq. (44) is satisfied. In
general, it is not desirable to decrease ν(m+1)

k too much since this may
excessively slow down the iterative process, requiring many iterations
to achieve very little progress towards the minimum. To prevent this
slow down, we set ν(m+1)

k = 0.1 ν(m)
k if ν(m+1)

k < 0.1ν(m)
k (but with νk

not to decrease below 0.1, i.e., νmin = 0.1 to guard against too small a
value of ν) and then proceed with the iteration.

To take advantage of the newly acquired information on the cost
function beyond the first backtrack, one can replace the quadratic
approximation of f(ν) of Eq. (47) by a cubic approximation. If ν1

and ν2 are two subsquent search steps, then according to the cubic
approximation, the next search step is determined from:

ν =
−b+

√
b2 − 3a δCk+1

3a
(57)

where a and b are given by:[
a

b

]
=

1
ν2 − ν1

[
1/ν2

2 −1/ν2
1

−ν1/ν
2
2 ν2/ν

2
1

] [
f(ν2) − ν2 δCk+1 − C(xk)
f(ν1) − ν1 δCk+1 − C(xk)

]
.

(58)

10. THE CHOICE OF THE LAGRANGE MULTIPLIER

There exist several criteria by which one can select the Lagrange
multiplier µ. One such criterion [20] is to substitute µ = eϑ or µ = ϑ2

(i.e., any transform which enforces µ’s positivity) and to assign ϑ a
real solution of the following nonlinear algebraic equation:∥∥∥Wd · e [xk + pk(ϑ)]

∥∥∥ = χ, (59)

which results from setting ∂C(x, µ)/∂µ = 0. This method is known
as the discrepancy principle. A different strategy for selecting µ is
also described in [19], in which a steepest descent method is applied in
the initial steps of the iteration process. This corresponds to choosing
small values for µ, hence, putting more weight on the second term
of the cost function of Eq. (3) since the first term is only crudely
approximated by the quadratic model of Eq. (9). As the iteration
progresses, the reconstructed model approaches its true value, thus
resulting in Eq. (9) becoming more accurate, and hence more weight
(corresponding to larger values of µ) should be placed on minimizing
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the first term of the cost function (this resembles the Gauss-Newton
method).

One of the working criteria for choosing µ is to bound it by the
following inequality

max{small τm′s} � 1/µ � min{large τm′s}, (60)

where τm are the eigenvalues of the positive-definite real symmetric
matrix:

H = {W
−1

x }T · J
T
(x) · W

T

d · Wd · J(x) · W
−1

x . (61)

The second part of the above inequality guarantees that the spectral
content of the inversion operator remains unaltered, whereas the first
part of the inequality regularizes the inversion problem by suppressing
the null-space of the inversion operator. To illustrate this, we define
um as the orthonormal eigenvector corresponding to the eigenvalue τm
of the matrix H. In this case the solution to Eq. (15) with the Hessian
approximated by Eq. (30) is given by:

pk = xk+1 − xk = −
N∑
j=1

1
1 + µτj

(
uT
j · W

T

x · gk

)
Wx · uj . (62)

Hence, according to the criterion given in Eq. (60), we obtain:

pk = −
∑

large{τ ′js}

1
τj

(
uT
j · W

T

x · gk/µ

)
Wx · uj

−
∑

small{τ ′js}
µ

(
uT
j · W

T

x · gk/µ

)
Wx · uj . (63)

From this expression it is clear that µ acts as a damping factor that
suppresses (or filters out) the contributions of the small eigenvalues
which have the tendency of magnifying the noise in the data and which
may cause undesired large swings in pk. Hence, the role of µ (which
satisfies condition Eq. (60)) is to damp out the large deviations of
the (k + 1)-th iterate from the k-th iterate and to safeguard against
unwanted large changes in pk due to noise in the data. In the
implementation we choose the Lagrange multiplier as follows:

1
µ

= βmax∀m{τm}, if
min∀m{τm}
max∀m{τm} < β, (64)

where β is a constant value which is to be determined by numerical
implementation.
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To illustrate the role of the ill-conditioning of the Hessian on
the error magnification due to the noise in the data, we perturb the
right-hand-side of Eq. (15) by δ g and compute the corresponding
perturbation δ p in p:

G · δ p ≈ −δ g, (65)

from which we obtain:

‖δ p‖ ≤ ‖G
−1

‖ ‖δ g‖ , (66)

and since:
‖g‖ ≤ ‖G‖ ‖p‖ , (67)

we get:
‖δ p‖
‖p‖ ≤ ‖G‖‖G

−1
‖‖δ g‖
‖g‖ = cond(G)

‖δ g‖
‖g‖ , (68)

which shows that the relative error in the estimator, ‖δ p‖ / ‖p‖, can
be excessively magnified if the condition number of the Hessian is large.

The effect of the presence of the small {τ ′js} in the spectrum of H
is to cause the minimum of the cost function to be a flat valley (the
presence of the noise in data will then result in multiple false local
minima). The role of the regularizing parameter µ is to sharpen the
minimum and suppress other false local minima.

The eigenvectors with small eigenvalues are the source of
nonuniqueness in the inversion problem (i.e., the cause of the ill-
posedness of the inversion). The addition of an arbitrary weighted sum
of these eigenvectors to any solution (an inverted model) of the inverse
problem may still make the resulting model fit the data. Thus the
knowledge of the observed data will not enable us to construct the part
of the model represented by these eigenvectors with small eigenvalues.
Hence, these parts must be recovered from information other than that
contained in the data. One approach to recover these components, is
to incorporate all possible a priori information concerning the model of
interest (in the construction of the reference model yR of Eq. (2) and
in the introduction of the regularization term in the cost function of
Eq. (3)), thus narrowing down the class of admissible solutions. If such
a priori information is not available, one may choose to tolerate the
nonuniqueness, if the class of admissible solutions still contains useful
and decisive information about the unknown model.

It can be shown (using a stationary-phase argument) that the
eigenvectors with small eigenvalues possess high spatial frequencies
(they tend to be highly oscillatory). By suppressing these eigenvectors
(as in Eq. (63)), in effect, we are constructing models which have the
least degree of complexity and which best fit the data.
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To enforce the inequality of Eq. (60) without evaluating the
eigenvalues of the Hessian (which tend to be a computationally
expensive operation), and guided by the above discussion, a
possible alternative criterion which is similar to Eq. (60) but is
different in implementation is to adaptively vary as the iteration
proceeds. Recently [12] introduced an automatic way to choose the
regularization parameter. This approach included the regularization
as a multiplicative factor in the cost function. As the results
the regularization parameter is founded to be proportional to the
original/non-regularized cost function. Together with conjugate
gradient type algorithm, this regularization technique has been shown
to be very effective in inverting synthetic and experimental data, see [5]
and [13]. In this paper, we adapted this multiplicative regularization
technique for Newton type algorithm. To that end, we modified the
cost function given in Eq. (3) as follows:

Ck(x) = F (x)Rk(x), (69)

where F (x) is the original cost functional,

F (x) =
1
2

∥∥∥Wd · e(x)
∥∥∥2

(70)

and Rk(x) is the regularization factor chosen to be

Rk(x) = ηk

(∥∥∥Wx(x − xp)
∥∥∥2

+‖δ‖2
)
, ηk =

1∥∥∥Wx(xk − xp)
∥∥∥2

+‖δ‖2
,

(71)
in which δ is a constant parameter which is to be determined by
numerical experimentation. One should note that the parameter δ if far
more insensitive than the Lagrange multiplier. For all of our example
in this paper we use only one value of parameter δ. From observation
of Eq. (71) we expect that this parameter is only dependent on the
type of measurements. Thus, for our numerical examples which are
electromagnetic measurements at induction frequency we use the same
value of δ for all the examples. The normalization in the regularization
factor Rk(x) is chosen so that Rk(x = xk) = 1. This means that at
the end of the optimization process the value of the regularization
parameter will be close to unity.

Following the analysis in Section 5, the gradient of the cost
functional C(x) is given by:

gk = g(x = xk) = J
T
(xk)·W

T

d ·Wd·e(xk)+ηkF (xk)W
T

x ·Wx·(xk−xp),
(72)
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and the Hessian of the cost function C(x) which is given by:

Gk = G(x = xk)

= J
T
(xk) · W

T

d · Wd · J(xk) + Q(xk) + ηkF (xk)W
T

x · Wx

+ηk
[
W

T

x · Wx · (xk − xp)
]T

· J
T
(xk) · W

T

d · Wd · e(xk)

+ηk
[
J
T
(xk) · W

T

d · Wd · e(xk)
]T

· W
T

x · Wx · (xk − xp), (73)

where Q(xk) is equal to the one given in Eq. (73). In our numerical
implementation, due to lack of a priori information and constrained
the optimization process so that it does not make a huge jump within
two successive iteration, we choose xp equal to the value of x at the
previous iteration. For this particular choice of xp, this multiplicative
regularization technique is equivalent with the standard additive one if
we choose the Lagrange multipliers µ to vary as the iteration proceeds
according to:

1
µ

=
F (xk)
‖δ‖2 . (74)

The structure of this procedure is such that it will minimize the
regularization factor with a large weighting parameter in the beginning
of the optimization process, because the value of F (xk) is still large. In
this case the search direction is predominantly steepest descent which is
the more appropriate approach to use in the initial steps of the iteration
process since it has the tendency of suppressing large swings in the
search direction. As the iteration proceeds the optimization process
will gradually minimize more the error in the original cost functional
when the regularization factor Rk(x) remains a nearly constant value
close to one. In this case the search direction corresponds to Newton
search method which is the more appropriate approach to use as we get
closer to the minimum of the original cost functional F (x) where the
quadratic model for the cost functional becomes more accurate. if noise
is present in the data, the original cost functional F (x) will remain
at a certain value during the optimization process, the weight of the
regularization factor will be more significant. Hence, the noise will, at
all times, be suppressed in the inversion process and we automatically
fulfill the need of a larger regularization when the data contains noise
as suggested by [24] and [25].
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11. UPDATE FORMULAS FOR THE HESSIAN

The methods discussed above are quite powerful, but it still has several
disadvantage. One drawback is that the Jacobian matrix J(x) is
needed. In realistic problem, the geometry involved is complicated
and hence the analytic expression for the derivatives in Eq. (11) are
unavailable. It means that these derivatives should be computed
numerically. If function evaluation is expensive, then the cost of
finite-difference determination of the Jacobian might be prohibitive.
There are quasi-Newton methods that provide cheap approximation
to the Jacobian for zero finding. In this section we summarize
various updating schemes of the Hessian without directly computing
the Hessian [26].

Let sk = νk pk = xk+1−xk be the step taken from the k-th iterate,
xk, to obtain the (k + 1)-th iterate, xk+1. Expanding the gradient
vector g about the k-th iterate (xk) in a Taylor series, we obtain:

g(xk + sk) = g(xk) + G(xk) · sk + · · · (75)

or
gk+1 = gk + Gk · sk + · · · (76)

In any of the following update formulas, the updated Hessian, denoted
by Uk+1, will be required to satisfy Eq. (76) approximated by the first
two terms in the Taylor series expansion, i.e.,

gk+1 = gk + Uk+1 · sk, (77)

or
Uk+1 · sk = qk ≡ gk+1 − gk, (78)

This condition is referred to as the quasi-Newton condition. The
updated Hessian, Uk+1, is obtained by updating the previous
approximate Hessian, Uk, to take into account the newly acquired
information on the curvature of the cost function (contained in
Eq. (78)). The Hessian Uk is the approximate Hessian at the begining
of the k-th iteration which reflects the curvature information that has
already been accumulated. Uk was used to determine the k-th Gauss-
Newton search direction, pk, through Eq. (15):

Uk · pk = −gk or Uk · sk = −νkgk. (79)
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11.1. The Rank-One Matrix Update

In this update, Uk+1 is constructed from Uk by adding a symmetric
matrix of rank-one (since the Hessian matrix is symmetric):

Uk+1 = Uk + uuT , (80)

for some vector u. Substituting into the quasi-Newton condition
Eq. (78), we get: (

uT · sk
)
u = qk − Uk · sk, (81)

from which we can easily deduce that:

u =
1[

sTk ·
(
qk − Uk · sk

)]1/2

(
qk − Uk · sk

)
, (82)

and hence, the update formula for Uk+1 is given by:

Uk+1 = Uk +
1

sTk ·
(
qk − Uk · sk

) (
qk − Uk · sk

) (
qk − Uk · sk

)T

= Uk +
1

sTk · (qk + νkgk)
(qk + νkgk) (qk + νkgk)

T , (83)

where we assume that Uk · sk = qk and sTk · (qk − Uk · sk) = 0. This
update is called the Broyden symmetric rank-one update.

Note that the quasi-Newton condition in Eq. (78) will continue to
hold even if further rank-one matrices of the form vvT are added to
Uk+1 as long as the vector v is orthogonal to sk (i.e., vT · sk = 0). Of
course, the elements of Uk+1 will change by each additional matrix.

11.2. The Rank-Two Matrix Updates

In the following updates, Uk+1 is constructed from Uk by adding a
symmetric matrix of rank-two. The general form of a symmetric rank-
two matrix update is given by:

Uk+1 = Uk + uuT + α
{
uvT + vuT

}
+ vvT , (84)

where u and v are any two different vectors and α is a scalar. The
Hessian updates discussed in this section can all be derived from
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the following formula which satisfies the quasi-Newton condition in
Eq. (78):

Uk+1 = Uk +
1

sTk · v
{
(qk + νkgk)v

T + v(qk + νkgk)
T
}

−sTk · (qk + νkgk)
(sTk · v)2

vvT , (85)

for any arbitrary vector v which is not orthogonal to sk (i.e., sTk ·v = 0).
Note that the rank-one matrix update of Eq. (83) can be derived

from the rank-two matrix update of Eq. (85) by setting v = qk+νk gk.

11.2.1. The Powell-Symmetric-Broyden (PSB) Update

In this update, the arbitrary vector v is chosen to be sk to obtain:

Uk+1 = Uk +
1

‖sk‖2

{
(qk + νkgk)s

T
k + sk(qk + νkgk)

T
}

−sTk · (qk + νkgk)
‖sk‖4 sksTk . (86)

11.2.2. The Davidson-Fletcher-Powell (DFP) Update

In this update, the arbitrary vector v is chosen to be qk to obtain:

Uk+1 = Uk +
νk

sTk · gk

gk gT
k +

1
sTk · qk

qk qT
k − νk(sTk · gk)wk wT

k , (87)

where
wk ≡ 1

sTk · qk

qk −
1

sTk · gk

gk . (88)

Note that wk is orthogonal to sk (i.e., sTk · wk = 0).

11.2.3. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) Update

Since wk is orthogonal to sk, consequently, any multiple of the rank-
one matrix wk wT

k can be added to Uk+1 without violating the quasi-
Newton condition in Eq. (78). This leads to the following update
formula:

Uk+1 = Uk +
νk

sTk · gk

gkg
T
k +

1
sTk · qk

qkq
T
k − ανk(sTk · gk)wkwT

k , (89)
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where α is any scalar. In the case of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update, α is set to zero, to obtain:

Uk+1 = Uk +
νk

sTk · gk

gk gT
k +

1
sTk · qk

qk qT
k . (90)

Although it is possible to start the approximation of the Hessian
Uk using simply the identity matrix, in the implementation we
prefer to spend the first N function evaluations on finite-difference
approximation to initialize Uk. Finally one should note that since
Uk is not the exact Jacobian, we are not guaranteed that pk is a
descent direction for the cost function in Eq. (9). Thus the line search
algorithm can fail to return a suitable step if Uk wanders far from the
true Jacobian. In this case we reinitialize Uk using finite-difference
approximation through function evaluations.

12. CRITERION FOR TERMINATING THE ITERATION

The iteration process will stop if one of the following conditions occurs
first:

• The root mean square of the relative error reaches a prescribed
value η determined from estimates of noise in the data, i.e.,

{
1
M

‖e‖2
}1/2

≤ η, (91)

where η is a predetermined a priori information that has to be
provided by the user. In the hypothetical case of noise-free data,
η = 0.

• The differences between two successive iterates, (k + 1)-th and
k-th, of the model parameters are within a prescribed tolerance
factor, tol, of the current iterate:

N∑
j=1

|xj,k+1 − xj,k| ≤ tol ×
N∑
j=1

|xj,k+1|. (92)

• The number of iterations exceeds a prescribed maximum.
• The difference between the cost function at two successive iterates,

(k+1)-th and k-th, of the model parameters is within a prescribed
tolerance factor, tole, of the cost function at the current iterate:

|C(xk+1) − C(xk)| ≤ tole× C(xk+1). (93)
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13. REGULARIZATION

As previously mentioned, the inversion problem is invariably ill-posed.
One approach of narrowing down the solution of the inverse problem
is to introduce a priori information through a regularization term in
the cost function, as was done in the cost function of Eq. (3). In this
section we will discuss several other choices of the regularization term.
We generalize the cost function of Eq. (3), by redefining it as follows:

C(x) =
1
2

[
µ

{∥∥∥Wd · e(x)
∥∥∥2

− χ2
}

+R(x,xp)
]
, (94)

where R(x,xp) is a generalized regularization term whose selection will
bias the class of models to be inverted.

13.1. L1-Norm

The weighted Lq-norm of a vector u is defined as:

∥∥∥W · u
∥∥∥
q

=


 N∑
i=1

∣∣∣∣∣∣
N∑
j=1

Wijuj

∣∣∣∣∣∣
q 


1/q

(95)

The L1-norm regularization term is hence given by:

R(x,xp) =
∥∥∥Wx · (x − xp)

∥∥∥
1

=
N∑
i=1

∣∣∣∣∣∣
N∑
j=1

Wij(xj − xpj)

∣∣∣∣∣∣ (96)

Unlike the L2-norm regularization term of Eq. (3), the L1-norm
will allow the inverted parameters to acquire large differences (large
contrasts) relative to each other. However, it should be cautioned that
such a regularization term may introduce spurious artifacts due to the
ill-posedness of the inversion problem combined with the presence of
noise in data.

The L1-norm regularization term, has the disadvantage that
its derivative does not exist and therefore such an approach is not
compatible with the Newton-type methods where derivatives are
required. An alternative approach to Newton-type methods is to
employ linear programming schemes.
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13.2. Maximum Entropy

In the maximum entropy method, the regularization term is defined
by:

R(x,xp) = −
N∑
j=1

rj ln(rj), (97)

where

rj =
tj
T
, T =

N∑
j=1

tj =⇒
N∑
j=1

rj = 1,

and the vector t is given by:

t = Wx · (x − xp)

The advantage of the maximum entropy regularization term is that
it provides the most probable estimation which is consistent with the
measured data. Similar to the L1-norm regularization term, but to
a lesser extent (because of its inherent smoothing effect), it can also
allow the inverted parameters to acquire relatively large differences
(large contrasts), however, without the appearance of spurious artifacts
resulting from the ill-posedness of the inversion problem and the
presence of noise in data. Another property which the maximum
entropy of Eq. (97) possess is that it automatically enforces positivity
on the model parameters without the necessity of imposing additional
constraints. This can be seen from the observation that R(x,xp)
of Eq. (97) has an infinite slope as any of the model parameters
approaches zero.

14. THE WEIGHTED LEAST SQUARES
MINIMIZATION IN THE FRAMEWORK OF
STOCHASTIC ESTIMATION

14.1. Preliminaries

In the stochastic framework, each data point mi is assumed to
be different from the corresponding simulated response Si(x) by a
measurement error (or noise) denoted by ei (see Eq. (1)):

e = S(x) − m. (98)

One assumes that the measurement noise e is a random variable
represented by a normal (Gaussian) distribution with zero mean. In
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this case the probability distribution function for the measurement
noise e is given by:

P (e) = Pe exp
(
−1

2
eT · Λ

−1

e · e
)

= Pe exp
{
−1

2

[
m − S(x)

]T
· Λ

−1

e ·
[
m − S(x)

]}
, (99)

where Pe is a normalization constant and Λe is the noise covariance
matrix. The above Gaussian distribution assumption will breakdown if
the simulated response, S(x), does not exactly and fully represent the
physics of the measurement m. In this case, the error will be biased
by the degree of inaccuracy in the simulated response and hence will
not possess a normal distribution.

The probability distribution function of Eq. (99) is also the
conditional probability density P (m|x) of the data m given the model
x:

P (m|x) = Pe exp
{
−1

2

[
m − S(x)

]T
· Λ

−1

e ·
[
m − S(x)

]}
. (100)

In Bayesian inference approaches, this probability density function
is also referred to as the Likelihood function and is denoted by
L(x|m). Maximizing the probability distribution function of Eq. (100)
is equivalent to minimizing the negative of its logarithm which is also
equivalent to the weighted least squares minimization of the first term
of the cost function of Eq. (3) with:

Λ
−1

e = W
T

d · Wd

This form of parameter estimation is called the maximum likelihood
estimation:

xML = arg max
x

{L(x|m)} = arg max
x

{P (m|x)}

= arg min
x

{
1
2

[
S(x) − m

]T
· Λ

−1

e ·
[
S(x) − m

]}
. (101)

On the other hand, the joint probability density function P (x,m), can
be represented by Bayes’ rule as follows:

P (x|m) = P (m)P (x|m) = P (x)P (m|x) = P (x)L(x|m), (102)

from which we obtain the following expression for the conditional
probability density of the model x given the data m:

P (x|m) =
P (x)L(x|m)

P (m)
, (103)
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where P (x) and P (m) are the prior (or marginal) probability density
functions of the model x and the data m, respectively. In the
terminology of the Bayesian approach, P (x|m) is referred to as the
posterior probability density function, P (x) as the prior probability
density function and P (m) as the evidence. The prior probability
density function P (m) can be regarded as a normalization factor which
makes the integral of the posterior probability density function P (x|m)
with respect to the model vector x equal to unity, hence:

P (m) =
∫
dxP (x)L(x|m). (104)

The estimation problem of maximizing the posterior probability
density function, P (x|m), is often called the maximum a posteriori
probability estimation:

xMAP = arg max
x

{P (m|x)}, (105)

which is equivalent to minimizing the negative of the logarithm of
P (x|m), i.e.,

xMAP = arg min
x

{
1
2

[
S(x) − m

]T
· Λ

−1

e ·
[
S(x) − m

]
− ln

[
PeP (x)
P (m)

]}
,

(106)
which is also equivalent to the weighted least squares minimization
problem defined by the cost function of Eq. (94) with the regularization
term given by:

R(x,xp) = −2 ln
[
PeP (x)
P (m)

]
. (107)

From Eq. (101) and Eq. (106), xMAP will reduce to xML in the absence
of any a priori information (i.e., with a uniform prior probability
density function P (x)).

Introducing the additional assumption that the model x is a
random variable represented by a normal distribution with mean xp,
the prior probability density function is thus given by:

P (x) = Px exp
{
−1

2
[x − xp]T · Λ

−1

x · [x − xp]
}
, (108)

where Px is a normalization constant and Λx is the model covariance
matrix. In this case:

xMAP = arg min
x

1
2

{[
S(x) − m

]T
· Λ

−1

e ·
[
S(x) − m

]

+ [x − xp]T · Λ
−1

x · [x − xp]
}
, (109)
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which is equivalent to the weighted least squares minimization problem
defined by the cost function of Eq. (3) with µ = 1 and with:

Λ
−1

e = W
T

d · Wd, Λ
−1

x = W
T

x · Wx. (110)

Before closing this section, we note that the above stochostic framework
does not readily provide a means to accommodate a Lagrange
multiplier µ as in the least squares approach defined by the cost
function of Eq. (3). As we discussed before, the role of the Lagrange
multiplier µ is important in eliminating degenerate inversions which
are likely to achieve unrealistically small values of the residual errors
to levels below the noise plateau χ (see Section 10). By judicially
adjusting the Lagrange multiplier µ, the residual errors will be brought
into their expected statistical range. In the rest of this analysis we will
(unjustifiably) introduce the Lagrange multplier, µ, in the exponent of
the likelihood function, to obtain:

P (x|m) =
PePx

P (m)
exp{−C(x,m)}, (111)

where C(x,m) is given by:

C(x,m) =
1
2

{
µ

[
S(x) − m

]T
· Λ

−1

e ·
[
S(x) − m

]

+ [x − xp]T · Λ
−1

x · [x − xp]
}
. (112)

Finally, it should be noted that the choice of which probability
density, P (e), may truly represent the experimental uncertainties for
the data is not a straightforward matter. In principle, a careful
examination of the experimental conditions under which the data
were gathered can suggest an appropriate choice of the probability
density for representing the data uncertainties, however, such a task
may not always be easy or even possible. The difficulty that arises in
attempting to describe the statistics of the data, is that some of the
uncertainties affecting the data are not statistical in nature. Because
of these difficulties, the tendency some times is to assume a probability
density which may result in biasing the estimation process leading to
erroneous results.

14.2. The Fisher Information Matrix

We start with the definition of the score function defined as the gradient
with respect to the model parameters of the logarithm of the joint
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probability distribution function [27]:

s(x,m) = ∇x ln[P (x,m)]. (113)

The score function “scores” values of x as the random vector m
assumes its various values. Score values which are near to zero are
“good” scores and scores which are different from zero are “bad” scores.
The score function has mean zero:

E{s(x,m)} =
∫
dmP (x,m)∇x ln{P (x,m)} = ∇x

∫
dmP (x,m) = 0,

(114)
where E denotes the expected value. The Fisher Information Matrix
is the covariance matrix of the score function and is denoted by Γ(x):

Γ(x) = E
{
s(x,m)sT (x,m)

}
= E

{
[∇x ln{P (x,m)}] [∇x ln{P (x,m)}]T

}
. (115)

From the identity:

∇x∇x ln{P (x,m)} =
1

P (x,m)
∇x∇xP (x,m)

− [∇x ln{P (x,m)}] [∇x ln{P (x,m)}]T (116)

and from the equality:

E

{
1

P (x,m)
∇x∇xP (x,m)

}
= 0, (117)

it follows that Γ(x) is also given by:

Γ(x) = −E {∇x∇x ln[P (x,m)]} . (118)

Using expression (118) and for the posterior probability density
function of Eq. (111), the Fisher information matrix is given by the
Hessian matrix of Eq. (12):

Γ(x) = G(x) = Λ
−1

x + µJ
T
(x) · Λ

−1

e · J(x), (119)

where we have discarded second-order derivatives (consistent with the
Gauss-Newton optimization method). This assumption is justified
since the residual error at the minimum of the cost function is small
enough such that the first-order term J

T
(x) ·W

T

d Wd ·J(x) of Eq. (12)
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will dominate the second-order term Q(x) which is weighted by the
residual errors.

The Fisher information matrix is a measure of the information
content in the data. It provides a sensitivity map of the data with
respect to the model parameters.

14.3. The Estimator’s Covariance Matrix and the
Cramer-Rao Lower Bound

After estimating the vector of the model parameters x, one is interested
in computing the estimator’s covariance matrix denoted by Σ and
defined by:

Σ = E
{
[x∗ − E(x∗)] [x∗ − E(x∗)]T

}
, (120)

where x∗ is the estimator of the model parameter vector x. A related
parameter that attempts to quantifies errors is the error covariance
matrix denoted by Ω and defined by:

Ω = E
{
[x∗ − x][x∗ − x]T

}
. (121)

The diagonal element, E{(x∗n − xn)2}, is the mean-squared error
between the estimator x∗n and the true model parameter xn. The
off-diagonal element is the cross-covariance between the errors of two
different parameters of the model. The error covariance matrix is
related to the estimator’s covariance matrix by:

Ω = Σ + B, (122)

where B is the bias-squared matrix for the estimator, given by:

B = [E{x∗} − x][E{x∗} − x]T . (123)

The diagonal term of Ω (the mean-squared error of the estimator) is
therefore given by:

E
{
(x∗n − xn)2

}
= E

{
[x∗n − E{xn}]2

]
+ (E{x∗n} − xn)2

= var(x∗n) + (E{x∗n} − xn)2 , (124)

which is the sum of the variance of the estimator plus its bias-squared.
The estimator x∗ is said to be unbiased if:

E{x∗} = x, (125)
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in this case B = 0 and the error covariance matrix, Ω, is equal to the
estimator covariance matrix, Σ, while the mean-squared error becomes
the variance of the estimator. In this case (for an unbiased estimator),
it can be shown that [27]:

Σ = Ω ≥ Γ
−1
, (126)

which is the Cramer-Rao inequality which bounds the covariance
matrix of an unbiased estimator from below by the inverse of the Fisher
information matrix.

A similar and an approximate result can be obtained by expanding
the exponent, C(x,m), of the posterior probability density function,
P (x|m), of Eqs. (111)–(112) around the estimator x∗, to obtain (see
Eq. (9)):

P (x|m) ≈ PePx

P (m)
exp[−C(x∗,m)] exp

[
1
2
(x − x∗)T · G(x∗) · (x − x∗)

]
,

(127)
which shows that when the cost function is approximated by a local
quadratic form, the posterior probability density function is Gaussian
in the model space. Furthermore, from Eq. (127) one can trivially
deduce that the estimator covariance matrix, Σ, is approximated by:

Σ ≈ G
−1

(x∗) = Γ
−1

=
[
Λ

−1

x + µJ
T
(x∗) · Λ

−1

e · J(x∗)
]−1

= Λx − µΛx · Λ
T
(x∗) ·

[
Λe + µJ(x∗) · Λx · J

T
(x∗)

]−1

· J(x∗) · Λx.

(128)

In deriving Eq. (127), the gradient g(x∗) is set to zero, since it vanishes
at the minimum of the cost function C(x,m).

In the case when the measurement noise is uncorrelated and with
a uniform standard deviation, σ, then:

Σ ≈ σ2
[
σ2Λ

−1

x + µJ
T
(x∗) · J(x∗)

]−1

= Λx − µΛx · J
T
(x∗) ·

[
σ2I + µJ(x∗) · Λx · J

T
(x∗)

]−1

· J(x∗) · Λx.

(129)

The square root of the diagonal terms (variances) of the covariance
matrix provide “error bars” describing the uncertainties in the
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estimated values of the model parameters. On the average, the true
value of the i-th model parameter xi will fall, 68% of the time, within
±
√

Σii of the estimated value x∗i , within ±2
√

Σii, 95% of the time and
within ±3

√
Σii, 99.7% of the time.

The interpretation of the off-diagonal elements (covariances) of the
covariance matrix is not straightforward. A more meaningful indicator
of error correlations is the correlation coefficient matrix, ρ, defined by:

ρij =
Σij√
ΣiiΣjj

, (130)

which is bounded by the inequality −1 ≤ ρij ≤ +1. If the correlation
coefficient, ρij , between the estimated parameters x∗i and x∗j is close to
zero, then the uncertainties in estimating these two model parameters
are uncorrelated. On the other hand, the uncertainties will be highly
correlated (or anti-correlated), if the correlation coefficient is close to
+1 (or −1). A strong correlation on uncertainties, means that the
two parameters have not been independently resolved by the data set,
but that only some linear combination of the two parameters has been
resolved.

15. NUMERICAL EXAMPLES

In order to illustrate the strength and weakness of the presented
parametric inversion algorithm, we show some representative inversion
results of electromagnetic measurements at induction frequency
(diffusive regime) in the geophysical borehole applications. Since from
the point of view of CPU time, the numerical computation of the
second derivative in the Jacobian matrix is not feasible, in the inversion
we use Gauss-Newton approach using constrained minimization and
line search. Due to lack of a priori information the weighting matrixes
given in Eq. (3), Wd and Wx, are chosen to be identity matrixes. The
parameter xp in the cost function of Eq. (3) is chosen to be equal to the
inverted parameter in the previous iterative step xk. In this way we
reduce the possibility of the optimization process to make a huge jump
around within two successive iteration. The regularization parameter
1/µ is determined using the results of multiplicative regularization
analysis given in Eq. (74). Note that the parameter in Eq. (74) is
needed to be determined one time, and then this value is used for all
the examples.
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15.1. Example 1

In this first example, the normalization given in Eq. (6) is used. The
motivation behind this normalization choice is that the sensitivity of
the apparent resistivity measurement (the measured data) is boosted at
point close to the bed boundaries and away from the center bed. This
boosting is a result of the fact that the apparent resistivity readings at
point close to the bed boundaries are, in general smaller in magnitude
than those closer to the center of the bed. Data points that are close to
the bed interfaces are important for radial resolution in each bed. The
measured data are assumed to be collected using AIT (Array Induction
Tool), a Schlumbergers tool, which has three operating frequency (26,
52 and 105 kHz). As the forward code we use a three-dimensional finite
difference code the so-called SLDMINV developed by [28]. Although
the computation of one logging point using this finite-difference scheme
can be obtained within a few seconds, in our inversion scheme we
need to run it for a great number of time (proportional to number of
unknown and logging point) in order to generate the Jacobian matrix.
Hence, in order to make inversion results ready within acceptable
amount of time, we use the BFGS update given in Eq. (90) to construct
the Hessian matrix.

As a test case we consider geometry consisting four beds (three
with invasion) as shown in Figure 1. This geometry was first proposed

Figure 1. Four-bed invaded formation. The dip angle is 70◦. Invasion
radii are perpendicular to the borehole axis.
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Figure 2. Inversion results of the four layers example.

by [29]. The well is highly deviated; the deviation angle is 70◦. The
borehole radius is 4 inch and the resistivity of the mudcake is 1 ohm-m.

In the inversion we aim to invert the formation resistivity (Rt),
invasion resistivity (Rxo) and invasion radius (Ir). Since we do not have
enough sensitivity to invert for the bed boundaries and the borehole,
they are assumed to be known from other independent measurements.
The measurement data, which are the apparent resistivities, are
collected within 10 logging points distributed uniformly from z = 2 ft
until z = 12 ft. In each logging point the AIT tool collected 14 data
points. The plot of the inversion results after 25 iterations are given
in Figure 2. In this figure we show the exact model parameters (solid
lines), initial model parameters (dashed lines) and the inverted model
parameters (dotted lines). The initial model parameters are the ones
obtained from apparent resistivity reading of the tool. Note that after
25 iterations the value of the square root of the cost function reduced
to 0.055%. Further, one should note that in Figure 2, since Rt ≈ Rx0

of the 2nd layer from the top, the value of the inverted invasion radius
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Figure 3. Inversion results of the four layers example, but now the
data are corrupted with 3% random white noise.

Ir is not important.
Next, we add 3% pseudo random white noise to the simulated data

by using the following procedure:

mnoise = (1 + βfnoise)m, (131)

where fnoise is a random number between −1 and 1, and β = 0.03 is
the amount of noise. The inversion results after 42 iterations are given
in Figure 3. After 42 iterations the square root of the cost functional
reduced approximately to the noise level 1.6%. We observe that the
all the inverted resistivity parameters are excellent. The effect of noise
just appeared on the reconstructed invasion radius parameter of the
fourth bed from the top. The invasion radius of this fourth bed is
obviously overestimated.
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15.2. Example 2

As the next example we consider inversion of non-invaded TI
anisotropy layering formation in deviated borehole configuration. In
this example, we aim to reconstruct the horizontal formation resistivity
Rh, vertical formation resistivity Rv and the bed boundary of every
layer. Furthermore the dip angle θ will also be reconstructed. Hence
the number of unknown model parameters is N = 3L where L is the
number of layers.

In order to obtain enough sensitivity to carry out this inversion,
the measured data are assumed to be obtained from triaxial induction
measurement, see [30]. This type of measurement incorporates
three mutually orthogonal transmitter and receiver coils. Then, for
each receiver position we measure nine orthogonal magnetic field
components (i.e., an x-directed transmitter with x, y and z-directed
receivers, a y-directed transmitter with x, y and z-directed receivers,
and a z-directed transmitter with x, y and z-directed receivers). In
the inversion we assumed that the azimuth angle is solved first by
rotating the data matrix so that the cross coupling xy (x transmitter
and y receiver), yx, yz and zx are zero. This puts the coordinate
y axis along the relative strike of the formation. Hence, we have
only xx, yy, zz, xz and zx date left to carry out inversion of the
remaining parameters. The ability to simply rotate the data is one
of the significance advantages of a fully triaxial tool with all sensors
located at a common point. The transmitter and receiver coils are
modelled as points magnetic dipoles because it has been demonstrated
both theoretically [31] and [32] that a point magnetic dipole is accurate
at observation distances greater than several coil radii. Since in this
case we have different type of data the normalization given in Eq. (7) is
used. The data are assumed to be collected using Schlumberger AIT-H
tool configuration. With this tool, for each logging point, we recorded
the triaxial vector magnetic fields in six different positions with respect
to the transmitter. The transmitter and receiver separations are varied
from 15 inch up to 72 inch. For this simulation a fast semi analytical
forward model is used [33]. Hence, the Jacobian are generated with
the aid of finite difference calculation. The data are collected at 178
logging points, distributed uniformly from z = −10 ft up to z = 167 ft.

As a test case we consider a twenty eight layer model where the
well is deviated θ = 30◦. The model has been adapted from the
standard Oklahoma formation to replicate TI anisotropy model. The
details description of the model is given in Table 1.

The true, initial and inverted model after 15 iterations are given
in Figure 4. In this figure the exact model is given by the solid lines
while the initial model and the inverted model are given by the dashed
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Figure 4. Inversion results of the twenty-eight non-invaded TI
anisotropy layers example. The true model, the initial estimate and
the inverted model are given by the solid, dashed and dotted lines.

and dotted lines. We observe that all the unknown parameters are
reconstructed very well. Note that after 15 iterations the square root
of the cost function is reduced to 0.0018%. In Figure 5, we plot the
square root of the cost functional C(x) as function of iteration for
the case without noise (solid line) and with 3% pseudo random white
noise (dashed line). The inversion results from data corrupted with
3% pseudo random white noise is given in Figure 6.

In Figure 6 we observe only small effect of noise in the
reconstructions of the vertical resistivities. One should also note that
the value of the cost functional in the inversion of noisy data converge
to a certain value which corresponds to the noise level, see Figure 5.

Finally we note that the approximate time needed for this
parametric inversion procedure is given by

T = (N + 2)KMt, (132)

where N is the number of unknowns, K is the total number of
iterations, M is the number of sources (logging points) and t is the
computation time of the forward solver for each source. Note that
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Table 1. Description of the non-invaded TI anisotropy resistivity
model to perform numerical simulations shown in next figures. The
well is deviated θ = 30◦.

Nr. Layer to (ft) Rh (ohm-m) Rv (ohm-m) Thickness (ft)
1 0 1 1 ∞
2 17 10 100 17
3 25 0.4 0.4 8
4 29 3 15 4
5 32 0.9 1.8 3
6 39 20 40 7
7 43 0.7 1.4 4
8 49 90 90 6
9 52 6 6 3
10 57 120 120 5
11 64 4 4 7
12 64 150 300 18
13 90 40 200 8
14 97 1.5 3 7
15 107 100 200 10
16 111 18 18 4
17 116 100 500 5
18 119 1.5 1.5 3
19 123 7.5 75 4
20 127 0.9 1.8 4
21 131 2 2 4
22 136 10 20 5
23 139 1.8 1.8 3
24 141 20 40 2
25 143 7.5 7.5 2
26 145 15 75 2
27 157 0.7 1.4 12
28 +∞ 1.1 1.1 ∞
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Figure 6. Inversion results of the twenty-eight non-invaded TI
anisotropy layers example from data with 3% random white noise.
The true model, the initial estimate and the inverted model are given
by the solid, dashed and dotted lines.
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in Eq. (132), the number of two comes out from the fact that in each
iteration the scheme need at least one call to forward solver to calculate
the cost functional and each time the line search is used, more calls
are required.

16. CONCLUSIONS

In this paper we have reviewed a number variant of Newton type
methods. This Newton type methods will be a good candidate when
one aim on inversion where the number of inverted model parameters
is limited. Further enhancements of this Newton type method are
done by using nonlinear transformation and a line search procedure.
In this way the inverted model parameters are forced to be lied within
their physical bounds. Furthermore as shown in the numerical example
by using the multiplicative regularization technique to determine the
regularization parameter we are arrive at an efficient and robust
parametric inversion algorithm.
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APPENDIX A. NONLINEAR TRANSFORMATIONS FOR
CONSTRAINED MINIMIZATION

If xmax is an upper bound on the model parameter x and xmin is a
lower bound, then in order to ensure that xmin < x < xmax at all
iterations, we introduce one of the following transformations.

A.1. First Transformation

x = f(c, xmin, xmax) = xmin +
xmax − xmin

c2 + 1
c2, −∞ < c < +∞

(A1)
It is clear that:

x → xmin, as c → 0, (A2)
x → xmax, as c → ±∞ (A3)

It is straightforward to show that:

∂Sj
∂c

=
dx

dc

∂Sj
∂x

= 2
xmax − x

xmax − xmin

√
(xmax − x)(x− xmin)

∂Sj
∂x

, (A4)
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where Sj is the j-th measurement. The two successive iterates xk+1

and xk of x are related by:

xk+1 = xmin +
xmax − xmin

c2k+1 + 1
c2k+1 = xmin +

xmax − xmin

(ck + qk)2 + 1
(ck + qk)2,

(A5)
where

ck =
(
xk − xmin

xmax − xk

)1/2

, (A6)

and qk = ck+1 − ck is the Gauss-Newton search step in c towards the
minimum of the cost function. Defining:

p = 2
xmax − x

xmax − xmin

√
(xmax − x)(x− xmin) q =

dx

dc
q, (A7)

we obtain the following relationship between the two successive iterates
xk+1 and xk of x (assuming an adjustable step-length νk along the
search direction):

xk+1 = xmin +
xmax − xmin

α2
k + (xk − xmin)(xmax − xk)3

α2
k, (A8)

where

αk = (xk − xmin)(xmax − xk) +
1
2
(xmax − xmin)νkpk (A9)

Note that:

xk+1 → xmax, if xk → xmax or xmin (A10)

The variable p defined by Eq. (A7) is the solution of Eq. (15). Finally,
one should note that this transformation of Eq. (A1) introduces false
minima at x = xmax and x = xmin since ∂Sj/∂c vanishes at both x =
xmax and x = xmin. Notice that [from Eq. (A10)] this transformation
skews the emphasis towards xmax rather than towards xmin.

A.2. Second Transformation

x = f(c, xmin, xmax) =
xmax exp(c) + xmin exp(−c)

exp(c) + exp(−c) , −∞ < c < +∞
(A11)

It is clear that:

x → xmin, as c → −∞, (A12)
x → xmax, as c → +∞ (A13)
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It is straightforward to show that:

∂Sj
∂c

=
dx

dc

∂Sj
∂x

= 2
(xmax − x)(x− xmin)

xmax − xmin

∂Sj
∂x

, (A14)

The two successive iterates xk+1 and xk of x are related by:

xk+1 =
xmax exp(ck+1) + xmin exp(−ck+1)

exp(ck+1) + exp(−ck+1)

=
xmax exp(ck) exp(qk) + xmin exp(−ck) exp(−qk)

exp(ck) exp(qk) + exp(−ck) exp(−qk)
(A15)

where
ck =

1
2

ln
(
xk − xmin

xmax − xk

)
(A16)

Defining:

p = 2
(xmax − x)(x− xmin)

xmax − xmin
q =

dx

dc
q, (A17)

we obtain the following relationship between the two successive iterates
xk+1 and xk of x (assuming an adjustable step-length νk along the
search direction):

xk+1 =
xmax(xk − xmin) exp(αkνkpk) + xmin(xmax − xk)

(xk − xmin) exp(αkνkpk) + (xmax − xk)
, for pk < 0,

(A18)
and

xk+1 =
xmax(xk−xmin)+xmin(xmax−xk) exp(−αkνkpk)

(xk − xmin) + (xmax − xk) exp(−αkνkpk)
, for pk > 0,

(A19)
where

αk =
xmax − xmin

(xmax − xk)(xk − xmin)
(A20)

Note that:

xk+1 → xmin, if xk → xmin, (A21)
xk+1 → xmax, if xk → xmax, (A22)

Hence, this transformation of Eq. (A11) introduces false minima at
x = xmin and x = xmax since ∂Sj/∂c vanishes at both x = xmin and
x = xmax. Notice that this transformation symmetrizes the emphasis
on both xmin and xmax.
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A.3. Third Transformation

x = f(c, xmin, xmax) =
xmax + xmin

2
+
xmax − xmin

2
sin c,

−∞ < c < +∞ (A23)

It is clear that:

x → xmin, as sin c → −1, (A24)
x → xmax, as sin c → +1 (A25)

It is straightforward to show that:

∂Sj
∂c

=
dx

dc

∂Sj
∂x

=
√

(xmax − x)(x− xmin)
∂Sj
∂x

, (A26)

The two successive iterates xk+1 and xk of x are related by:

xk+1 =
xmax + xmin

2
+
xmax − xmin

2
sin ck+1

=
xmax + xmin

2
+
xmax − xmin

2
sin{ck + qk}, (A27)

where
ck = arcsin

{
2xk − xmax − xmin

xmax − xmin

}
(A28)

Defining:

p =
√

(xmax − x)(x− xmin) q =
dx

dc
q, (A29)

we obtain the following relationship between the two successive iterates
xk+1 and xk of x (assuming an adjustable step-length νk along the
search direction):

xk+1 =
xmax+xmin

2
+

(
xk−

xmax+xmin

2

)
cos

(
νkpk
αk

)
+αk sin

(
νkpk
αk

)
,

(A30)
where

αk =
√

(xmax − xk)(xk − xmin) (A31)
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