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A framework for discrete variable representati@VR) basis sets is developed that is suitable for
multidimensional generalizations. Those generalizations will be presented in future publications.
The new axiomatization of the DVR construction places projection operators in a central role and
integrates semiclassical and phase space concepts into the basic framework. Rates of convergence
of basis set expansions are emphasized, and it is shown that the DVR method gives exponential
convergence, assuming conditions of analyticity and boundary conditions are met. A discussion of
nonorthogonal generalizations of DVR functions is presented, in which it is shown that projected
Ssfunctions and interpolating functions form a biorthogonal basis. It is also shown that one of the
generalized DVR proposals due to Szaldy Chem. Phys105 6940 (1996] gives exponential
convergence. €2002 American Institute of Physic§DOI: 10.1063/1.1473811

I. INTRODUCTION DVR functions has been explored previously by Poirier and
Light.2>=1" In our axiomatization of the DVR construction,

This paper is the first in a series that presents the resulize have promoted projection operators to a central role, and
of our recent investigations into multidimensional discreteemphasized the phase space meaning of these. We have also
variable representatiofDVR) basis sets. The basic ideas of paid considerable attention to the rates of convergence of
the DVR method go back to the 1968'4,and the method different basis set methods, and emphasized the favorable
has become widely popular especially since the pioneeringase of exponential convergence. In particular, we have dem-
work of Light and others in the 1980%! A recent review onstrated that the DVR method provides exponential conver-
has been given by Light and Carringttfand another article gence under certain circumstandesalyticity of the poten-
we have found useful for general information is Baye andtial, proper attention to boundary conditions, gtélthough
Heenen'® it is well known that the DVR method often gives rapid

There has long been felt a need for multidimensionalconvergence, we believe our argument for the exponential
DVR functions'* Cartesian products of one-dimensional convergence of the DVR method is new. Another novel ele-
DVR functions are easy to construct, but typically do notmentis our new proof of the Darboux—Christoffel formula, a
obey the boundary conditions needed on spaces, such Bgsic result in the theory of one-dimensional, orthogonal
those occuring in molecular physics, which are not thempolynomial DVR functions. Finally, we present a theory of
selves Cartesian products of one-dimensional spaces. FEIVR functions which are generalized by relaxing the usual,
these reasons we have been interested to find ways of cofitthogonality conditions. The idea of such generalized DVR
structing nontrivial(that is, non-Cartesian-prodyictnultidi-  functions was first put forward by Lighet al*® and was later
mensional DVR basis sets. Our first step in doing this was téleveloped by Szalay, but we have presented several new
try to understand the known, one-dimensional DVR basiddeas including the duality between the set of projected
sets from as deep a standpoint as possible, in order to geﬁ_functions and the set of interpolating functions and a proof
eralize them to higher dimensions. This paper presents th‘éf exponential convergence with a certain form for the ma-
results of the first stage of this research, in which we axiirix elements of the potential energy.
omatize the DVR construction in a way which is not biased
toward one-dimensional examples and identify some of thdl- PROJECTION OPERATORS, PHASE SPACE,
underlying principles. AND EXPONENTIAL CONVERGENCE

In the process, we have developed several ideas. First, In our axiomatization of the DVR construction we have
we have integrated the basic theory of DVR functions withpromoted projection operators to a central role, a step that
phase space or semiclassical concepts, which we feel are &mwns out to be important when constructing multidimen-
important part of understanding their properties and the prinsional examples. In this we were strongly influenced by the
ciples of their construction. The phase space perspective dreatment of Baye and Heen&dhMoreover, projection op-
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erators have a geometrical interpretation in phase space (a) (b)

which is very suggestive, not only for understanding the ef- V(z) V(z)

ficiency and rate of convergence of known DVR basis sets,

but also for designing new ones. In favorable circumstances

DVR basis sets lead to exponential convergence in the cal-

culation of eigenvalues and eigenfunctions. In this section

we discuss the conditions under which exponential conver-

gence holds and the factors which can destroy it. \/
We begin with projection operators. Lef be a Hilbert

space of wave functions, and Igin),n=0,... N—1} be a
truncated, orthonormal basis. Let

N—1
P=r]§=:0 In){(n| 2.1

be the projection operator onto the subsp&cspanned by
the truncated basis set, so thd&PH. In practiceP is

specmed by the truncated bas{||$1)}. The stationary phase FIG. 1. In(a), the potentialabove and orbits in phase spadeelow) for the

|Og|C of this paper reqwres th"_"t at least pa_rt of the basis be Qorse oscillator. The orbits have actiohs=n#A. The circle in the phase
truncated spectral basis, but it may contain additional statesace diagram is the outer harmonic oscillator orbithin In (b), potential

that do not fit this descriptiof’P, We prefer to emphasizB and phase space orbits for a harmonic oscillator. The potential is the har-
itself as the primary object because the basis which sgans Monic approximation to the Morse potential.

is not unique and because in multidimensional problems it is

often much less obvious what is to be regarded as a privi-

leged choice of the bas{$n)}. Moreover,P may be inter-  cjoses the first three of the Morse oscillator orbits, but the
preted in terms of a region of phase space, which is indepefiyrth extends beyond it a small amount neantkais. This
dent of the choice of basis spannidg The phase space means that if we solve the Morse oscillator in a harmonic
interpretation of® plays an important role in this paper, and sg¢ijjator basis truncated at the tenth basis stateq in the
also in the problem of basis set optimization, that is, theg g numbering1=0,1,..), then the first three Morse os-
problem of choosing & which is efficient for a particular  jator states 1=0,1,2) will be reasonably well converged,
class of wave functions one wishes to find. This problem hag, ;t the fourth 6=3) will have some qualitative error in
: 17,21-28 ) _ : . .

been considered by several authbts: The phase {he eigenfunctionys(x) near the right turning point, and
space Interpretation OPQ o2 natural outcome of the the gualitative disagreement will get worse for higher states
Wigner—Weyl formalisnf?=3! which has recently been spe- n=45 . .
cifically elaborated upon by Poiriét.Here we shall merely To be more precise, consider the error in théa Morse
use a simple model pro_blem to present the intuiti\{e idea_. oscillator eigenstatey,,(x)=(x|m) when computed in a

Suppose we are trying to solve the Morse oscillator in &yncated basis ol harmonic oscillator eigenstatén),n
harmonic oscillator basis. Figurgd) illustrates the Morse _q N—1} asN increases. This error can be estimated by
potential(above and the phasg space of the Morse osciIIat(.)r»[he matrix elementN|m), the coefficient of the first ne-
(be!ow)'. In the phase space @agram, a set of nested CIaSSIC@iected term in the expansion of the exact Morse oscillator
orbits is drawn, having action§,=(1/2m)$p dx=n#, N ejgenstate in the harmonic oscillator basis. This matrix ele-
=1,2,... (the circle in the figure will be explained momen- ment in turn can be approximated by using semiclassical
tarily). Thus, the area of theth orbit isnh=n(277%) (the  (\wKB) wave functions and the stationary phase approxima-

orbit containsn Planck cells of phase space areehese are  jon. The matrix elementN|m) then becomes a sum of in-
not the quantized orbits of WKB theory, which satisfy tegrals of the form

=(n+1/2)h, n=0,1,..; the quantized orbits are half way

between the orbits drawn in the figure. We have drawn the .

figure this way because we wish to imagine the quantized J dX\/TEXD[I—[iSNHO(X)iSMO(X)] , 2.2
orbits at the centers of annular strips, each of which contains h

one Planck cellli=2x#) of phase space area.

Figure 1b) illustrates a harmonic oscillator potential whereS= [p dx, where the ellipsis indicates the usual WKB
(above and phase spad@elow). The potential is the har- amplitude factors and where the superscripts HO and MO
monic approximation to the Morse potential at the bottom ofrefer to the harmonic and Morse oscillators, respectively. The
the well. The phase space picture of the harmonic oscillatointegrals are summed over the choices of sign to get the
also contains a set of nested orbits, in this case circles, havaatrix elementN|m). The stationary phase condition can
ing actionsl ,=(1/27)$p dx=n#A. The number of harmonic be satisfied only when the two signs are opposite, so that
oscillator orbits and Morse oscillator orbits drawi®) is the  the stationary phase points are the roots dtd@)[sﬂo
same. —SM9(x)1=0, or p°(x)=pM°(x), wherep=p(x) is the

The circle in the Morse oscillator phase space is the lastmomentum function defined by the classical orbits. Thus, the
(tenth harmonic oscillator orbit. This circle completely en- stationary phase points are represented geometrically by the
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p kind of piecewise fits and ordinary (multiresolution
wavelets**~3®which typically have compact support and so
are not analytic.

Exponential convergence is also destroyed if the basis
functions and the functions to be expanded do not satisfy the
same boundary conditions. In current practice, this condition

z is not always met, although boundary conditions can be ig-
nored if the physical wave function has negligible amplitude
at the boundaries. In a recent pajieve have examined the
boundary conditions satisfied by physical wave functions in
the internal space of the 3-body problem. We also point out
that particularly careful attention has been given to boundary
conditions at collinear shapes in the treatment of the H

FIG. 2. The integral for the computation of the matrix elem@tm), the ~ molecule in Ref. 38.

Nth expansion coefficient in the expansion of théh Morse oscillator state Exponential convergence will not hold either if the wave

in a harmonic oscillator basis, is dominated by contributions from the sta- . . .
tionary phase points, which are geometrically the intersections oNthe funcuon; t9 be epr’:mded, are themgelves nonanalytic, even if
harmonic oscillator orbit with thenth Morse oscillator orbit, the basis is analytic. This occurs in the case of electronic

wave functions, due to the cusp singularitiésSuch singu-
larities in configuration space give rise to long-range tails in

intersection of theNth harmonic oscillator quantized orbit Momentum space. Wave functions which are analytic in con-
with the mth quantized Morse oscillator orbit, as illustrated figuration space normally correspond to momentum space
in Fig. 2. (See Littlejohfi>%for a discussion of the multidi- Wwave functions which fall off exponentially gs—c; this
mensional casg. can typically be interpreted as a tunnelling into the classi-
As N increasegfor fixed m) there comes a value ®f  cally forbidden region in momentum spa@geyond the mo-
where theNth circle covers thenth Morse orbit, and apl ~ mentum turning points Nuclear wave functions in the
increases beyond that value there will be no more intersed0rn—Oppenheimer approximation also have cusps at the co-
tions of the two orbits. This means that there are no realncidence of two nuclei, but of course the wave function is
stationary phase points in the computation of the matrix elstrongly suppressed by the potential there. Another issue is
ement(N|m); the stationary phase points have effectivelythat in practice the potential energy surface is usually
moved off the real axis and become complex. The complexionanalytic, being made up of piecewise analytic fits to elec-
stationary phase points correspond to actiSrie the expo-  tronic structure data points. These nonanalyticitiesere
nente'S” which have a positive imaginary part; the matrix the pieces fit togethgwill destroy exponential convergence
element itself is exponentially decreasing in the imaginaryat some level of accuracy regardless of the basis, but of
part of S. Thus, if we describe the error in terms of its de- course no physics can depend on these nonanalyticities. As
pendence orN, we expect this error to b&(1) (that is, for other types of singularitiegsat conical intersections or
large when the two orbits have real intersections, and tosingularities due to body franfé;**etc) it seems to us that
decrease exponentiallpse N for some constant) as the it should be possible to handle these without loss of expo-
area covered by the basis states expands beyond the ame@ntial convergence assuming other problems are sdklved
occupied by the Morse eigenstatEgo be more precise, the tall ordep. To summarize a somewhat complex situation, it
error will go ase” °(N=No) whenN is above but nea,, the seems to us that as a first pass one should concentrate on
number of basis states which just cover thth Morse os-  analytic bases for nuclear wave functions in molecular prob-
cillator state] lems, which is the philosophy we have adopted in our studies
The harmonic oscillator basis is an example ofama-  of DVR bases.
lytic, spectral basisthat is, a basis consisting of the analytic The above analysis of convergence is based on WKB
eigenfunctions of some operator. Of course, the Morse oscittheory, which applies to analytic eigenfunctions and which
lator eigenfunctions form another analytic, spectral basishopefully has intuitive advantages for chemists and physi-
Exponential convergence occurs whenever one analytigists. It is necessary background for our discussion of the
spectral basis is expanded in terms of another, although fate of convergence of the DVR method below. See Gottlieb
only sets in after the phase space area of the unknown eigeand Orsza®} for a more standard treatment of convergence
functions(or volume in higher dimensiohéias been covered rates in expansions in orthogonal functions, in which smooth
by the basis, and if the constantis small the convergence (rather than analyticfunctions are emphasized, and the ef-
may not be satisfactory. That is, both the basis set Nige fects of boundary conditions are discussed. As far as we
above which exponential convergence sets in and the corknow, the rates of convergence of the DVR methby
stantc determining the rate of convergence depend on thevhich we mean the errors incurred when the standard diag-
basis, and determine its efficiency. Nevertheless, in favorablenal approximation is made for the potential energy and ei-
cases the exponential convergence is dramatic, and igenvalues of the truncated matrix are computeave not
general it seems to be a highly desirable property for a basiseen considered in the mathematical literature.
set to have. Bases which are not analytic generally do not To return to the projection operatdt, in the case of
give exponential convergence; these include splioesany  analytic bases this operator is associated with a region of
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phase space. Of course, the range of unknown eigenstates This theorem has an immediate corollary, which says

one wishes to find is also associated with a region of phasthat the set of projected-functions,{A ,(x),a=0,.. N—1}

space, and another projection operator. In general, the Weyg orthogonal if and only if

transform of a projection operator is a function which to

some approximation is the characteristic function of a region ~ Aa(Xg) =K,6ap, (3.3

of phase spacézero outside, unity insige This is only an

approximation, Itlk51e nature of which has been recently ex
lored by Poirier,” including some numerical examples. See ) . L .

glso Ber)r/y,14 who studies tae Weyl transforms of pr;ojection the prOJectedé-functlo_ns do not var_ush identically, thef,

operators for single states, and shows that they are smooth _and we can defme a normaliz¢tlence orthonorml

S&functions concentrated on the quantizing orbit, plus oscil-Verston of these functions,

lations. The smoothing is enough to spread thinction

over the width of the annular strips illustrated in Fig. 1, IF >:i

producing an approximation to the characteristic function of “ \/K_a

the annular strip. We note that in this paper we never use

these approximations for any quantitative purpose; our quar0 that(F ,|F g)= ..

titative conclusions rely on the stationary phase argument \We now define @DVR setas the combination of a pro-

given above for exponential convergence. jection operatolP plus a set oN grid points{x,} such that
Eq. (3.3 holds with allK ,>0. In view of the theoren(3.1),

we are requiring that the projectéfunctions vanish at each
others’ grid points and that they do not vanish at their own
We shall now present a framework for defining and dis-grid points. All the standard examples also satisfy another
cussing DVR functions which is not biased toward one-condition, which isN=dimS, that is, the number of grid
dimensional examples or the special case of orthogonal polypoints (hence the number of projectesifunctions is equal
nomials. to the dimensionality of the space upon whiBhprojects.
Let M be the manifoldor space upon which our wave (This space is sometimes infinite-dimensional, however.
functions live. In model problem&nd some real problems Since these functions are orthogonal and nonvanishing, they
M may be the Euclidean spaé, but in molecular quantum are necessarily linearly independent, and hence span the sub-
mechanicsM is typically one of the internal spaces of the spaceS (in the finite dimensional caseThe {F,(x)} are
n-body problem, with nontrivial topology. We have exam- then an orthonormal basis on this subspace.
ined the topology and structure of these spaces in a series of The following will help translate the notation of this pa-
earlier paper§-“#“°The only mathematical manifolds which per into that used by other authors. Most authors define the
are Cartesian products of one-dimensional manifolds argubspaces as that spanned by an orthonormal s¢t}, that
planes, cylinders and to(generally, products of circles and is, the FBR. ThusP==X,| #,){(#,|. P is denoted y by Light
lines). Unfortunately, these do not include the internal spacest all® Most authors label grid points by and call the grid
primarily of interest in molecular quantum mechanics. Thispoints themselves,, as we do. The functionE ,(x) are
is one reason for being interested in non-Cartesian productalled,(x) by Light and Carringtort? The squared norm of
multidimensional DVR bases. the projecteds-functions,K,, turns out to be the inverse of
Let us denote the Hilbert space of square-integrablehe weights in the associated quadrature formula, denveted
wave functions orM by H=L2(M) (we assumeM has a or w, by most authors.
metric. Let P be a projection operator ofi{, and letS We make one remark here about the cadseM
=PH be the subspace upon whic¢h projects. Let{x, ,a =dimS. Since the functiond ,(x), «a=0,...N—1, lie in
=0,...N—1} be a set ofN grid points onM. If M is  the subspacé, at mostM of them are linearly independent.
d-dimensional, then each,, is represented by a set of  Thus the overlap matriz(<Aa|AB), which is necessarily non-
coordinates. Finally, we introduce the project@flinctions  negative definite, satisfies
concentrated at the grid points,(X) = P[ §(x—X,) ], which

whereK,=(A,|A,) is the squareed norm of the projected
&function(in general they are not normalizedf in addition

|A,), (3.4

Ill. AGENERAL FRAMEWORK FOR DVR

we denote with a capital to emphasize that they came from rank(A ,|A g)<M. (3.5
osfunctions. This is more convenient in Dirac notation, . ) . )
|A,)=PI|x,), SO thatA ,(x)=(x|A). Thus, ifN>M (the most interesting case after=N, since

it allows more grid points for quadrature purposes than basis
. functions, the matrix(A ,|A ) is a singular matrix. In fact,
(ALlAg) =Ap(Xa) = A (Xp)", (3D normally (apart from some deliberate or perverse choices of

which says that the matrix of scalar products of the projecte@id points the rank is precisel, and(A,|Ag) has pre-

sfunctions (the overlap matrixis given by evaluating the CiSely M positive andN—M zero eigenvalues. Then Eq.
projecteds-functions at each others’ grid points. The proof is (3-3 (With K,>0) is impossible. Henceforth in this article

With these definitions we have the following theorem:

trivial: we have we shall deal only with the casé=M (but in future articles
N we shall show how understanding the cése M is impor-
(A48 )= (X[ PTPIxg) = (Xa|Plxg) = (Xo| A gy = (A [ Xp), tant for constructing DVR sets on multidimensional spaces
( DVR functions satisfy two properties simultaneously:
where we use'P=P2=P andP|x,)=]|A,). The first is orthogonality(A,|Ag) =K, 8,5 or (F,|Fg)
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= 0,5, and the second is the interpolation propeny,(xz) second term is the squared norm @, computed by the
=K,0.p, that is, eachA ,(x) vanishes at all grid points quadrature approximation, which need not be a good one
except its own. since i, lies outsideS. The magnitude of the second term
We will call a set ofN linearly independent functions depends on the values of the functign at the grid points.
{L,(X)} which span some given function spangerpolating  Although ¢, has a small norm, this does not in principle
functionsif they satisfyL ,(xz) = d,4 for a given set ofN preventy, from taking on large values at certain points. In
grid points{x,}. These functions are unique if they exist. In many practical circumstances, however, the valueg,ofill
the case of a DVR set, a set of interpolating functions whiclbe exponentially small.

span the spac§ is given by Suppose, for example, thatis spanned by an analytic,
spectral basis¢,(x), truncated atn<<N. Then ,(x)
1 o . )
L, (x)= K_A“(X)' (3.6) =3 _nan®n(X), where, according to the arguments in Sec.
—cN

Il, ay is of ordere and the terms,, decrease exponen-
For a DVR set, all three functions\,, F,, andL,, are tially after that. Now note that
proportional. £
The orthogonality and interpolating properties of DVR | p(X)| < 2 |an||dn(X)]. (3.12
functions give rise to two distinct ways to expand a function =

which belongs ta&. That is, ifye S, so that an expansion of This sum will be dominated by the first few terms unless the

the form maximum value ofp,(x) diverges fast enough to counteract
the exponential decay of tlgg, . In fact, this maximum value
P(X)= 2 CuF o(X) (3.7 may diverge; for example, the maximum value of the har-

monic oscillator eigenfunctions goes a¥'?, and the maxi-
exists, then the expansion coefficients can be determined einum value of theY,,’s on the sphere diverges &¥° but
ther by orthogonality or by setting=x,; in Eq. (3.7) and  these are very mild divergences that are completely over-

using Eq.(3.3. That is, whelmed by the exponential decay of the coefficiexis It
is also possible that the eigenfunctiogg(x) themselves
Ca:f dx F* (X) (x) = i(p(xa)_ (3.9 diverge at some points, for example, the radial eigenfunc-
“ \/K_a tions of the Dirac hydrogen atom do this, but these diver-

gences are due to the singularity of the potential=a0, and
here we are assuming that all potentials are analytic.
A more general argument is the following. Suppose

Thus, wheng e S, we can write

P(X)= E \/— P(XQ)F o(X). (3.9  y,(x) reaches a maximum value Hfin a lobe of widthAx.
Then the contribution of this lobe to the squared norm
If  does not belong te, then the twa(nomina) ways = (| ,) is of orderH2Ax<». We are assuming that(x)

of determining the expansion coefficients do not give thds an eigenfunction in an analytic potential, so its Fourier
same results, and the errors in the two expansions are diffetransform dies off exponentially beyond the classically al-
ent. As we have seen in Sec. Il, if lies well within the lowed region in momentum space. Similarly, the Fourier
region of phase space covered By then the errors in the transform of,, which is the truncation off outside the
orthogonality expansion c(,=(F,|#)) are exponentially region of phase space covered Sydies off exponentially
small. We now show that the same is true for the interpolaoutside some momentum bourfe, of this region. This
tion expansion ¢, = (1/VK,) #(x,)), under certain assump- means that the maximum momenta in the Fourier transform
tions that are common in practice. of the one lobe containing the maximum @$(x) is of the
First we breaky into a party; lying in S, and another order of Py, or Ax>#/P,. Thus, AH*Po<w, or H
i, orthogonal toS, =i, + i,. Then the error in the inter- <(Pyv/%)Y2 The cutoff momentun®, is a slowly increas-

polating expansion is ing function ofN, the size of the truncated basis, but this is
1 completely dominated by the exponential decay of the

erx)= (x)— Y VE (X squared normv. Thus, the maximum value af,(x) decays
) =4(x) E \/K_lp( @FelX) exponentially withN, and the squared norm of the error of

the interpolating expansiof8.11) is exponentially small.

1
= o(X) = 2 —==a(Xe) F o(X), (3.10
@ VK, IV. STANDARD DVR SETS
since ¢, has an exact interpolating expansion. Let yr( In this section we show how certain standard DVR sets,
=(x|€). Then the squared norm of the error is given by namely, sinc functions and DVR sets based on orthogonal
1 polynomials, fit into the general formalism we have pre-
(ele)= (ol i)+ 2 K_|lr/f2(xa)|2! (8.1)  sented, and we discuss convergence issues and phase space
‘e interpretations of these functions.
since the two major terms on the right-hand side of Eq.  Sinc function§®*” are in many ways the simplest ex-
(3.10 are orthogonal. The first term of E(.11) was shown ample of a DVR basis and also an instructive one, one which
to be exponentially small by the argument in Sec. Il. Theis worth examination because of the many fundamental
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points it illustrates. Sinc functions do not satisfy the bound- p
ary conditions required in many practical problems, but
when the boundary conditions are rigloin the space& or

R™), sinc functions produce exponential convergence accord-
ing to the same principles of phase space area which apply to
any other DVR basis. Moreover, the long-range tails of sinc
functions are not a problem, as we explain.

We begin by showing how sinc functions fit into the K

+Po

DVR formalism presented in Sec. lll. For this we choose
M=R (we work with one-dimensional wave functionsve
choose the projection operator to be

B
-

p=| “aplp)(ol. @2 o
~Po

where|p) is a momentum eigenstata plane waveandp,

is @ momentum cutoff, and we choose the grid points to be&iG. 3. Phase space diagram for finding the eigenfunctions and eigenvalues

X,=na, wherea=7f/p,y is the lattice spacing. For sinc of a one-dimensional oscillator in a basis of sinc functions. The desired,

functions we usa instead ofa to label the gl’id pointsn is unknown eigenfunctions occupy the oval region of phase space, and the sinc
. . . . . functions occupy the bané po<p=<p, centered on the&-axis.

an arbitrary integer. The spaceupon whichP projects is

infinite-dimensional, and consists of band-limited functions,

that is, those whose momentum-space wave function van-

ishes outsidep|<p,. The DVR property follows from the infinite sinc function basis. We have choggrto lie well
outside the classically allowed momentum values for the
Po_dP o i desired, so that, if the potential is analyti
An(x)=(X|P|x,)= T ip(x=xp)/h maximum energy desired, so that, if the potential is analytic,
~p27h the momentum space wave function will be very small and

decreasing exponentially gi==*p,. The parametemg,
, (4.2)  which is specified by the spacing of the lattice of sinc func-
tions throughpy= 77i/a, is a convergence parameter, and we
which shows that\ ,(x,)) = 8,m/a, so thatk,=a (indepen- Shall have exponential convergence in this parameter for ana-
dent ofn). lytic eigenfunctions.

To prove that the function&,(x) are complete o we There is another convergence parameter in the use of
cannot simply count linearly independent functions, si§ce Sin¢ DVR functions, which is the truncation size of the basis
is infinite-dimensional. Instead we note that the set of func{necessary since the basis is infinitehat is, we must decide
tions in momentum space, how many lattice points ix-space to include in the basis. It

is logical that we should go out beyond the turning points in
1 x-space, but in view of the long-range tails of the sinc func-
\/Z_po tions, one might worry that it would be necessary to go a
very long way. In fact, this is not so, since the expansion
is obviously orthonormal and complete for functions definedcoefficients of a band-limited wave functi@nin a sinc func-
on the interval— py=<p=<py, since it is just a Fourier series tion basis are just proportional to the value of the wave func-
basis on that interval. Transforming backxdepace, we find tion at the grid points, as shown by E.9). Since ¢ is
that the Fourier transform df,(p) is vaA,(x)=F,(x), so  decreasing exponentially in the classically forbidden region
the set{F,(x)} is also orthonormal and complete &h (now in x-space, the convergence is exponential in this trun-

A Fourier series basis on an interval converges slowlycation parameter, too. To be more precise about this, we must
for functions which are not periodi@n fact, the function worry about the fact that the unknown eigenfunctions are not
should be analytic and periodic for exponential conver-truly band limited, so the expansi@8.9) is not strictly valid.
gence. Thus, we should at least requiggp,) = ¢(—po) for ~ However, the amount by whic# differs from a band limited
the momentum space wave functions whesspace counter- function is related to the exponentially small value of the
parts we wish to expand in a sinc function basis. In applicamomentum space wave function@t + py. Thus, if we fix
tions of sinc DVR functions in quantum mechanics, one willpy and consider the error as we enlarge the nunibesf
probably be dealing with momentum space wave functiondasis functiongthat is, lattice pointsin the truncated basis,
¢(p) which are very small atpp==*=p,, so that ¢(pg) we find a convergence which looks exponential up to the
~¢(—po)=~0. The general idea is illustrated in Fig. 3, in point we reach the errors due to the truncation of the mo-
which we are thinking of solving a one-dimensional oscilla-mentum space wave function. Beyond that point, adding fur-
tor in a sinc function basis. The highest energy eigenfunctionher basis functions does not help since even the infinite
desired corresponds to a classical orbit which is sketched dsasis cannot represent momentum vali@s> p.
an oval in the diagram, and the region of phase space cov- If, however, we increasp, at the same time we increase
ered by the sinc functions is the bardyy<p=<p, centered the truncation size of the basis, we obtain convergence which
on thex-axis. This band has infinite area, corresponding tds overall exponential. In practice this works quite easily, and

_ 1 sin@(x—naj)/a]
T X—na

fo(p)= e~ n7P/Po (4.3
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Area of Strip = 21h —PospP=po in phase space covered by the sinc functions is
shown, and the grid points=na are shown as dots on the
x-axis. In a diagram like this, it is natural to associate each

+p0 basis state with a vertical strip of wid#h, centered on the

grid points. Since the height of each strip ipg227ti/a,
the area per strip is24, a single Planck cell. In this way,
the infinite area of the band is divided into Planck cells, one

T for each basis state. This association is not merely a matter of

making the area come out right, for the Lagrangian
manifold®® associated with the delta functiaf{x—x,) cen-
tered on grid poink, is the vertical line in phase space given

0 by x=x,. When the projection operatdt is applied to the
Ssfunction to createA ,(x), the Lagrangian manifold is ef-

FIG. 4. Phase space diagram for the sinc DVR basis, illustrating the PIancLeCthely truncat,ed ap==* pP' Q'V'”g a finite line Se@!me”t .

cells (vertical strip$ associated with each basis function. such as the vertical dotted line in the figure. The vertical strip

is centered on this line much as the annular strips in Fig. 1
are centered on the quantizing orbits. This picture can be

exactly as predicted by the theory. The final result is soménade more quantitative by computing the Wigner function of
rectangle in phase space, bounded inxkdirection by the the sinc f_unpnon, Whlch turns out to bg apprommately the
truncation of the basis and in tgedirection by the momen- qhargctenstm function of the vertical strip. The approxima-
tum cutoffp,. This rectangle completely encloses the regiont'_O”.'S rather crude,.howe_ver, because of the large amount_ of
containing the unknown eigenstates, and the ratio of basidnging due to the discontinuous cutoffs. Nevertheless, a pic-
states to the number of eigenstates found is the ratio of thi!re like this captures some important semiclassical features
area of the rectangle to the area of the classical orbit boundf the sinc function basis.
ing the eigenstate region. _ Now we mgke some remarks about orthogonal polyno-
There remain some worries about the long-range tails ofnial DVR functions. Lef{q,(x),n=0,1,..} be a set of real,
the sinc functions. The argument given above explains whne-dimensional polynomials, whegg is of degreen, that
the expansion coefficients of a wave functignin a sinc 'S orthonormal on an intervih,b] with respect to a weight-
function basis associated with grid points well into the clasing function p(x)=0, [3p(X)An(X)4m(X) = Snm- Let dn(X)
sically forbidden region must be exponentially small. This = VP(X)dn(X) be the weighted polynomial functions that are
was based on the interpolation property for computing ex2rthonormal in the usual sense, and Rt= 2| n) (bl
pansion coefficientfthe final expression in Eq3.8)]. But ~ Then, as is well knowh'® a DVR set results if the grid
we should also be able to use orthonormality to computd0ints are chosen to be the rootscpf(x) (the first polyno-
these expansion coefficienfthe center expression in Eq. mial omitted from the projgction operajoiThese facts fol-
(3.8)]. How can this integral be exponentially small, when low from the Darboux-Christoffel formula, a standard result

the long range tail of the sinc function, centered out in thén ~ the  theory  of  one-dimensional,  orthogonal

/_>“\
N
/

/
pa
N
/
N

/

\

—-— ———

H 8,49
classically forbidden region, overlaps substantially with thepolynomlalsf.‘ ¢ _ o
wave functiony in the classically allowed region? To under-  Unlike sinc DVR functions, the grid points of orthogonal
stand this, we express the overlap integral in terms of th@olynomlal DVR fUﬂCtl(_)nS are spacgd nonunlformly. This
complex integrals, has a simple semiclassical interpretation. Consider the WKB
©imxla approximation togy(x),
e_ .
J Tcna 1 o =2 528)1/2 \)/h— 4 (4.5)
X)=|— cog S(x,1)/%— , .
where the grid poink,=na is in the classically forbidden P a dl IX S /4]

region for ¢(x). Under these circumstances, the fraction
1/(x—na) can be regarded as slowly varying on the scale ofvherel = (N+1/2)# is the action of the quantizing orbit for
the exponential throughout the classically allowed regionthe stategy and whereS= [p dx is measured from the left
wherey is large. Thus the functioh(x) = ¥(x)/(x—na) has  turning point. In the WKB approximation, the zeros &f
approximately the same momentum contentydg) itself,  occur when the argument of the cosine isf(1/2), so the
and the integral can be estimated by the Fourier transform afpacing Ax between the roots is given b S/A=(1/h)
¢ evaluated ap= £ py. But by constructiong(p) is expo-  X(dS/dx)Ax=m, or Ax=whl/p(x,1), where p(x,l)
nentially small at thesémomentum cutoff values, so the =3S/dx is the local momentum of the first neglected state.
apparently dominant contribution to the integi@oming  This is identical to the spacing rule for sinc functions except
from the classically allowed region fap) is, in fact, expo- that the constant spacing @bove has been replaced by the
nentially small. variableAx, and the constant momentum cutoffy(above

We now use Fig. 4 to make some points regarding théhas been replaced by the local momenfufr,|). Obviously
phase space perspective on the sinc functions. This is a hyhe result is open to the same interpretation, that the DVR
brid figure, with a sinc function centered on a certain gridstate occupies a vertical strip in phase space containing one
point superimposed on a phase space diagram. The bamdanck cell (2#) of area.
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p ogy of Ref. 12. We will not prove these statements here since
T their proof would take us too far astray and the issue is
(\ unrelated to the accuracy of the DVR method.
In the DVR method, however, there is an additional error
l due to the usual diagonal approximation for the matrix ele-
0 e ments of the potential energy,

<Fa|V|FB>NV(Xa) 5aﬁ' (51)

We will show below that this error i©(1/N), which is much

FIG. 5. lllustrations of the phase space area occupied by the first 20 states arger than the error due to the truncation of the basis alone.
the harmonic oscillator. On the left, the annular strips of equal area arfNevertheless, the final error in the eigenvalues and eigen-
occupied by the harmonic oscillator eigenstatggx), n=0.....19. The  fnctions in the DVR method is still exponentially small.
wave function plotted isp,4(X), which corresponds to the annular strip he di in th itud f th ¢ h
bounded by heavy lines. On the right, the same area is divided into ZJ € discrepancy In the magni u_ es o ese_ Wwo e_zrrors _as
vertical strips of equal area, occupied by the DVR states. The dots on thbeen noted by several authors in the past, including®Wei
x-axis are the zeroes @f,(x), and the wave function plotted is the DVR and Bayeet al* In this section we shall explain this para-
state corresponding to roat=13. The vertical phase space strip occupied doxical behavior.

by this state is marked with heavy lines. . . . . .

y this state 1s W vy lines The diagonal approximatiofb.1) applies when working

in the DVR basig|F )} (in this section we follow the nota-

This idea is illustrated in Fig. 5, which exhibits the phasetion of Sec. ll). One can also work in the basisé,)}, in
space area occupied by the first 20 harmonic oscillator eiger2ractice often a spectral basis, in which case the approxima-

states in two different ways. On the left are plotted the firstion (5.1) is equivalent to a Gaussian quadrature approxima-
20 annular strips, each of arear. The Bohr—Sommerfeld tion for the_ matrix elements of the potential energy. The
quantizing orbits(not shown lie half way between the COmMputed eigenvalues are the satheis they have the same
circles in the figure, the latter of which have actiohs erron since the two bases are unitarily equivalent, so for the
= (1/2m)$p dx=n#k, n=1,...,20. The wave function plotted PU"POSes of studying the final error, either basis may be used.
is ¢h15(x), which occupies the annular strip bounded by theVe have preferred to use the DVR basis because the argu-
heavy lines. On the right, the same area is divided into odnents can be extended to the nonorthogonal case studied in
vertical strips of equal areas®i. Plotted on thex-axis are Sec. VI. ) i )

the grid points foN= 20, which are the roots ab,(x). The We begin by making some comments on the analysis of

wave function plotted is the DVR stae,(x) (roots are Wei° of the accuracy of the DVR approximation. This is the
labeled froma=0 at the lefi, which is proportional to most careful treatment of this question that we are aware of

boo(X)/ (x—xX19). It clearly vanishes at all grid points except in the existing literature. Wei notes that the error in the di-

one. The phase space area occupied by this state is the végonal approximation for the matrix elements of the poten-
tical strip bounded by the heavy lines. tial energy in the DVR basis is actually rather large, but he

In this way we obtain a geometrical interpretation of themakes the observation that if one transforms the DVR matrix

unitary transformation which takes us from the orthogonalf© the spectral basig )} (again in the notation of Sec. )Ii
polynomial basis| ¢,(x)} to the DVR basis{F ,(x)}. That the(quadratur}egrror is cpngentrated at the Iowgr right cor-
is, it consists of dividing the phase space area occupied b)e" of the matrix, that is, it only affects matrix elements

the firstN states into Planck cells in two different ways. ~ connecting stategp,) with n near the cutoff valuél. These
are the states that in phase space live near the edges of the

region covered by the projection operator. The analysis is
particularly simple in the case of polynomial potentials, in
which casegfor orthogonal polynomial basgthe matrix for

We have shown that the error in the expansion @fra- V is band-diagonal and one can make statements about the
sumably unknown eigenfunction in a spectral basis trun-order of perturbation theory at which various corrections oc-
cated at size\ goes as™ N, whenN is large enough and cur. Wei does not make assertions about the behavior of the
under appropriate conditions of analyticity and boundaryerror as a function olN, but he does give explicit error
conditions. Normally this implies the exponential conver-estimates for common cases of DVR functions and it is pos-
gence of the eigenvalues of the truncated matrix of thesible to extract from these the exponential convergence
Hamiltonian in the spectral basis to the exact eigenvalues. Mvhich we shall argue for below. We believe it should also be
the exact energy spectrum is nondegenerate, this also implig®ssible to use perturbation theory to derive the law of ex-
the exponential convergence of the eigenfunctions of th@onential convergence, at least in the case of polynomial
truncated problem to the exact eigenfunctions, although ipotentials.
there are near degeneracies the basis must be large enough to Consider now the matrix eleme( ,|V|F ), in which
resolve theséthe exponentially small error must be smaller F 5(x) certainly belongs td. If it were true thatv(x)F g(x)
than the small energy splittingsThus we may say, exponen- also belonged taS, then Eq.(5.1) would be exact. But in
tial convergence of the orthonormal expansion implies expofact, V(x)F 5(x) contains components outside &ftypically
nential convergence of the VBR method, to use the terminolef order 1N. We argue this first on semiclassical grounds.

V. THE ACCURACY OF THE DVR APPROXIMATION
FOR THE POTENTIAL ENERGY
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p introduces only exponentially small errors for eigenvalues
whose eigenfunctions lie well within the region of phase
RN space covered by. These are the eigenfunctions we are
+p0 interested in; they satisfyP|y)=|¢) plus exponentially
small corrections, oc,=(F ,|¢)=(1/JK_ ) ¥(x,) to expo-
nential accuracy.
We are not allowed to s&F ,|V|F ) =V(x,)d,z, since
T this would introduce errors of orderN/ Consider, however,
the sum 2 (F,|V|Fg)cs=(F,|V|¢). If ¢(x) lies well
within the region covered bys, then so does/(x) ¢(x),
assumingV(x) is analytic and slowly varying. This is be-
—po cause multiplying by/(x) only changes the amplitude of the
R WKB wave function forg(x), not its phasé’ therefore the
_ _ - _ stationary phase points in the expansionVgk) #/(x) in an
FIG. 6. When a DVR functiorf s(x) is multiplied by a slowly varying analytic spectral basis are the same as those for the expan-
function such asv(x), the resulting function is pushed a small amount ~ ;
beyond the bounds of the region of phase space occupied by the DvIRION Of #(X) itself. Thus we have/|¢) =PV|¢) plus expo-
function (at the tops and bottoms of the vertical strip, as indicated schematinentially small corrections. The exponentially small error in
cally by the dotted lings the expansion 0¥/ will not be as good as the exponentially
small error in the expansion af itself, so if we are achiev-
ing convergence by increasing the size of the region covered
The general idea is illustrated in Fig. 6, which is a sche-by P, then some extra margin will be required to achieve the
matic illustration of the region of phase spa@e vertical ~Same accuracy in the expansion 6§ as we have in the
strip) occupied by a DVR functiorF 4(x) centered orx,.  €xpansion off, but, assuming an analytic and slowly varying
When this function is mu|t|p||ed by a S|ow|y Varying func- potentlal, both errors will be exponentlally small. Thus, we
tion such as/(x), the momentum content is modified some- ¢an expand/(x) #(x) in the same way we expandedx) in
what, producing a slight “smearing” of the phase space reEd. (3.9),
gion occupied by the function. This is indicated
schematically by the dotted lines in the figure. In particular, 1
the product function in general contains some phase space V(X)#(x)= >, \/_—V(Xa)l//(xa)Fa(X)
components which go outside the region occupied by the @ VKq

Zg

DVR functions(the region associated with the projectiej.

Any slight smearing will do this, since the DVR functions =2 V(X )F (X)Cq. (5.3

Fs(x) extend all the way to the edge of this region. “
More quantitatively, the wave number associated with

the top of the momentum strip is of the order oé livhere

a (or Ax) is the spacing between DVR grid points. The DVR

function has oscillations on this scale, or, equivalently, it has

momentum components which go all the way to the top of _

the strip. If we letL be the scale length of the potential, then % [(FalTIF )+ V(Xa) daplcs=ECq- 64

the product functionV(x)F g(x) contains wave numbers

which go like 1a+1/L=(1/a)[1+0O(a/L)]. If N>1 DVR Therefore the eigenvalues of the DVR method are expo-
functions are used to cover the range of the potential, thefentially close to the exact eigenvalues, for eigenfunctions
a<L anda/L=0(1/N). Thus we expect the relative amount which lie well within the region covered bp. For eigen-
by which V(X)F 4(x) extends outside the subspaSdo be  functions which are near the edge of this redjitiese would
O(1/N), which implies an error of order W/in Eq.(5.1). We  not be well converged even in the formulati¢s.2)] the
have examined some cases of potentiégg) for which the  approximation(5.3) is not particularly good, and their eigen-
DVR matrix elements can be computed analytically, andygjues will be substantially changed.
confirmed the M behavior of the error of the diagonal ap-  This is the best argument we know of for understanding
proximation. the exponential convergence which is observed in numerical
To understand the exponentially small error in the DVRexperiments with DVR functions. We remark that the argu-
method, we begin with the eigenvalue problem restricted tqnent given here for exponential convergence in the DVR

plus exponentially small corrections. When this is used in
Eq. (5.2, we get the usual DVR eigenvalue problem,

the subspacé, expressed in the DVR basf& ,(x)}, method does not apply to the potential-optimized DVR
method®?>*3We do not know whether the latter method gives
2/3: ((FalTIFg) +(FalVIFg)cs=Ec,, (5.2 exponential convergence.

It is interesting that the argument above can be general-
where the matrix elements dfandV are computed exactly, ized to operators other thavi. For example, likeV, the
{c,} is the eigenvector, and/(x)==,c,F.(x) is the ap- momentum operatgp applied to(x) changes only the am-
proximate eigenfunction. The only approximation here is theplitude of the WKB wave function, not the phase. The same
truncation of the basis; as argued above, this approximatiois true for any operator which is a slowly varying function of
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x and p. Thus, the kinetic energy can be treated like theinvertibility of the matrix A ,(xz). Both sets{A ,(x)} and
potential energy, so that, for eigenfunctions well within the{L ,(x)}, lie in the subspace, and span it, so tha®|A,)

region covered byP, we can write =|A,) andP|L,)=]|L,).
Then it turns out that the interpolating functions are dual
S (F ITIF g)cp=(Fu|T|0)= 1 (x| T| %) to the projecteds-functions, that is,
a a K a

g VK. (AalLg) = (Lol )= 8, 6

1 isi i :

:2 \/K—<Xa|T|FB>CB' 5.5 This is easily proved as follows:
p @ <Aa||—,8>:<xa|P|Lﬁ>:<xa|L/3>:Lﬁ(Xa):5a[3- (62)

plus exponentially srr12all corrections. For example, in onerpe interpolating functions can be used in the usual way to
dimension with T=p“/2, the final matrix element is expand arbitrary functiong e S,

(Xal TIF gy =(—1/2)F4(x,). Note that with this approxima-
tion, the matrix for the kinetic energy becomes non-
Hermitian, in general. This manner of treating the kinetic

tor has b iously di d by B
:tnglr%y operafor has been previously discussed by Bayg particular, considet)=P|y), wherey is fixed. Then

certainly |¢) belongs toS, so the wave function(x)
=(x|PJy) can be expanded according to E®.3). This
gives

P(X)= 2, LX) Ph(X,). (6.3

VI. NONORTHONORMAL DVR BASES

In this section we consider a generalization of the DVR
construction, obtained by relaxing the requirements for or-  (x|P|y)= >, L, (X)(X.|P]y)=>, (X|L )(Aly). (6.4)
thogonality. Generalizations of this type have previously “ “
been considered by Lighet al*® and Szalay’ These differ  Since this is true for al andy, we can strip of{x| and|y),
from one another partly in the choice of the DVR-like ap- to obtain
proximation for the matrix elements of the potential energy.
We make the following three contributions to this subject. P:PT:E |La><Aa|:2 1AL, 6.5
First, we point out that there are two distinct bases of func- a a
tions that arise in the nonorthogonal generalization of th
DVR construction, one the projecte#ifunctions{A ,(x)},
and the other the interpolating basls,(x)}, and that these
are dual to one othgthey form a biorthogonal bagisThis
fact is independent of any DVR-like approximation for the % (Lalbu XAl =(LalPlAg)=(LalAg)=00p, (6.6
potential energythat is, any strategy for obviating the use of )
quadratures for the matrix elements of the potential energy Where we have used Eq6.1) and (6.9. Finally, we note
Second, we have pointed out that in the interpolating functhat the coefficients needed to expdngx) as a linear com-
tion basis, one can contract the basis in the usual DVR marfination of theA,(x) are precisely the components of the
ner, that is, by throwing away grid points where the wave@Verlap matrixL .5,
function is known to be small. Third, we have shown that
one of Szalay's formulations of the generalized DVR  La(X)=2 Ag(X)Lg,, (6.7)
method, that is, one of his DVR-like approximations for the p
potential energy, leads to exponential convergence. We hawes follows immediately fromL ,(x) =4, and Eq.(6.6).
not, however, proposed any new approximation for the poThus, given thgA ,(x)}, we can computd .,z and therL .
tential energy. by matrix inversion, and finally théL ,(x)}.

We begin with a modification of the presentation in Sec.  This nonorthogonal DVR formalism presents us with
[ll. Suppose we have a projection operaf®racting on’H  three obvious choices of basis: the project@®flnctions
=L2(M) for some manifoloV, and supposéx,} is a set of {A,(x)}, the interpolating functionéL ,(x)}, and some or-
N grid points, whereN=dimS andS=PH. Suppose, how- thonormalized version of thes¢F ,(x)}. Of these, Light
ever, that the DVR conditions are not satisfied, so that ifet al*® have considered the third, while Szalapas pre-
|A)=Plx,), then A ;=(A,|Ag=(x,|Az=Asx,)  sented a more general formalism that incorporates all three.
=A,(xp)* is not diagonal. The matrid .4 is the overlap  Unlike the standard DVR case, these three classes of func-
matrix of the set of projected-functions{A ,(x)}, and we tions are not proportional. The question is to what extent the
may consider using this set as a nonorthogonal basis. Wesual advantages of DVR bases are maintained with the vari-
shall assume that this matrix is nonsingular, which meansus choices. These advantages are the convenient approxi-
that the projected@-functions are linearly independent. mation for the potential energyhich should not destroy the

We can still introduce a set of interpolating functions exponential accuracy in the eigenvalues and eigenfungtions
{L,(X)}, but these are not proportional to th# ,(x)}, asin  and the ability to contract the basis by throwing away points
the DVR case. The interpolating functions are defined as therherey is known to be small. In the following we show that
unique linear combinations of thdA,(x)} such that a convenient approximation for the potential enefgyth
L.(Xg)=d.5- These functions are unique because of theexponential convergence to the final answéssmaintained

q\/loreover, the overlap matriced ,;=(A_|Az) and L
p ap al2 B ap
=(L,|L) are inverses of each other, since
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with both the projected-function and the interpolating func- A class of problems we have had in mind is one in which
tion bases, and that the basis set contraction can be appliedtimle wave function occupies perhaps only a small portion of
the interpolating function basis. The potential energy apthe manifold in question. For example, scattering wave func-
proximation that leads to exponential convergence is one dions on the hypersphere may be highly localized, depending
the formulations of the nonorthogonal generalization of theon the hyper-radius and the number of fragments in the final
DVR method previously considered by Szalay. state. If hyperspherical harmonics are used as a Bh3is,
Consider first the interpolating functions as a basis forthen very large bases may be required for the short wave-
the eigenvalue problem. Let be an eigenfunction that is lengths necessary to represent the localized wave functions.
contained well within the phase space region covere®py In such cases the basis set contraction offered(usgal,
so that an expansion of the for{®.3) is valid to exponential orthonormal DVR functions would be a great advantage, if
accuracy. Write this ag(x) == ,c,L,(x), where the coeffi- multidimensional, orthonormal DVR functions were avail-
cients are given by,= ¢(x,)=(A,|¢). Then these coeffi- able on such spaces. We remark that non-DVR methods such

cients are the eigenvectors of as the hyperquantization algoritAfralready offer such ad-
vantages, although the general framework is based on angu-
E (<La|T|LB>+<La|V|Lﬁ>_ELaB)CHZO- (6.9 lar momentum algebra and is rather different from that pre-
B sented here.

) ) ] ) The nonorthonormal bas{g\ ,(x)} does not allow basis
Note that since,, is the value ofy at the grid poini,, We et contraction in any obvious way, so it would seem that one
can cont.ract the basis in this formulat|on_S|m_pIy by throwmgwould have to work with very large matricéwhose size is
away grid points where the wave function is known 0 begpq,gh to cover the whole space, even though the desired
small. , o wave functions are localizedThus the exponential conver-
i We can also make a D,\/R'I'ke approxmaﬂon to the ma'gence and convenience of the potential energy matrix would
trix elements of the potential energy in H.8). Following i o1 much. In the interpolation bagis,(x)}, however,
the steps in Sec. V and assuming k) lies well within basis set contraction is easy and would lead to much smaller
the region covered b, we first note thaEB<L“|V|LB>Cﬁ matrices(of a size determined by the region of space occu-
.:<L“.|V|¢>’ tq exponential accuracy. Next, we note thatpied by the wave function, not by whole spad@n the other
itV is anal_yt|c a_nd slowly varying, theV(x)i(x) has hand, the functiongL,(x)} and the overlap matrixt 4
an - expansion like y(x) in Eq. .(6'3)’ V(x)#(x) themselves seem to be more difficult to determine, as they
~ 2 pV(xp) ¥(Xg)Lp(x) plus exponentially small correc- require an inversion of a large matiigetermined by the size
tions, so thallL ,|V|#)=2 gL 5V(Xg)cs. Thus, the eigen- 7 spack One way out is to use a set of grid points
value problem(6.8) becomes which are the orbits of a group action on the space; for ex-
ample, in the case of the ordinary 2-sphere, if po[ntg are
> ((LalTILg)+ L ogV(x5) —EL,p)c=0. (6.9  generated by the action of the 60-element icosahedral group,
A then the size of the matrices to be inverted to fingx) or

This is the analog of the diagonal approximation to thelas 1S reduced by a factor of 60. We shall elaborate upon
matrix elements of the potential energy in the standard DVRN€se and similar considerations in future publications.
case. Note that the matrix is non-Hermitian. The eigenvalues Another issue with nonorthonormal bases is that often
that are well converged are real and have orthogonal eigerffi€ar linear dependencies develop as the size of the basis set
vectors, to exponential accuracy. The eigenvalues that are ntst increased, that is, the overlap matrix acquires very small
well converged are not real, in general, nor are their eigenfigénvalues. These can easily outstrip machine precision.
vectors even approximately orthogonal. It is these latter eiTNis happens with distributed Gaussighand also with
genvalues and eigenvectors, which we do not care about, thg¥erdense coherent state bases or Gabor expansions, which

are responsible for the non-Hermiticity of the matrix in Eq. have been used in quantum calc_:u_latié%such near linear
(6.9). dependencies can limit the precision with which the eigen-

The eigenvalue problem can also be formulated in the/alues are determined, and also introduce extra parameters to
basis{A ,(x)}, and again one can make DVR-like approxi- Pe adjusted in the_process c_>f obtaining convergence. We have
mations on the matrix elements of the potential energy. Théound, however, in numerical experiments with projected

easiest way to derive this is to conjugate E6.9) by the d&function bases, that the overlap matrices can be quite
matrix A . This leads to stable. For example, with up to hundreds of grid points on

the sphere and witR containing all spherical harmonics out
E (ALTIA )+ V(X,)A L5~ EA L 5)ds=0 6.10 to some maximum_ value, the condition of the mat_ri&aﬁ
3 @ B a/Zap ap/ BB ' (defined as the ratio of the largest to the smallest eigenyalue
can be kept less than 10. This requires that the grid points be
where the wave function is given by(x) ==X zdzA 5(X). as equally spaced as possible; we interpret this to mean that
The expansion coefficients are related to the values of theach projected-function is allotted one Planck cell of phase
wave function bydg=(Lgl¢)=2,Lg,c,, which shows space. We followed some variations on the schemes of Sobo-
(since ¢, = y(x,)) that the coefficientd, depends on the levand Vaskevit® in the construction “equally spaced” grid
value of the wave function at all the grid points, in general.points on the sphere.
Thus, there is no easy way of contracting the b&4is(x)}. We now comment on previous work on nonorthogonal
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Il In Light et al,*® the authors consider an orthonormalized
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