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A general framework for functional regression
modelling
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Abstract: Researchers are increasingly interested in regression models for functional data. This
article discusses a comprehensive framework for additive (mixed) models for functional responses
and/or functional covariates based on the guiding principle of reframing functional regression in
terms of corresponding models for scalar data, allowing the adaptation of a large body of existing
methods for these novel tasks. The framework encompasses many existing as well as new models.
It includes regression for ‘generalized’ functional data, mean regression, quantile regression as well
as generalized additive models for location, shape and scale (GAMLSS) for functional data. It
admits many flexible linear, smooth or interaction terms of scalar and functional covariates as
well as (functional) random effects and allows flexible choices of bases—particularly splines and
functional principal components—and corresponding penalties for each term. It covers functional
data observed on common (dense) or curve-specific (sparse) grids. Penalized-likelihood-based and
gradient-boosting-based inference for these models are implemented in R packages refund and FDboost,
respectively. We also discuss identifiability and computational complexity for the functional regression
models covered. A running example on a longitudinal multiple sclerosis imaging study serves to illustrate
the flexibility and utility of the proposed model class. Reproducible code for this case study is made
available online.

Key words: functional additive mixed model, functional data, functional principal components,
GAMLSS, gradient boosting, penalized splines

1 Introduction

1.1 Background and aims

Recent technological advances generate an increasing amount of functional data
where each observation represents a curve or an image instead of a scalar
or multivariate vector (Ramsay and Silverman, 2005; Horváth and Kokoszka,
2012). Functional data occur in medicine and biology, economics, chemistry and
engineering as well as phonetics but are certainly not limited to these areas.
Examples of technologies that generate functional data include imaging techniques,
accelerometers, spectroscopy and spectrometry as well as any kind of measurement
collected over time, data usually referred to as longitudinal. The term ‘functional’ data
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traditionally refers to data measured over an interval in the real numbers, although it
is broader in meaning, for example also referring to functions on higher dimensional
domains such as images over domains T in R2 or R3 or functions over manifolds.
In this article, we will focus on functional data over a real interval T, where curves
could be observed on a dense grid common to all functions, with missings, or even on
sparse irregular grids that are curve-specific. Sparse functional data commonly occur
for longitudinal data that are viewed as functional data.

As functional data become more common, researchers are increasingly interested
in relating functional variables to other variables of interest, that is in regression
models for functional data. In addition, it becomes apparent that many complications
well known from scalar data can and do also occur for functional data. Study designs
or sampling strategies induce dependence structures between functions, for example,
due to crossed designs, longitudinal or spatial settings. While more traditional
functional data can be seen as realizations from stochastic processes that are often
assumed to be Gaussian with some kind of smoothness assumption over the interval
T, there is a rising number of datasets where the observations consist of counts or
binary quantities or follow skewed, bounded or otherwise non-normal distributions.
It is thus also of interest to develop methods for ‘generalized’ functional data from
non-Gaussian processes and/or to model other quantities of the conditional response
distribution than (just) the mean.

In this article, we will focus on quite general, flexible models for regression with
functional responses and/or covariates, with the aim of providing a similar amount of
flexibility and modularity for functional data as the models that are presently available
for scalar data—such as generalized additive mixed models (GAMMs), GAMLSS
or (semi-parametric) quantile regression—and, in fact, strongly relying on recent
advances in these areas. With this goal in mind, we will not provide a comprehensive
review of available methods for functional regression (cf. Morris, 2015; Reiss et al.,
2016; Wang et al., 2016), many of which are focused on one particular functional
model at a time. We hope, instead, to provide a readable introduction to flexible
functional regression within one overall consistent framework, also covering the
implementation in R packages refund (Huang et al., 2016) and FDboost (Brockhaus
and Rügamer, 2016). While the general framework we introduce, the notation we
use and the estimation approaches we describe are largely based on the work of our
own group and of our collaborators over the last few years, many of the particular
functional regression models discussed in the literature (Morris, 2015; Reiss et al.,
2016; Wang et al., 2016) can be seen as special cases of this framework. We point out
connections and different approaches to estimation along the way, while keeping the
focus on a unified set-up. We believe that having such a unified framework facilitates
discussion, implementation and practical use of flexible functional regression models.
Connecting their estimation to corresponding approaches for scalar data as we do
here additionally ensures that recent and future advances in inference for such scalar
regression models can be immediately used to expand the model class or improve
inference for all functional models covered by this general framework. We are
necessarily taking a somewhat subjective view coloured by the type of functional
data and algorithms that we have worked on. Note that other approaches might
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be better suited to different kinds of functional data including spiky (e.g., Morris
et al., 2006) or truly big functional data (e.g., Zipunnikov et al., 2011; Reimherr and
Nicolae, 2016).

1.2 Running example

As a running example, we will use a study on multiple sclerosis (MS) (Greven
et al., 2010), which has been widely used as an example in the functional data
literature. The dataset is available in the R package refund (Huang et al., 2016)
and we can thus make our analysis fully reproducible in the code supplement
provided for this article. This study followed 100 MS patients and 42 healthy controls
longitudinally over time. At each of their up to eight visits (median number of
visits: 2), subjects underwent a Diffusion Tensor Imaging (DTI) scan of their brain.
MS patients additionally completed a Paced Auditory Serial Addition Test (PASAT)
measuring abilities relating to information processing and attention, resulting in a
scalar score. Fractional anisotropy (FA), which is related to directedness of water
diffusion, was then extracted from the DTI scans along two major tracts in the
brain—the corpus callosum (CCA) and the right corticospinal tract (RCST). FA is
used as a proxy of demyelination, which acts as a marker of disease progression in
MS since MS damages the myelin coating of the axons in the brain and thus impacts
information transmission. FA values were averaged over slices of each tract, resulting
in a scalar summary along one dimension of the tract. The procedure thus results in
two functional variables for the two tracts, defined as functions of spatial distance
along the tract. Figure 1 shows observed FA values for the two tracts we consider:
The left panel shows CCA tracts, while the right panel shows centred and smoothed
FA values along the RCST tracts. The coloured lines code for specific subjects
(see the caption).

Figure 1 DTI data: Left panel shows observed FA values along the CCA tracts, right panel shows the centred
and smoothed FA values along the RCST tracts. Blue and cyan lines show FA curves for selected MS patients
with PASAT scores of 30 and 60, respectively. Red lines show curves for a control subject.
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1.3 Functional regression models

The DTI data nicely illustrate that, depending on the question of interest, regression
for functional data can occur in at least three flavours.

• If interest lies in quantifying the difference in FA–CCA profiles between cases and
controls at the first visit, then we would use function-on-scalar regression (Reiss
et al., 2010) for a functional response with a scalar covariate. A simple linear
model would be

Yi(t) = ˇvi
(t) + Ei(t) + εit, (1.1)

where Yi(t) is the FA–CCA profile for subject i at the first visit at distance
t along the tract, ˇvi

(t) represents a group-specific functional intercept with
vi = 1[0] denoting subjects i belonging to the MS patients [controls], Ei(t) a
smooth residual and εit additional white noise error.

• If we are interested in whether the FA along the CCA is predictive of the PASAT
score measured at the first visit, then we have a scalar response and a functional
covariate, that is, scalar-on-function regression also known as signal regression
(Marx and Eilers, 1999) or functional linear model (Cardot et al., 1999) if the
effect is linear. In this case, a simple linear model for the first visits of the MS
patients is

Yi = ˛ +
∫
S

xi(s)ˇ(s)ds + εi, (1.2)

with Yi now the PASAT score for subject i and xi(s) denoting the FA–CCA profile
observed at tract location s in S, ˇ an unknown weight or coefficient function
and εi independent and identically distributed (i.i.d.) errors.

• If the focus lies on the relationship between the FA profiles along the two tracts,
then we could think of a regression model with a functional response and a
functional covariate (e.g., Ramsay and Silverman, 2005, Chapter 12), that is,
function-on-function regression. A linear regression model in this case could be

Yi(t) = ˛(t) +
∫
S

xi(s)ˇ(s, t)ds + Ei(t) + εit, (1.3)

with Yi(t) and xi(s) now referring to the CCA– and FA–RCST profiles observed
at t in interval T and s in S respectively, ˇ(s, t) a bivariate coefficient quantifying
the association between x at spatial location s with Y at spatial location t, and
Ei(t) and εit as in model (1.1).

Several extensions could also be considered. Models (1.1)–(1.3) all assume linear
relationships between responses and covariates, which we might want to relax
to more general smooth association structures. Also, the DTI data were collected
longitudinally, and if we want to consider all observations simultaneously instead
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of only the first visit, then we need to take into account the resulting correlation
structure. Random effects are commonly used for scalar longitudinal observations
and could be included in model (1.2), but for functional responses, we need functional
analogs of random effects. We might want to modify model (1.3), for example, to

Yaw(t) = ˛(t) +
∫
S

xaw(s)ˇ(s, t)ds + Ba(t) + εawt, (1.4)

where the double index now refers to the wth observation on the ath subject,
Ba(t) represents a subject-specific functional random intercept and the corresponding
normality assumption of scalar random effects is replaced by a Gaussian process (GP)
assumption. The smooth residuals Ei in models (1.1) and (1.3) are similarly modelled
as curve-specific functional random effects. Finally, if the assumption of Gaussian
responses does not fit the data well, we might want to change our models to, for
example, quantile or generalized regression models.

1.4 Approaches

There is a large body of literature dealing with models like models (1.1)–(1.4) and
further variants, and we refer to the recent comprehensive reviews by Morris (2015)
and Reiss et al. (2016) for a full discussion. We can identify at least five general
approaches to representing and modelling functional data and functional responses
in particular, not mentioning extensive further work on estimation approaches specific
to particular models. (For a recent overview on functional principal component
(FPC)-based approaches, e.g, see Wang et al., 2016.)

The first general approach pre-smoothes each vector of observations along a
function and then treats the resulting continuous curves as if they had been truly
observed as objects in some function space (e.g., Ramsay and Silverman, 2005).
This seems to be the historically first approach (Ramsay and Dalzell, 1991) and
makes mathematical considerations somewhat easier. The downside in our view is
that for the noisy observations common in many applications, the measurement error
is not taken into account after the pre-smoothing step in the subsequent model. This
approach also does not work (well) for sparse functional data and is not directly
applicable to non-continuous data such as counts. Software implementations of this
approach are available for R (package fda, Ramsay et al., 2014) and MATLAB
(Ramsay et al., 2009).

Non-parametric methods for functional data have been proposed as non-
parametric variants of this approach. Proposals for regression—mostly with just one
functional covariate—and classification models for functional data in this framework
are usually based on kernel methods and are distribution-free, so they are able
to model highly non-linear, non-additive association structures and offer analysts
great flexibility in specifying problem-specific semi-metrics for the kernels. However,
extensions of these methods to multiple regression with several scalar and functional
covariates or to ‘generalized’ functional data seem non-trivial. An overview for this
theory and application examples are given in Ferraty and Vieu (2006); extensions
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and a description of their implementation in the fda.usc R package are provided in
Febrero-Bande and Oviedo de la Fuente (2012).

A third approach uses transformations of the response curves, usually projections
into a coefficient space for a given set of basis functions, and subsequent multivariate
modelling in this transformed space (e.g., Morris and Carroll, 2006; Morris
et al., 2011). Such basis representations can be loss-less (e.g., wavelets) or lossy
(e.g., truncated FPCs, explaining most of the variance in the data). This approach
has computational advantages, as transformations can often be conducted with effort
linear in the number of observation points and lossy transformations can be used
for very high-dimensional data. Bases can also be tailored to the data at hand, for
example, wavelets for spiky data or bases suitable for images. Disadvantages include
that missings and curve-specific grids are difficult or impossible to handle in most of
these approaches and that extensions to more general settings than mean regression
for continuous data—for example, binary process data or quantile regression—are
less than obvious. Fully Bayesian functional response regression methods based on a
wavelet transformation are implemented in the WFMM software (Herrick, 2015).

A fourth approach is based on GP regression models (e.g., Shi et al., 2007; Shi and
Choi, 2011) and directly models the observed functional data as realizations from
such a GP with a covariance kernel from a known parametric family that typically
incorporates covariate effects and linear effects of covariates on its mean function.
Wang and Shi (2014) describe a generalization to non-Gaussian and dependent data
where the underlying expectation is modelled using a latent GP. This approach is
quite challenging computationally, as the optimization of the covariance parameters
is a highly non-linear problem. A subset of this approach is implemented in the R
package GPFDA (Shi and Cheng, 2014).

In the following, we will focus on a fifth approach, which directly models the
observed data and expands all model terms in suitable basis expansions. To our
knowledge, this approach was first described for the scalar-on-function case in
Marx and Eilers (1999, 2005), with some early work given in Hastie and Mallows
(1993). For functional responses, this approach is related to the literature on
varying coefficient models (e.g., Hastie and Tibshirani, 1993; Reiss et al., 2010).
Advantages in our opinion include facilitating accounting for all error sources
in subsequent inference, allowing for the modelling of functional data observed
on sparse or irregular curve-specific grids and going beyond mean regression for
continuous functional data. In particular, this allows us to tackle quantile regression
for functional data, generalized additive models for location, scale and shape
(GAMLSS) as well as models for ‘generalized’ functional data such as data from
binary or count processes. A further advantage not to be underestimated is that
this approach reduces models for functional responses to models for scalar data,
that is, models for the observed point values of each functional response. We thus
avoid ‘reinventing the wheel’ and can take advantage of methods and algorithms
for flexible regression models for scalar data that have been developed over the
last decades. These include generalized additive (mixed) models (GA(M)Ms) (e.g.,
Eilers and Marx, 2002; Wood, 2006a; Schmid and Hothorn, 2008; Hothorn et al.,
2016; Wood, 2016b), quantile regression (e.g., Koenker, 2005; Fenske et al., 2011)
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or GAMLSS (e.g., Rigby and Stasinopoulos, 2005; Mayr et al., 2012). This also
holds—at least to some extent—for inference in such models (e.g., Greven et al.,
2008; Scheipl et al., 2008; Wood, 2013) and its transfer to functional regression
(e.g., Staicu et al., 2014; Swihart et al., 2014; McLean et al., 2015).

Within the basis expansion approach, different basis functions such as FPCs,
splines, wavelets or Fourier bases are conceivable and can be used. Different bases are
well suited to different kinds of data: splines for smooth curves, wavelets for spiky
functions and Fourier bases for periodic data. FPC bases are estimated from the data
and work well if a large amount of variability is explained by relatively few modes
of variation. These bases are commonly used with corresponding regularization
penalties, such as smoothness penalties for splines or sparsity penalties for wavelet
coefficients. In this work, we will particularly focus on spline bases with a smoothness
penalty, assuming smoothness of the underlying functions over T, and FPC bases,
where the number of basis functions included in the model can be thought of as a
discrete regularization parameter.

We introduce the proposed model class for flexible functional regression in
Section 2 and discuss the specification of model terms in Section 3 and the estimation
in Section 4. Section 5 covers identifiability in functional regression models and
computational issues and we close with a discussion in Section 6. Code reproducing
all analyses in this article using R packages refund and FDboost is available in an
online supplement.

2 A general model formulation for functional data regression

2.1 A general functional regression model
We assume that we observe realizations from the following general regression model
with functional responses and/or covariates (Brockhaus et al., 2015a,b, 2016b;
Scheipl et al., 2015, 2016),

�(Y|X = x) = h(x) =
∑J

j=1
hj(x). (2.1)

Here, the response Y ∈ Y could be either scalar or (generalized) functional, with
the space Y suitably chosen accordingly. To declutter notation, Y stands for the
whole function Y(t), t ∈ T and scalar responses are taken to correspond to the special
case where T consists of a single value. Covariates X ∈ X can include scalar and/or
functional covariates and the space X is thus a suitable product space, with scalar
covariates taking values in R and functional covariates over S assumed to be square
integrable, that is, to lie in L2[S].

The transformation function � for the conditional distribution of the response
Y given the additive predictor indicates the feature of the conditional distribution
that is modelled. (If h depends on latent processes, then model (2.1) also conditions
on these processes and thus is a conditional model, analogous to the typical
hierarchical formulation for mixed models.) The transformation � could correspond,

Statistical Modelling 2017; 17(1–2): 1–35



8 Sonja Greven and Fabian Scheipl

for example, to the (point-wise) expectation or median, a certain quantile, a link
function composed with the expectation for, for example, count or binary process
data, or a vector of several parameters such as mean and log-variance for GAMLSS
for functional data.

This feature of the conditional response distribution is modelled in terms of
an additive predictor h(x) = ∑J

j=1hj(x). (For GAMLSS, there are separate additive
predictors for each component in the vector �; see Brockhaus et al. (2015a, 2016a)
for details. Each partial predictor hj(x) can depend on a subset of x, thus also allowing
for interaction terms that are functions of several covariates. Note that each hj(x) is
also a real-valued function over Twith values hj(x)(t). To obtain an identifiable model,
certain constraints on the hj(x) are required which will be discussed in Section 5.1.

2.2 Examples

To give some intuition, consider again the models for the DTI data from the
introduction. In the function-on-scalar model (1.1), � = E is the expectation and we
focus on mean regression E(Y|X = x) = ∑J

j=1hj(x). There are J = 2 partial predictors
with h1(x) = ˇv depending on the scalar group indicator v and h2(x) = Ei a smooth
residual depending on the scalar curve indicator i. All model terms are functions over
T spanning the length of the CCA tract. Results for this model are shown in the top
panels of Figure 2.

If we are concerned about outlying values, then we could consider instead
(point-wise) median regression by defining � to be the median. If we believe that
measurement error might vary with the covariates and/or over the interval, then we
can set � = (E, log ◦ Var)� and model both conditional mean and conditional variance
simultaneously as functions of x and t. Results for this model are shown in the
middle row of panels in Figure 2. Note that this conditional variance function models
heterogeneity of the variance of the white noise error term εit—autocorrelation and
differences in the spread of the smooth underlying functions over T are modelled by
the smooth residuals Ei. As FA values are, in fact, restricted to values in the (0, 1)
interval, a more suitable model than a Gaussian one might actually be a (point-wise)
beta regression model. For this, we can take � to be g ◦ E, with g the logit link function.
Results for this model are shown in the bottom panels of Figure 2. None of the three
models is able to completely remove residual autocorrelation along t (Figure 2, right
column), but the remaining autocorrelations are not very strong.

Extensions of the additive predictor also easily fit into this framework. The
longitudinal function-on-function model (1.4), for instance, includes a functional
random effect depending on the subject a. The function-on-function model (1.3) has
J = 3 model terms depending on no covariates, on a functional covariate and on the
curve indicator, respectively. Again, extensions are possible, for example, by allowing
the effect of the functional covariate to be non-linear and changing the form of h2(x)(t)
from

∫
S x(s)ˇ(s, t)ds to

∫
S f (x(s), s, t)ds with a smooth unknown function f .
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Figure 2 Results for (variants of) model (1.1) for a subset of the DTI data containing each subject’s first visit.
Top to bottom: Gaussian homoskedastic errors εit ∼ N(0, �2), Gaussian location-scale model with
εit ∼ N(0, �2(t )), beta regression model with logit link. Left to right: estimated group means ˆ̌ 0(t ), ˆ̌ 1(t ) with
approximate point-wise 95% confidence intervals (25 cubic B-spline basis functions, first-order difference
penalty), estimated smooth residuals Êi (t ) (FPC basis with 8 FPCs, third row on latent logit scale), residuals
ε̂it = Yi (t ) − Ŷi (t ), (second row with estimated variance function based on 25 cubic B-spline basis functions,
first-order difference penalty), t ∈ T, heatmap of correlation of residuals ε̂it along t . Estimates produced with
refund’s pffr function (see Section 4.1).
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The scalar-on-function model (1.2) corresponds to the special case of a scalar
response with T collapsing to a single point and h(x) taking values in R (see Section
3.5 for an application example and the right panel of Figure 3 for an example of a
non-linear functional effect

∫
S f (x(s), s)ds in this context).

3 Specification of model terms

Model (2.1) introduces a general model class for regression with functional responses
and/or covariates. For estimation of such models, we first discuss appropriate
parameterizations using basis expansions for the model terms hj(x). We begin with
some important special cases of hj(x) before embedding these into a more general
framework, and then discuss the choice of bases.

We assume in the following that we observe realizations from model (2.1) indexed
by i = 1, . . . , n, where each response Yi is measured on possibly curve-specific grid
points ti1, . . . , tiDi

with Y(tid) denoted by Yid, d = 1, . . . , Di. Note that Di ≡ 1 for the
scalar response case.

3.1 Examples
3.1.1 Intercepts and scalar covariates
Consider again the models for the DTI data from the introduction. Recognizing that
several of the model terms hj(x) in the functional response models can be seen as
varying coefficient terms (Hastie and Tibshirani, 1993; Ruppert et al., 2003; Reiss
et al., 2010), we can use well-known methods to approximate these model terms.
For example, the smooth intercept curve in model (1.3) can be approximated as
hj(x)(t) = ˛(t) ≈ ∑KYj

l=1 �Yj,l(t)�j,l, with hj constant in the covariates x, and the group

effect in model (1.1) as hj(x)(t) = ˇv(t) ≈ ∑KYj

l=1 �Yj,l(t)((1 − v)�j,1l + v�j,2l), with hj

only depending on the scalar covariate v in the covariate set x. For both, j = 1
in models (1.3) and (1.1), respectively, but the construction is general. We use a
suitable basis {�Yj,l, l = 1, . . . , KYj}—for example, splines—over T and unknown basis
coefficients �j,l for all subjects in the first case or �j,1l and �j,2l for the control and MS
groups, respectively, in the second case. The index Y indicates that �Yj,l is a basis over
the response domain T, while the index j corresponds to the model terms hj(x) that ˛
and ˇv represent. If age z had been available as a covariate, then we could have entered
it into the model with a point-wise linear effect hj(x)(t) = z�(t) ≈ z

∑KYj

l=1 �Yj,l(t)�j,l.
Alternatively, we could assume a smooth effect surface that is non-linear in z for
each t using a tensor product basis hj(x)(t) = �(z, t) ≈ ∑Kxj

k=1

∑KYj

l=1 �xj,k(z)�Yj,l(t)�j,kl

(De Boor, 1978; Eilers and Marx, 2003). The index x in �xj,k indicates that �xj,k is a
basis depending on the respective covariate(s).

The intercept ˛ in the scalar response model (1.2) can be seen as a special case
of ˛(t), t ∈ T, where we use a constant basis with one basis function, �Yj,1(t) ≡ 1,
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KYj = 1 and �j,1 = ˛. We also take this approach for all covariate effects that are
assumed to be constant in t in a functional response model.

3.1.2 Functional random effects and smooth residuals
Functional random effects Ba as in model (1.4) are assumed to be independent
copies of a Gaussian random process. If Ba(t) is assumed to be smooth in t for
each level a, this GP is assumed to have a smooth covariance function. We can
write Ba(t) ≈ ∑KYj

l=1 �Yj,l(t)�j,al = ∑Kxj

k=1

∑KYj

l=1 I(k = a)�Yj,l(t)�j,kl (Scheipl et al., 2015)
to obtain subject-specific functions using subject-specific coefficients �j,al, where
I is the indicator function selecting the relevant coefficients among all subjects’
coefficients and Kxj is taken to be the number of subjects. More generally, for grouped
data, a can be a grouping factor other than the subject and the Ba can be correlated
over different levels of a. Smooth residuals as in models (1.1) and (1.3) correspond
to the special case of functional random effects where the grouping variable is an
identifier for each curve.

3.1.3 Functional covariates
For a linear functional covariate effect as in model (1.2), we can approximate the
integral using numerical integration on the grid s1, . . . , sR of observation points in
S (Wood, 2011)—here taken to be the same for all curves, although this could be
generalized. The coefficient function can again be approximated (Marx and Eilers,
1999; Wood, 2011; Goldsmith et al., 2012) using a suitable basis, giving

hj(x) =
∫
S

x(s)ˇ(s)ds ≈
R∑

r=1

�(sr)x(sr)ˇ(sr) ≈
R∑

r=1

�(sr)x(sr)
Kxj∑

k=1

�xj,k(sr)�j,k (3.1)

with suitable integration weights �(sr).
For the functional response case, this is extended (Ivanescu et al., 2015) by simply

replacing the basis for ˇ(s), s ∈ S, by a suitable tensor product basis for ˇ(s, t), s ∈
S, t ∈ T,

hj(x)(t) =
∫
S

x(s)ˇ(s, t)ds ≈
R∑

r=1

�(sr)x(sr)
Kxj∑

k=1

KYj∑
l=1

�xj,k(sr)�Yj,l(t)�j,kl.

In our DTI application, intervals S and T represent space and relating the covariate
over the whole interval S to the response over the whole interval T, thus, is of interest.
In cases where functional responses and functional covariates are observed over the
same time interval, it is often more meaningful to relate the response only to values
of the covariate in the past (so-called historical models, Malfait and Ramsay, 2003).
In this case, we can change the integration limits and integration weights accordingly
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(Scheipl et al., 2015; Brockhaus et al., 2016b) and write

hj(x)(t) =
∫ u(t)

�(t)
x(s)ˇ(s, t)ds

≈
R∑

r=1

I(�(t) ≤ sr ≤ u(t))�(sr)x(sr)
Kxj∑

k=1

KYj∑
l=1

�xj,k(sr)�Yj,l(t)�j,kl,

where �(t) and u(t) denote the lower and upper limits of integration. [�(t), u(t)] may
depend on t and could, for example, be [0, t] or [t − ı, t] to allow for all previous
covariate values or only values in a certain time window before the current time
point to be associated with the response at a given t. The latter is directly related
to distributed lags models for exposure-lag-response associations (e.g., Gasparrini
et al., 2010; Obermeier et al., 2015). The limiting case of a concurrent effect
x(t)ˇ(t) (e.g., Ramsay and Silverman, 2005) is achieved using hj(x)(t) = x(t)ˇ(t) ≈
x(t)

∑KYj

l=1 �Yj,l(t)�j,l.
Further extensions for the model terms contained in models (1.1) to (1.4)—such

as non-linear effects of functional covariates or interaction terms—can be expressed
similarly (see McLean et al., 2014; Brockhaus et al., 2015b; Fuchs et al., 2015; Scheipl
et al., 2015; Usset et al., 2016). As is usual with such basis expansion approaches (e.g.,
Ruppert et al., 2003), regularization penalties can help in avoiding overfitting when
large bases are used to provide flexibility in approximating underlying functions. We
discuss such penalties in Sections 3.3 and 3.4.

3.2 General basis representation

In the examples discussed in Section 3.1, all the different model terms hj(x) have in
common that we can express their basis representations in terms of one marginal basis
parameterizing the effects of the covariates and another marginal basis parameterizing
the effect’s shape over T. More generally, we write

hj(x)(t) = (bxj(x)� ⊗ bYj(t)�)�j (3.2)

for the terms hj(x) in model (2.1), with bxj(x) the marginal basis vector for
the covariate effect, bYj(t) the marginal basis vector over T and ⊗ denoting the
Kronecker product. Importantly, the two marginal bases for each term can be chosen
independently from one another and from those for the other terms, allowing for
a flexible choice of bases appropriate for the problem at hand. �j represents the
unknown coefficient vector.

The examples from Section 3.1 fit into this general framework as follows: For
effects hj(x) that vary over T like hj(x)(t) = ˛(t), ˇv(t), z�(t), �(z, t) or Ba(t), the basis
vector bYj(t) parameterizing the effect’s shape over T can contain any suitable basis
�Yj,l, l = 1, . . . , KYj, such as splines over T, evaluated in t. For any model term in a
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scalar response model or effects in a functional response setting that are assumed
to be constant over t, bYj(t) is simply set to 1. The vector of coefficients is generally
�j = (�j,kl)k=1,...,Kxj;l=1,...,KYj

, where we drop the index l or k for simplicity in cases where
KYj = 1 or Kxj = 1, respectively.

The basis vector bxj(x) for the covariates depends on the specific covariate effect.
For the global functional intercept, bxj(x) is simply 1 as the effect is not associated
with any covariate, that is,

hj(x)(t) = ˛(t) =
KYj∑
l=1

�Yj,l(t)�j,l =
1∑

k=1

KYj∑
l=1

1 · �Yj,l(t)�j,l = (bxj(x)� ⊗ bYj(t)�)�j

with bYj(t)� = (�Yj,1(t), . . . , �Yj,KYj
(t)) and �j = (�j,l)l=1,...,KYj

. For the linear functional
effect z�(t) of a scalar covariate z, the marginal basis vector in covariate direction is
simply bxj(x) = z. Similarly, bxj(x)� = (1 − v, v) for ˇv(t), that is,

hj(x)(t) = ˇv(t) =
KYj∑
l=1

(1 − v)�Yj,l(t)�j,1l +
KYj∑
l=1

v�Yj,l(t)�j,2l = (bxj(x)� ⊗ bYj(t)�)�j

with bYj(t)� = (�Yj,1(t), . . . , �Yj,KYj
(t)) and �j = (�j,kl)k=1,2;l=1,...,KYj

. For a smooth
non-linear effect hj(x)(t) = �(z, t), bxj(x) contains spline-basis functions �xj,k, k =
1, . . . , Kxj, evaluated in z. For a functional random effect, hj(x)(t) = Ba(t), with
grouping variable a with Kxj levels, the basis vector bxj(x) is an indicator vector of
length Kxj for the levels of a.

For the linear functional term hj(x)(t) = ∫
S x(s)ˇ(s, t)ds, a spline-based approach

would take bxj(x) = (
∑R

r=1 �(sr)x(sr)�xj,k(sr))k=1,...,Kxj
and bYj(t) = (�Yj,l(t))l=1,...,KYj

,
with spline basis functions �xj,k and �Yj,l. Extensions such as interactions or
non-linear terms can be similarly constructed (see, e.g., Brockhaus et al., 2015b;
Scheipl et al., 2016).

In the construction in equation (3.2), we have implicitly assumed two points
that are necessary for the Kronecker product construction to carry over to the
design matrices. First, the grid over t must be the same for all curves, such that the
basis over t evaluated at the grid points does not depend on the curve i. Second,
the basis for the covariates needs to be the same for all values of t, eliminating
any dependence of bxj(x) on t. This is not fulfilled for functional historical terms∫ u(t)

�(t) x(s)ˇ(s, t)ds or concurrent effects x(t)ˇ(t), for example, where the basis vectors in

covariate direction, bxj(x, t)� =
(∑R

r=1 I(�(t) ≤ sr ≤ u(t))�(sr)x(sr)�xj,k(sr)
)

k=1,...,Kxj

respectively bxj(x, t)� = x(t), depend on t. If either of these two requirements is not
fulfilled, the Kronecker product construction in equation (3.2) is replaced by a row
tensor product basis construction, (bxj(x, t)� 
 bYj(t)�), where A 
 B for two n × pA
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14 Sonja Greven and Fabian Scheipl

and n × pB matrices is defined as (A ⊗ 1�
pB

) · (1�
pA

⊗ B) with element-wise product ·
and 1p denoting a vector of ones of length p. In this construction, the marginal bases
over x and t are first evaluated and then cross-multiplied for each curve and grid
point separately (see Wood, 2006b; Brockhaus et al., 2015b; Scheipl et al., 2015)
for details).

3.3 Regularization penalties

For regularization, we use penalties that are quadratic in the coefficient vector �j

containing all parameters for the jth effect hj(x). The general form for the quadratic
penalty term is a Kronecker sum penalty (Eilers and Marx, 2003; Lang and Brezger,
2004; Wood, 2006a) �jPj�j with

Pj = �xjPxj ⊗ IKYj
+ �YjIKxj

⊗ PYj, (3.3)

where �xj and �Yj are smoothing parameters and Pxj and PYj are suitable marginal
penalty matrices for the basis vectors bxj(x) (or bxj(x, t)) and bYj(t), respectively. For
example, if we use B-splines in bYj(t) for effects such as ˛(t), ˇv(t), z�(t), then we
can set PYj to a difference penalty matrix (P-splines; Eilers and Marx, 1996) and set
the unneeded Pxj to 0; similarly, for

∫
S x(s)ˇ(s)ds, where Pxj could be a difference

penalty matrix if the �xj,k in equation (3.1) are chosen as B-splines, and PYj is 0.
For effects such as �(z, t),

∫
S x(s)ˇ(s, t)ds or

∫ u(t)
�(t) x(s)ˇ(s, t)ds, we typically need a

smoothness penalty in both z/s and t directions and use corresponding Kronecker
sum penalties as in equation (3.3). Likewise, for functional random effects Ba(t), we
use such a penalty with, for example, Pxj = IKxj

to reflect a normal distribution across
independent factor levels (or some other precision matrix to define the dependence
structure between the levels of a), and PYj corresponding to a smoothness penalty
over t for each level of a.

Note the mathematical equivalence between the quadratic penalty (3.3) for �j and
a partially improper Gaussian prior �j|�xj, �Yj ∼ N(0, P−

j ) (Wood, 2006a, Chapter
4.8.1), where A− denotes the (generalized) inverse of A as penalty matrices are
typically only positive semi-definite. Consequently, the construction described here is
equivalent to imposing a reduced-rank non-stationary GP prior on the model terms,
with mean zero and covariance

Cov(hj(x)(t), hj(x′)(t′)) = (bxj(x) ⊗ bYj(t))�P−
j (bxj(x′) ⊗ bYj(t′)). (3.4)

The choice of the marginal bases and penalties controls the prior covariance structure.
From an empirical Bayesian perspective, inference for such terms can be performed
based on established mixed models methods (see Section 4.1).

To achieve variable selection in scalar-on-function regression, Gertheiss et al.
(2013b) use smoothness—sparseness penalties on coefficients for functional linear
effects that are a combination of group LASSO-type penalties and the quadratic
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A general framework for functional regression modelling 15

roughness penalties described above. These might constitute a useful extension to the
quadratic penalties in (3.3) we focus on here.

3.4 Choice of bases

Marginal basis vectors bxj(x) and bYj(t) in equation (3.2) can be chosen freely as
appropriate for the given modelling task. For functional responses, different bases in
bYj(t) for representing the model terms in t direction have different properties and are
chosen accordingly.

Pre-defined bases include splines and wavelets. Spline bases such as B-splines
or truncated powers are commonly used to represent smooth terms, when the
functional responses are smooth up to i.i.d. error. They are often used together
with a quadratic smoothing penalty such as difference-based (P-splines; Eilers and
Marx, 1996) or derivative-based (O’Sullivan penalized splines; O’Sullivan, 1986;
Wand and Ormerod, 2008) penalty terms for B-splines and a penalization of the
truncated polynomial terms for the truncated power series basis (e.g., Ruppert et al.,
2003).

Wavelets are well-suited to spiky functional data or functional data with local
features (for their use with functional data, see, e.g., Morris and Carroll, 2006).
Due to their multiscale representation, and different from equation (3.3), they are
commonly used with thresholding or L1-type penalties for coefficients to encourage
denoising by shrinking small coefficients to zero.

FPC bases, by contrast, are estimated from the data. In model (1.1), for example,
Ei are independent functional random intercepts and thus independent copies of a
stochastic process assumed to have a smooth covariance, CE(s, t) = Cov(Ei(s), Ei(t)).
Using Mercer’s theorem and the Karhunen–Loève expansion (Mercer, 1909; Loève,
1945; Karhunen, 1947), we can write

Ei(t) =
∞∑

l=1

�j,il	
E
l (t),

where the 	E
l
, l ∈ N are orthonormal eigenfunctions of the covariance operator

associated with CE for eigenvalues 
E
1 ≥ 
E

2 ≥ · · · ≥ 0, �j,il are uncorrelated random
variables with mean zero and variance 
E

l
; �j,il are independent N(0, 
E

l
) variables

if Ei is a GP. FPCs, that is, estimated eigenfunctions 	̂E
l
, can be used as a basis

for Ei in bYj(t)� = (	̂E
1 (t), . . . , 	̂E

KYj
(t)) in practice, truncating the infinite sum at a

finite number KYj. FPCs provide interpretable information on the main modes of
variation in the data, as the eigenvalues represent the amount of variation explained
by each component and the eigenfunctions represent the shape of this variation.
Principal components have the advantage of often yielding a small parsimonious
basis due to their optimal approximation property for a given number of basis
functions. This is a big advantage in the case of large n, where using a large number of
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16 Sonja Greven and Fabian Scheipl

penalized spline basis functions for each Ei is computationally expensive. Due to the
link between quadratic penalties and Gaussian distributional assumptions and the
resultant equivalence of our general model term representation (3.2) and (3.3) with
GP priors (cf. equation (3.4)), �j,il ∼ N(0, 
E

l
) independently motivates the choice of

Pxj = 0 and PYj = diag(̂
E
1 , . . . , 
̂E

KYj
)−1 here, with �Yj fixed to 1. This further reduces

computational complexity as there is no need for smoothing parameters estimation.
Despite the need to first estimate the FPC decomposition, this leads to a pronounced
computational advantage of FPC bases over spline bases in this setting (cf. Cederbaum
et al., 2016).

For a simple smooth residual model such as model (1.1), estimation of the
eigenfunctions can be based on first estimating the mean structure under a working
i.i.d. assumption along t and then smoothing the empirical covariance of the
centred process leaving out the diagonal, which is contaminated by the variance
of εit (Staniswalis and Lee, 1998; Yao et al., 2005a). In the models displayed in
Figure 2, for example, we used FPC decompositions of the smoothed empirical
covariance of pilot estimates of Ei, obtained from fitting the model under a working
assumption of i.i.d. errors along t. The FPC basis was then used to model the
observed autocorrelation and heterogeneous variance along t with a compact basis
representation.

Di et al. (2009), Greven et al. (2010), Shou et al. (2015) and Cederbaum
et al. (2016) discuss the estimation of the eigenfunctions and eigenvalues for more
complex functional random effects models. For example, with more data, we could
add curve-specific functional random intercepts Eaw to model (1.4), which would
be nested within subject-specific functional random intercepts Ba. More generally,
such models can contain several (partially) crossed or nested random intercepts or
slopes, for grid or sparse functional data. Zipunnikov et al. (2011, 2014) discuss
the extension to image data. The general idea is to use cross-products Yi(s)Yi′(t) as
estimators of Cov(Yi(s), Yi′(t)) after estimation of the mean structure and centring,
and then to decompose this covariance into the additive contributions from the
random intercepts and slopes, smooth residuals and additional white noise, using
a least squares approach or a corresponding additive bivariate varying coefficient
model. Smoothing of covariances and an eigendecomposition on a grid of values
in T then yields estimates of the eigenfunctions for each random process in the
model. The smoothing step can be adapted to the smoothness of the data and
could in principle also be done using other bases than splines. For at most two
nested functional random intercepts and scalar covariates, alternatives exist—some
of these for generalized functional responses—that directly estimate the FPCs under
orthonormality constraints within one overall model (e.g., James et al., 2000; Van der
Linde, 2009; Peng and Paul, 2012; Goldsmith et al., 2015).

For expansion of all model terms hj(x) over t, we here focus on the two approaches
using spline bases and FPCs. The reason is that both of these can be cast into a
quadratic penalty framework as in equation (3.3), which allows reducing the problem
to a known penalized estimation problem for scalar data amenable to inference using,
for example, mixed models or component-wise gradient boosting. This in turn enables
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A general framework for functional regression modelling 17

the use of a broad spectrum of existing statistical methods for the flexible modelling
of scalar data.

For functional covariates, there is a corresponding choice of basis. In the
scalar-on-function model (1.2), different basis functions �xj,k can be used in the basis
expansion (3.1) of the ˇ-coefficient function. Again, we use either splines with a
smoothness penalty or an FPC basis, now computed for the covariate process. If both
x and ˇ are represented in an expansion using the eigenfunction basis of x, then the
regression problem simplifies to (Müller and Stadtmüller, 2005)

hj(xi) =
∫
S

xi(s)ˇ(s)ds =
∫
S

{ ∞∑
k=1

�ik	X
k (s)

} { ∞∑
e=1

�j,e	
X
e (s)

}
ds =

∞∑
k=1

�ik�j,k, (3.5)

due to the orthonormality of the eigenfunctions 	X
k

of the covariate process. After
truncation at a suitable level Kxj, expression (3.5) corresponds simply to a regression
onto the (estimated) scores �ik, with unknown coefficients �j,k. Then, bxj(xi)� =
(̂�i1, . . . , �̂iKxj

) and, for example, Pxj = 0 (for an alternative penalizing ˇ away from
directions with little variation in x, see James and Silverman (2005)). A similar
approach could be taken with other basis expansions for x and ˇ, for example,
using wavelets (see Meyer et al., 2015). In the function-on-function regression model
(1.3) with coefficient ˇ(s, t), the coefficients �j,k for �ik are replaced by cj,k(t), and
we can estimate each using a spline or FPC (cf. Yao et al., 2005b) basis expansion
cj,k(t) = ∑KYj

l=1 	Yj,l(t)�j,kl, changing bYj(t)� from 1 to (	Yj,1(t), . . . , 	Yj,KYj
(t)). For an

extension and a comparison of both FPC-based and spline-based scalar-on-function
regression when responses and covariates are longitudinally observed, see Gertheiss
et al. (2013a).

3.5 Application example

As an example to illustrate the model terms and basis expansions discussed in this
section, we consider a longitudinal and generalized extension of model (1.2),

g(E(Yaw|X aw = xaw)) = ˛ + Ba +
∫
S

x̃aw(s)ˇ(s)ds + �(zaw), (3.6)

with Yaw now the PASAT score for MS patient a at visit w, Ba ∼ N(0, �2
b
) a

subject-specific random intercept, x̃aw(s), s ∈ S the corresponding mean-centred
FA–CCA profile at the wth visit, zaw the time in days since the first visit and g a fixed
link function. These model terms were selected by stability selection (Meinshausen
and Bühlmann, 2010; Shah and Samworth, 2013) from a much larger model fitted by
component-wise gradient boosting for functional data (cf. Section 4.2). Section 4.3
revisits the example and gives details on the boosting results; this section summarizes
the results for the mixed model-based inference approach described in Section 4.1.

Statistical Modelling 2017; 17(1–2): 1–35



18 Sonja Greven and Fabian Scheipl

PASAT scores range from 0 to 60 and count the number of times subjects correctly
add consecutive pairs of numbers as they listen to a series of numbers being read to
them. Since difficulty of the addition task may increase with prolonged duration due to
fatigue, assuming a conditional binomial distribution with 60 identical, independent
trials for the score seems questionable. Instead, we divide the raw scores by 60, treat
them as quasi-continuous and use a beta distribution for the ‘proportion’ of correct
responses for our model, with a logit link-function. Both refund’s pffr for functional
response regression and pfr (Reiss and Ogden, 2007; Goldsmith et al., 2012) for
scalar-on-function regression can model many response distributions outside the
exponential family using the implementation of Wood et al. (2016b) in R package
mgcv.

We fit the model on a stratified training sample using at least two visits of each
subject, for a total of 243 out of 340 available observations. For the linear functional
effect

∫
S x̃aw(s)ˇ(s)ds, we compare a model specification where ˇ is represented in

terms of 10 cubic B-spline basis functions with first-order difference penalty with
an FPC-based one as in equation (3.5). The first order difference penalty imposes a
weakly informative prior that the effect is constant over S, which corresponds to an
assumption that only the average deviation of FA–CCA profiles from their sample
mean curve affects PASAT scores.

Both AIC-based selection of the number of FPCs on the training set and
optimization of prediction performance on the test set yield models with 34 FPCs,
although the exact optimal number varies for different splits in training and test
datasets. In any case, improvements in predictive accuracy are small for larger FPC
bases, while the coefficient function’s shape and that of its confidence band change
quite substantially. For less than 14 FPCs, the coefficient function is very similar to
the spline-based estimate. As is often the case, the discrete regularization parameter
for this type of effect, that is, the number of leading FPCs to retain in the model, is
difficult to optimize.

Figure 3 displays results for the two fits, which yield very similar predictive
accuracy on the validation sample: the mean predictive negative log-likelihood (MSE)
is 2.986 (0.0099) for the spline-based fit and 2.988 (0.0100) for the FPC-based fit.

In both models, the random subject effect (left panel) is the biggest contributor
to the additive predictor by far, followed by the effect of time since first visit and
the effect of FA–CCA. Absolute effect sizes for FA–CCA in the FPC-based model are
about half of the estimated effect sizes in the spline-based model. The estimated effect
of time since first visit z (middle panel) indicates that PASAT scores tend to increase
over time and then level off, with some evidence for a subsequent decrease towards
the end of the follow-up period. A possible interpretation is that the learning effect for
the task is stronger than disease-related deleterious effects on cognitive performance
over most of the follow-up, which is rather short compared to the typical speed of MS
progression. Due to the low average number of replicates per subject and the large
between-subject variance of PASAT scores, these models are very parameter-intensive:
Both model fits and a non-linear variant have ≈ 97 effective degrees of freedom (edf)
based on just 243 observations and 120 (linear spline-based), 144 (FPC-based) or 134
(non-linear spline-based) coefficients in their �3, respectively. The uncertainty about
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Figure 3 Model (3.6) and a non-linear extension, from left: Predicted subject random effects B̂a (sorted by
value); estimated effects �̂(z) of time since first visit z (in days) along with a rug plot of the observed zaw at the
bottom; estimated coefficient functions ˆ̌ (s) for the linear association with centred FA–CCA curves x̃ (s), s ∈ S;
estimated non-linear response surface f̂ (x̃ (s), s). Dark grey areas in rightmost plot are outside of data support.
Intervals are ±2 standard errors, left three panels show results for both FPC- (in gold) and spline-based (in
blue) functional linear models.

the effect of FA–CCA is too large to permit reliable substantial interpretation. Taking
the point estimates at face value, we would conclude here that the association between
FA–CCA and PASAT scores is not strongly localized, since ˆ̌ is rather constant, and
that larger FA (i.e., more unidirectional liquid diffusion and therefore better neuronal
health) all along the CCA is associated with higher PASAT scores indicating higher
cognitive ability, since ˆ̌ (s) > 0 for all s.

Note that despite the fairly similar point estimates ˆ̌ , the point-wise confidence
intervals (CIs) are vastly different for FPC- and spline-based effects. The CI for
the FPC-based fit is much narrower since it implicitly conditions on the empirical
FPCs. The uncertainties about the estimated FPC representation and its truncation
parameter Kxj are not included (see Goldsmith et al. (2013) for more details and
resampling-based remedies in a functional response context). FPC-based CIs are also
shaped very differently than the spline-based ones as these two basis representations
imply vastly different (prior) assumptions for the shape of ˇ on different functional
spaces spanned by these basis functions, which strongly affects the (posterior)
covariance of the estimated coefficient functions.

Non-linear effects
∫

f (x̃(s), s)ds can be represented via marginal basis vectors

bxj(x)� =
(∑R

r=1 �(sr)
(
�sj(sr) ⊗ �xj(x̃(sr))

))
, which are constructed by numerically

integrating Kxj = KsjKx̃j tensor product basis functions of a marginal basis �sj =
(�sj,ks

)ks=1,...,Ksj
over S and a marginal basis �xj = (�xj,kx

)kx=1,...,Kx̃j
over the range

of x̃(s) (McLean et al., 2014). The estimated f̂ shown in Figure 3 is based on
Kx̃j = Ksj = 5 marginal cubic B-spline basis functions with second-order difference
penalty in x-direction penalizing deviations from a linear effect and a first-order
difference penalty over s penalizing deviations from a constant effect. In the small
data example discussed here, the uncertainty associated with this complex effect is of
the same magnitude as the absolute values of f̂ (x̃(s), s). The predictive performance
of this model is equivalent to that of the simpler linear models described above. The
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point estimate f̂ , shown in the right most panel of Figure 3, is roughly linear in x̃(s)
with a positive slope like ˆ̌ over the entirety of S, albeit with a much smaller slope
for s > 80. In this case, the data do not seem to strongly indicate a non-linear effect
of x̃ and the effect is reduced to the simpler linear case by the penalization. The
contributions of

∫
f̂ (x̃(s), s)ds to the additive predictor are practically identical to

those of
∫

x̃(s) ˆ̌ (s)ds in the spline-based linear model.

4 Estimation

After expanding all model terms in penalized basis expansions, the resulting penalized
regression model can be estimated using different approaches. We introduce in
particular two estimation procedures based on mixed models in Section 4.1 and
boosting in Section 4.2, and discuss alternatives in Section 4.4. The key idea is that our
modelling approach effectively models the single observations within curves and shifts
the functional structure to the additive predictor (2.1), including smooth residual
terms to model auto-correlation and heterogeneous variance along t where necessary.
This means that the resulting penalized regression is equivalent to a regression
problem for ‘scalar data’, so that we can directly build on the advances in flexible
models for such data that have been achieved over the last years and decades and will
also be able to utilize future developments.

The two alternatives for estimation we discuss in the following can be seen
as complementary, each with its own advantages and disadvantages. The mixed
model-based approach (Scheipl et al., 2015, 2016 building on Wood et al., 2016b;
see also, e.g., Goldsmith et al., 2012; Ivanescu et al., 2015) can be used when
� = g ◦ E for some link function g, and with the assumption that conditional on
the additive predictor h(x), the observed response values (independently within and
across functions) come from an exponential family distribution or one of several
others like beta or scaled and shifted t-distributions. This approach works well with
a moderate number of covariates and has the advantage of providing likelihood-based
inference. Extensions of this approach to GAMLSS models have been discussed by
Brockhaus et al. (2016a) for signal regression and a few response distributions.

The component-wise gradient boosting approach (Brockhaus et al., 2015b, 2016b
building on Hothorn et al., 2014) can handle very general loss functions and
thus allows for, for example, mean, median or quantile regression, as well as
robust regression or even generalized additive models for location, scale and shape
(GAMLSS; Rigby and Stasinopoulos, 2005) modelling several parameters of the
conditional response distribution simultaneously (Brockhaus et al., 2015a). The
iterative, component-wise estimation algorithm means that many covariates can be
handled, even more than observed curves, and that model terms are automatically
selected or deselected during estimation. A disadvantage of boosting is that currently
no inference for the estimated effects is directly available and resampling methods
have to be used for uncertainty quantification.
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In cases where both estimation approaches can be applied, they are expected to
yield similar results. Brockhaus et al. (2016a) find comparable performance for the
two in a simulation-based comparison for a particular GAMLSS signal regression
setting, although boosting shows a stronger shrinkage effect in situations with little
information content of the data. For example, comparing the mixed model-based
estimates for model (3.6) shown in Figure 3 with the corresponding boosting results
(cf. the online appendix), we see much stronger regularization in the latter approach
for the subject random effects and the effect of the time since first visit but not for
the effect of FA–CCA, while the basic structure of the effect estimates is qualitatively
similar.

4.1 Mixed model-based inference

If our transformation function can be written as � = g ◦ E for a link function g, we
can write our model for Y = (Y11, . . . , Y1D1, . . . , Yn1, . . . , YnDn

)� as
g(E(Y )) = X�,

with the design matrix X containing the entries for (bxj(xi, tid)� 
 bYj(tid)�) ranging
over i = 1, . . . , n and d = 1, . . . , Di in rows, and concatenating design matrices
column-wise for the partial effects hj(x), j = 1, . . . , J. The vector of unknown
coefficients � contains blocks �j of coefficients for each j and the link function g
is applied entry-wise. Let � be the vector containing all smoothing parameters in
Pj, j = 1, . . . , J.

For given smoothing parameters �, the coefficients � are estimated by maximizing
the penalized log-likelihood

l(�, �) − 1
2

J∑
j=1

��
j Pj�j,

where the log-likelihood l(�, �) is obtained from the assumed conditional density of
Y given X, possibly depending on a vector of nuisance parameters �, and assuming
independence of the Yid within and across functions conditional on the additive
predictor. Note that each Pj depends on the respective smoothing parameters �xj

and �Yj, see equation (3.3).
We follow the approach of Wood (2006a, 2011) and Wood et al. (2016b) for

optimization of this penalized log-likelihood and determination of the smoothing
parameters (see Scheipl et al., 2015, 2016 for more details). To estimate the smoothing
parameters �, we use the marginal likelihood with respect to �, integrating � out of
the penalized likelihood based on the joint distribution of Y and � when interpreting
the penalty as a distributional assumption on �. An estimate for � is then obtained
by maximizing a Laplace approximate version of this marginal likelihood (Wood
et al., 2016b).

We build on the methods for GAMMS available in the R package mgcv (Wood,
2016b) for our implementation in the pffr function of the R package refund. One
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advantage of this approach is the availability of CIs and tests using mixed model-based
likelihood inference methodology (e.g., Marra and Wood, 2012; Wood, 2013), with
close to nominal CI coverages for (generalized) functional responses on simulated
data (Ivanescu et al., 2015; Scheipl et al., 2015, 2016). Note that if estimated FPC
bases are used, then inference is conditional on this basis and does not include its
estimation uncertainty. Cederbaum et al. (2016) found coverage of confidence bands
to be close to nominal in simulations for such settings; see Goldsmith et al. (2013)
for a resampling-based adjustment in a simpler functional response setting.

4.2 Component-wise gradient boosting

The underlying idea for estimation using boosting is to represent the estimation
problem for model (2.1) as a minimization problem of a corresponding loss function
that does not necessarily imply a conditional distributional assumption about the
responses. Common loss functions include the squared error loss for mean regression
(� = E), the absolute loss for median regression (� = median), the check function
for quantile regression (� = q
 for some 
-quantile) and the negative log-likelihood
for responses of the exponential family (� = g ◦ E for a link function g). To obtain a
suitable loss function for functional responses, we integrate the point-wise (potentially
weighted) scalar loss function at each t over T, giving a scalar L((Y, x), h) measuring
the loss for response Y and predictor h(x). This corresponds to point-wise mean
regression, median regression, etc.

The goal then is to minimize the expected loss, the risk, with respect to the
predictor h. Component-wise gradient boosting (Bühlmann and Hothorn, 2007;
Hastie et al., 2011; Hothorn et al., 2014) can be seen as a gradient descent approach
in function space. The empirical risk is iteratively minimized in the direction of the
steepest descent (negative gradient) with respect to h. ĥ is updated along an estimate of
the negative gradient in each step, fitting the negative gradient Ui for all observations
i = 1, . . . , n using so-called base learners, in our context corresponding to J penalized
regression models for the partial effects hj(xi). Then, the j� of the best fitting base
learner in this iteration is selected and only the coefficients for this hj� are updated. The
estimate for h in step m is then given by ĥ[m] = ĥ[m−1] + �̂h

[m]
j� , where ĥ

[m]
j� corresponds

to the estimate for hj� in this step and � is a step length in (0, 1). The final ĥ[mstop] is a
linear combination of base learner fits, reflecting the ensemble nature of the boosting
algorithm. Changing from scalar to functional responses means that Ui and hj(xi)
are now both functions over T. An extension to GAMLSS-type models with multiple
additive predictors for modelling more than one feature of the response distribution
is described in Mayr et al. (2012) for the scalar case. Brockhaus et al. (2015a, 2016a)
extend this approach to functional responses and covariates.

There are several tuning parameters for this algorithm. The smoothing parameters
� are chosen and fixed such that the degrees of freedom per iteration are the same for
each baselearner. This is important to ensure comparability and unbiased selection
of base learners (Kneib et al., 2009; Hofner et al., 2012). The step length � is usually
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fixed to a small number such as 0.1. The number of iterations mstop then controls the
model complexity, with large mstop leading to more complex models and lower values
(early stopping) corresponding to stronger regularization of estimates. The stopping
iteration is chosen by resampling methods such as cross-validation or bootstrapping
on the level of curves (or larger independent units such as curves for one subject).

Variable selection results from both early stopping—not all base learners
are selected in at least one of the iterations—and additional stability selection
(Meinshausen and Bühlmann, 2010; Shah and Samworth, 2013), which is based
on the stability of base learner selection under sub-sampling. The component-wise
nature of the algorithm also means that the full model is never fit, only partial models
are, including single terms hj(x). This is the reason why this estimation approach can
handle more variables than observations.

This approach is implemented in the R package FDboost (Brockhaus and
Rügamer, 2016) and builds on model-based boosting as implemented in the R
packages mboost (Hothorn et al., 2016) and gamboostLSS (Hofner et al., 2016),
exploiting the Kronecker product structure of expansion (3.2) in the case of
regular grids and t-constant covariates to increase computational efficiency following
Hothorn et al. (2014). For more details, see Brockhaus et al. (2015b).

4.3 Application example

While Section 3.5 describes estimation and inference results for a comparatively
simple model estimated in the mixed model framework of Section 4.1, this section
illustrates how the broad range of response distributions as well as consistent
model selection via stability selection, which are both available for the boosting
implementation of Section 4.2 in package FDboost, allow us to explore a large
number of possibly quite complex models for the PASAT scores.

Specifically, the maximal model we select from includes a sex effect, a random
intercept for the subjects, a non-linear effect of time since first visit in days, a random
linear slope for time since first visit for the subjects, linear effects of functional
covariates FA–CCA and FA–RCST, linear effects of the derivatives of FA–CCA and
FA–RCST as approximated by simply taking the first differences, as well as the
interaction effects between sex and the four functional covariates and between sex
and time since first visit.

Since it is unclear which distribution is the most appropriate for modelling the
PASAT scores, we compare model fit and selected terms for binomial, beta and
beta–binomial models, as well as a (distribution-free) median regression model.
For the beta and beta–binomial models, we investigate models that model only the
expected value as well as those that also feature an additional additive predictor for
the dispersion parameter.

Optimal stopping iterations for each model are determined by evaluating the
out-of-bag risk for 100 bootstrap samples of the data. Since the risk function
that is minimized for these models is simply the negative log–likelihood of the
respective model, we can determine the most appropriate distributional assumption
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by comparing average predictive risk (i.e., mean negative log likelihood over the 100
bootstrap samples) at the optimal stopping iteration. We also use stability selection
with a cut-off at probability of inclusion of 80% and a maximal per-family error
rate of 1 for variable and term selection.

Table 1 Comparison of boosting models. From top to bottom: binomial model, beta and beta–binomial
models with constant variance, beta and beta–binomial models with modelled variance, median regression.
Columns show model name, mean predictive risk and model terms selected by stability selection for each
additive predictor. ‘Visit time’ is the time since first visit z .The code supplement includes exemplary plots of
the estimated effects for the Be(�, � = const) model.

Model Risk Selected

B(n = 60, p = �) 3.92 FA-CCA
Be(�, � = const) 3.05 FA-CCA
BB(�, � = const, n = 60) 3.33 FA-CCA, visit time
Be(�, �) 3.01 �: FA-CCA; �: d

ds
FA-CCA

BB(�, �, n = 60) 3.32 �: FA-CCA, visit time; �: sex, visit time
q50 3.70 FA-CCA

Table 1 shows results for the six models. The beta regression model with constant
dispersion parameter achieves an average risk around 3.05, while a beta regression
model with a modelled dispersion parameter achieves around 3.01. Models based on
other distributions perform worse. Note that median regression is analogous to mean
regression for a conditionally Laplace distributed response.

For most models, just the linear effect of FA–CCA on the conditional mean is
selected. Only the beta–binomial models additionally include the non-linear effect of
time since first visit. Stability selection for the beta regression with modelled dispersion
selects a linear effect of the derivative of FA–CCA for modelling the dispersion, while
the beta-binomial model with modelled dispersion selects sex and time since first visit.
The mixed model-based beta regression model described in Section 3.5 additionally
includes an effect of time since first visit, since the effect is quite close to the threshold
of selection for the boosted beta model. It also additionally includes subject-specific
random intercepts that are not stability selected but serve to model the dependence
structure of these longitudinal data.

4.4 Alternatives

Model (2.1), with the penalized basis representations discussed in Section 3,
can also be estimated by other methods such as a Bayesian approach. Bayesian
implementations exist for certain special cases, for example, Goldsmith et al. (2011,
2015). Much more generally, all exponential family models available in pffr can
be automatically translated into JAGS (Plummer, 2016) code using mgcv’s jagam
function (Wood, 2016a) for automated, tuning-free, fully Bayesian MCMC inference.

A very general Bayesian alternative is Morris and Carroll (2006), Morris et al.
(2011) and further work by this group, partially implemented in the WFMM (Herrick,
2015) software suite. They take a different approach for estimation from the one
focused on here, first transforming the response curves using a (usually wavelet)
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basis transformation and subsequently building a model in the basis coefficient
space using variable selection priors to allow zeros for wavelet coefficients, before
transforming results back into function space. Advantages of this approach are the
ability of wavelets to handle spiky data, the availability of extensions to image data
and the computational efficiency of parsimonious but lossy transformations for very
high-dimensional data sets. Disadvantages are that grids need to be identical for all
functional responses, some model terms such as historical functional effects cannot be
estimated and the publicly available implementation is restricted to mean regression
for Gaussian functional responses.

5 Challenges and technical points

5.1 Necessary constraints in models with functional responses

In regression with functional responses and/or covariates, identifiability has to be
carefully considered. The first point concerns functional response models, including
at least two hj(x) varying over t. This is most easily seen when the model includes a
smooth intercept. As

˛(t) + hj(x)(t) = [˛(t) + h̄j(t)] + [hj(x)(t) − h̄j(t)] =: ˜̨(t) + h̃j(x)(t),

with h̄j(t) = 1
n

∑n
i=1 hj(xi)(t), a constraint on hj(x) is needed to ensure identifiability,

where a straight forward interpretation is achieved with the constraint h̄j(t) = 0 for all
t. Such a constraint can be incorporated by appropriately modifying the design matrix
(cf. Wood (2006a); see Brockhaus et al. (2015b) on how to preserve the Kronecker
structure for tensor product bases as in expansion (3.2)).

5.2 Identifiability for functional covariates

The second point is more serious, as it is less easily remedied. It concerns the
estimation of effects of functional covariates (see Scheipl and Greven (2016) for a
more detailed discussion and further references). Consider for simplicity a linear
functional effect as in model (1.2). It is often the case in practice that the functional
covariate can be well approximated by the first M components of the Karhunen–Loève
expansion,

xi(s) =
∞∑

k=1

�ik	X
k (s) ≈

M∑
k=1

�ik	X
k (s),

as in any case at most min(n, R) eigenfunctions 	X
k

with non-zero eigenvalues can be
estimated from the data.

If we use an FPC basis for ˇ with Kxj ≤ M, then the coefficients �j,k in term (3.5) are
identifiable. It is important to note, however, that this is contingent on the assumption
that ˇ lies in the function space spanned by the first Kxj eigenfunctions of x. If the
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eigenfunctions are non-smooth, as higher-order eigenfunctions often are, then this can
lead to non-smooth ˇ-function estimates. The estimated shape of ˇ is also typically
highly dependent on the chosen Kxj (see Goldsmith et al. (2012), and the discussion
of the FPC-based effect of FA–CCA in Section 3.5).

If alternatively ˇ is assumed to be smooth in s, then one would usually use
a basis of spline functions �xj,k, with the basis vector bxj(x) containing the
terms

∑R
r=1 �(sr)x(sr)�xj,k(sr), k = 1, . . . , Kxj. Let �X = (	X

k
(sr))k=1,...,M;r=1,...,R,

� = diag(�(s1), . . . , �(sR)) and �xj = (�xj,k(sr))r=1,...,R;k=1,...,Kxj
. If M < Kxj or

rank(�X��xj) < Kxj, then the functional covariate does not contain sufficient
information to uniquely determine the Kxj spline basis coefficients and the resulting
design matrix will be rank-deficient. (Near-deficient design matrices will result in
large condition numbers and estimates with large variability.) In that case, the
penalized (likelihood) criterion is minimized by the smoothest solution among all
possible solutions with equally good fit to the data. This smoothest solution will be
unique as long as the null space of the penalty does not overlap the null space of the
design matrix.

This leads to several practical recommendations. The first is to avoid rank-reducing
pre-processing of functional covariates such as pre-smoothing or curve-wise
centering, where possible. The second is to compute diagnostic measures to check
for any problems in practice; such measures are implemented in the refund and
FDboost packages. And the third is to keep the null space of the penalty small by using
first-order differences or derivatives (penalizing deviations from a constant coefficient
function), rather than higher-order differences or derivatives. An alternative is to
apply constraints on the coefficient function that force its components in the overlap
of the design matrix null space and the penalty null space, where there is no
information on the coefficient shape available from the data or the prior/penalty, to
zero. As this corresponds to an implicit assumption that ˇ does not have a non-zero
component in this overlap, corresponding warnings are issued in our implementation
if such a constraint is used.

Functional covariates in our application example are of high rank, and the
checks for identifiability that pffr automatically performs indicate no identifiability
issues here. However, the example in Section 3.5 also demonstrates that even for
such non-pathological cases, assumptions on the shape of the functional coefficients
expressed through their penalized basis representations can strongly affect estimated
coefficient shapes.

5.3 Computational complexity

There are two important ways in which computational efficiency of the model fitting
can be increased. First, the choice of the basis can be important for the computational
complexity. We discussed in Section 3.4 how FPCs are a useful basis in cases such
as functional random effects or smooth residuals. For those terms, fitting a smooth
curve for each factor level or observation means that the number of basis functions
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gets multiplied by the number of factor levels for the random effect or by n for the
smooth residual. Not only is the number of basis functions reduced for the more
parsimonious FPC basis, but also the smoothing parameters are not estimated within
the large overall model. In particular, this can help to speed up mixed model-based
inference.

The second important approach can be employed if all response curves are
observed on the same grid, which need not be equidistant. Some missing observations
within curves are also allowed and taken into account with zero weighting. The
second requirement is that the covariate values do not change with t, that there are
in particular no concurrent or historical functional effects in the model. Then, the
tensor product basis representation (3.2) rather than the more general row tensor
product basis can be used. This leads to Kronecker products in the design matrix
and together with the Kronecker sum penalty (3.3) results in a special case of the
generalized linear array model introduced by Currie et al. (2006). Their approach
defines very efficient array-based operations on the much smaller marginal design
matrices to compute linear functions and quadratic forms of the overall design
matrix, which is never computed explicitly, and can thus significantly decrease both
computation time and memory footprint. As our implementations rely on existing
software implementations of flexible models for scalar data, these array model
methods are currently implemented for the boosting approach in FDboost based
on the mboost package, but not in the pffr function in the refund package based
on mgcv. While for smaller datasets, pffr can be much faster than FDboost due
to FDboost’s need for repeated fits on resampled data sets to select the stopping
iteration, for larger data sets and models, computation time for FDboost tends
to increase much more slowly—especially for the array case (Brockhaus et al.,
2015b), but also in the case of many covariate terms due to fitting each base learner
separately.

On a modern desktop PC, fitting the functional response model (1.1) (cf. Figure 2)
with refund’s pffr function required about 4 minutes for the Gaussian model, about
7 minutes for the beta model with logit link and about 30 minutes for the Gaussian
model with heteroskedastic residuals. Fitting a simpler model without smooth
residuals took about 4 seconds for the Gaussian and beta models and 28 seconds for
the heteroskedastic Gaussian model. For the scalar response model (1.2) (cf. Figure 3,
Table 1), single fits of FDboost without early stopping took between 5 and 10 seconds.
We used 100 bootstrap replicates of these full fits to determine suitable stopping
iterations mstop and another 100 replicates with early stopping for stability selection.
These replicates are performed in parallel, so wall-clock computation times depend
largely on the number of available processes for parallelization. The scalar response
models shown in Figure 3 required about 1.5 seconds to fit with refund’s pfr function.
These examples illustrate that as both refund and FDboost use iterative algorithms,
computation times depend to a large part on the required number of iterations (as
well as on the available hardware, of course) and no simple relationship between
computation time and data size or model complexity can thus be given.

Recent algorithmic advances for fitting ‘giga-scale’ additive models on the order of
108 data points with 104 parameters with the discrete option of function bam in
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mgcv, based on discretizing and compressed storage of continuous predictors (Wood
et al., 2016a), are also available via pffr.

6 Discussion and outlook

This article discusses a very general framework for regression with functional
responses and/or covariates. We hope to have conveyed two key points: First,
that many of the particular functional regression models discussed in the literature
(cf. Morris, 2015) can be viewed as special cases of this general model class.
Second, that if we directly model the observed data points within each function,
then we can deploy almost all of the theoretical and computational advances
in flexible regression models for scalar data that have been achieved in the last
decades for the functional regression setting as well. We believe that both of
these points are important for functional regression. The second is essential in
building a toolbox for functional regression that is similarly flexible as the toolbox
of models available for scalar data without redoing much of that work. And
the first, because it allows a unified discussion and implementation of functional
regression models. Thus, changing the focus from a scalar-on-function regression
to a function-on-scalar regression for a given dataset becomes only a small change
in the model call for the data analyst. Even more importantly, as soon as a new
feature or model class is developed and implemented for scalar data, it immediately
can be made available for all functional data regression models that fit into our
framework as well. This strategy has worked well for both boosting-based estimation
of GAMLSS models (Hofner et al., 2016) and Laplace approximate marginal
likelihood inference for non-exponential family responses (Wood et al., 2016b) in the
recent past.

In our formulation, the discussed flexible regression models for functional data
are essentially models for the scalar observed points within each function, with the
functional data structure shifted to the smooth additive predictor. Thus, asymptotic
results on consistency of estimators in such scalar additive models should be
applicable to our functional setting as well (see, e.g., Wood et al., 2016b for the type
of complex models we consider and mixed model-based inference and Hothorn et al.,
2014 for a related result in a boosting context). Simulations (e.g., Brockhaus et al.,
2015b; Scheipl et al., 2015, 2016) back up consistency, as well as appropriate coverage
of confidence bands relying on asymptotic normality in the mixed model-based
case. Nevertheless, this is a point which would deserve closer investigation,
particularly regarding regression with functional covariates and with FPC bases as
well as regarding different asymptotic regimes of fixed or growing grid sizes Di

with n.
The model class and estimation approaches we discussed are, of course, no panacea

for all possible regression settings with functional data. One obvious point here is that
while we assume smoothness of underlying curves and effects throughout and our
choice of bases and penalties is guided by this assumption, other bases and penalties
will be more suitable to other kinds of functional data, for example, spiky data.
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Other types of penalties, for example, adaptive penalties, might also be better suited
in some situations such as when smoothness is varying along T. To some extent, such
adaptive smoothing is available in pffr via mgcv’s adaptive smoothers. While linear
and smooth effects can be easily represented within the discussed framework, more
complex relationships require additional work. Principal coordinates (Reiss et al.,
2015) have recently been proposed as one way to extend the framework to allow
more general non-linear features of functional covariates to influence a response
(cf., e.g., Ferraty and Vieu, 2006 for alternatives using a different non-parametric
framework). Self-interactions of functions can also be of interest and while Fuchs et al.
(2015) could be used for a linear self-interaction model, more complex potentially
non-linear relationships would require additional development. We also believe that
while more flexible models for functional covariates are of interest and could use
further development, both interpretability and identifiability need to be carefully
considered and kept in mind, as these are more challenging in our view even for
the simple linear regression case than is often appreciated. For functional historical
models, estimating the integration limits [�(t), u(t)] from the data would often be of
interest. Identifiability has to be carefully considered in this setting, and approaches
for estimating one endpoint have been proposed in Hall and Hooker (2016); see also
Obermeier et al. (2015).

One topic we have not touched on here but that is of large practical importance
is that of the registration of curves. Functional regression models assume that the
meaning of a point in T is the same across different functions observed over that
interval. However, it is often the case in practical applications that curves need to be
‘registered’, that is, there is not only variation in ‘Y-direction’ (amplitude), but also in
‘t-direction’ (‘phase’). A classic example is growth data (e.g., Ramsay and Silverman,
2005, Chapter 1), where growth spurts of children not only occur with different
intensities but also at different time-points, and the most meaningful comparisons
between curves will require aligning the growth spurts in time before further analyses.
In fact, the shifted peaks of the smooth residual curves for model (1.1) shown in
Figure 2 (second column from left) around the locations of the two global peaks at
ca. t = 10 and t = 90 may indicate less than perfect alignment of the CCA tracts in
our data example. While many methods have been developed for curve registration
(see Marron et al., 2014, for a recent overview), there is still ample room for methods
development jointly looking at registration and flexible regression along the lines of
Gervini (2015) or Hadjipantelis et al. (2015).

Finally, we hope that much of what we have learned about functional regression
in the last years will lead to fruitful cross-fertilization with other areas of what is
sometimes called ‘object (oriented) data analysis’ (cf. Marron and Alonso, 2014).
As the data that is being collected become more and more complex, regression
models are required for more general objects, for example, trajectories in 2D or
3D space, images (e.g., Goldsmith et al., 2014) or functions on manifolds (e.g.,
Ettinger et al., 2016), shapes (e.g., Dryden, 2014) or even objects such as trees (e.g.,
Wang and Marron, 2007). For all of these, achieving flexible regression models with
such responses and/or covariates, random effects, etc. is an active and exciting field
of research.
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