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ABSTRACT
We present a general framework for constructing cut sparsifiers
in undirected graphs — weighted subgraphs for which every cut
has the same weight as the original graph, up to a multiplicative
factor of (1 ± ǫ). Using this framework, we simplify, unify and
improve upon previous sparsification results. As simple instantia-
tions of this framework, we show that sparsifiers can be constructed
by sampling edges according to theirstrength(a result of Benczúr
and Karger),effective resistance(a result of Spielman and Srivas-
tava), edge connectivity, or by samplingrandom spanning trees.
Sampling according to edge connectivity is the most aggressive
method, and the most challenging to analyze. Our proof that this
method produces sparsifiers resolves an open question of Benczúr
and Karger.

While the above results are interesting from a combinatorial stand-
point, we also prove new algorithmic results. In particular, we
develop techniques that give the first (optimal)O(m)-time spar-
sification algorithm for unweighted graphs. Our algorithm has a
running time ofO(m) + Õ(n/ǫ2) for weighted graphs, which
is also linear unless the input graph is very sparse itself. In both
cases, this improves upon the previous best running times (due to
Benczúr and Karger) ofO(m log2 n) (for the unweighted case) and
O(m log3 n) (for the weighted case) respectively. Our algorithm
constructs sparsifiers that containO(n log n/ǫ2) edges in expecta-
tion; the only known construction of sparsifiers with fewer edges is
by a substantially slower algorithm running inO(n3m/ǫ2) time.

A key ingredient of our proofs is a natural generalization of
Karger’s bound on the number of small cuts in an undirected graph.
Given the numerous applications of Karger’s bound, we suspect
that our generalization will also be of independent interest.
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1. INTRODUCTION
Can any dense graph be approximated by a sparse graph? Sur-

prisingly, the answer is a resounding “yes”, under a variety of no-
tions of approximation. For example, given any undirected graph,
there are sparse subgraphs that approximateall pairwise distances
up to a multiplicative and/or additive error (see [22] and subsequent
research onspanners), everycut to an arbitrarily small multiplica-
tive error [3, 4] (calledcut sparsifiers), every eigenvalue to an ar-
bitrarily small multiplicative error [2, 25, 26, 27] (calledspectral
sparsifiers), and so on. Such approximations are a cornerstone of
numerous important results in theoretical computer science.

In this work, we consider the problem of approximating every
cut arbitrarily well; this problem was originally studied by Karger
[10, 11] and Benczúr and Karger [3, 4]. They proved that every
undirected graph withn vertices andm edges (and potentially non-
negative weights on its edges) has a subgraph with onlyO(n log n/ǫ2)
edges (and a different set of weights on those edges) such that, for
every cut, the weight of the cut in the original graph and its sub-
graph agree up to a multiplicative factor of(1 ± ǫ). Such a sub-
graph is called acut sparsifier, or simply asparsifier. Benczúr and
Karger also gave a randomized algorithm to construct a sparsifier
inO(m log2 n) time for unweighted graphs andO(m log3 n) time
for weighted graphs. Their result has now become a standard tool
with widespread use in the design of fast algorithms relating to cuts
and flows [3, 4, 5, 13, 15, 18, 24].

Spielman and Teng [27] realized that a stronger notion of sparsi-
fication would be useful for efficiently solving systems of linear
equations defined by Laplacian matrices. They defined aspec-
tral sparsifier to be a weighted subgraph such that the quadratic
forms defined by the Laplacians of these two graphs agree up to
a multiplicative factor of(1 ± ǫ). Spectral sparsifiers are also cut
sparsifiers, as can be seen by evaluating these quadratic forms at
{0, 1}-vectors. An efficient algorithm to construct a spectral spar-
sifier withO(n log n/ǫ2) edges in expectation was given by Spiel-
man and Srivastava [25]; using later improvements to linear system
solvers [16], this algorithm runs inO(m log3 n) time. Further-
more, a spectral sparsifier with onlyO(n/ǫ2) edges can be com-
puted inO(n3m/ǫ2) time [2].

The Benczúr-Karger and Spielman-Srivastava sampling schemes



follow the same basic approach. First, they replace each edgee of
weightwe in the input graphG bywe parallel unweighted edges.1

Now, each unweighted edge is sampled independently with prob-
ability pe = min{ρ/λe, 1} for some parametersρ, λe; if chosen,
the weight of edgee is increased in the sparsifierGǫ by 1/pe. Both
algorithms chooseρ = Θ(log n/ǫ2), but differ in their choice of
λe.

In order to describe their respective choice of parametersλe, we
require some definitions. For an edge(s, t), the (local)edge con-
nectivitybetweens and t, denotedkst, is defined to be the min-
imum weight of a cut that separatess and t. The effective con-
ductanceof edge(s, t), denotedcst, is the amount of current that
flows when each edgee of weightwe is viewed as a resistor of
value1/we and a unit voltage difference is imposed betweens and
t. Theeffective resistanceof (s, t) is 1/cst. A k-strong component
of G is a maximalk-edge-connected, vertex-induced subgraph of
G. Thestrengthof edge(s, t), denotedk′st, is the maximum value
of k such that ak-strong component ofG contains boths and t.
Informally, all three ofkst, cst andk′st measure the connectivity
betweens andt.

Benczúr and Karger requireλe ≤ k′e, whereas Spielman and
Srivastava requireλe ≤ ce. These hypotheses are incomparable
sincek′st can beΩ(n) times larger thancst or vice versa. However
kst ≥ max {cst, k′st} always holds.

Sampling by Edge Connectivities.The primary objective of this
paper is to consider the more aggressive regime of sampling ac-
cording to edge connectivities, i.e.,λe ≤ ke. In fact, Benczúr and
Karger [4] conjectured that such a sampling scheme would also
produce sparsifiers, and this would result in a simpler analysis and
simpler algorithms. Our work proves this conjecture. Theorem 1.1
is a succinct corollary of our main theorem; more general results
are described in Section 2.

Theorem 1.1. Let Gǫ be obtained from a weighted graphG by
independently sampling edgee with probabilitype = ρ/λe, where
ρ = Θ(log2 n/ǫ2) andλe = ke. Then,Gǫ containsO(n log2 n/ǫ2)
edges in expectation, andGǫ ∈ (1 ± ǫ)G whp.2 3

Sinceke ≥ max {ce, k′e}, our aggressive sampling scenario sub-
sumes the scenarios of Benczúr-Karger and of Spielman-Srivastava,
the main caveat being that Spielman and Srivastava prove spec-
tral sparsification whereas we do not. On top of unifying these
results, we also extend our technique to obtain a general sparsifi-
cation framework and set out sufficient conditions for a sampling
scheme to result in good sparsifiers. This lets us show that some
other natural sampling schemes also yield sparsifiers.

Sampling by Random Spanning Trees.Can we setρ = o(logn)
in the above sampling schemes? Unfortunately not. To see this,
consider a clique ofn vertices — ifρ = o(logn) andλe = ke
then with probability tending to1 the sampled graph would be dis-
connected and hence not approximate the original graph. Such ex-
amples also show that the Benczúr-Karger and Spielman-Srivastava
algorithms requireΩ(n log n) edges.

One way to circumvent these examples is via dependent sam-
pling, such as sampling spanning trees. This idea was explored by
Goyal et al. [7] and was the key approach in the recent progress on
ATSP [1]. Suppose we sampleρ uniformly random spanning trees.

1We assume throughout that all edge weights are integers.
2 Gǫ ∈ (1 ± ǫ)G will denote thatGǫ approximates every cut inG
to within a multiplicative factor of(1 ± ǫ).
3 A property is said to holdwith high probability(or whp) if it does
nothold with probability inverse polynomial inn.

Then the sampled graph is certainly connected after choosing just
one tree. Furthermore, sampling uniformly random spanning trees
is closely related to sampling according to effective conductances,
which leads to the following theorem.

Theorem 1.2. LetG be a weighted graph. LetGǫ be the union
of ρ = Θ(log2 n/ǫ2) uniformly random trees where each edge
is assigned weightce/ρ. ThenGǫ hasO(n log2 n/ǫ2) edges and
Gǫ ∈ (1 ± ǫ)G, whp.

Surprisingly, we cannot takeρ = o(logn) here either. For any
constantc ≥ 1, if we wish to approximate all cuts to within a factor
c, we show in section 6 that the sampling process of Theorem 1.2
requiresρ = Ω(log n).

1.1 Sparsification Algorithms
Our framework yields sparsification algorithms that are not only

simpler, but also faster. By a slight modification of known tech-
niques [4], we can bound the edge connectivitieske and derive a
linear-time algorithm that produces sparsifiers withO(n log2 n/ǫ2)
edges. This simple result is stated below as Theorem 1.3. A stronger
result is given by Theorem 1.4, in which a more sophisticated ap-
proach is used to construct sparsifiers withO(n log n/ǫ2) edges in
O(m) + Õ(n/ǫ2) time.

Sampling by Nagamochi-Ibaraki indices.Nagamochi and Ibaraki
devised a very simple method that finds good estimates to all edge
connectivities. Their method simply partitions the graph into a
sequence of maximal spanning forests. It can be implemented in
O(m)-time for unweighted graphs [21], andO(m+ n log n)-time
for weighted graphs [20].

More formally, a set of edge-disjoint spanning forests
T1, T2, . . . , Tk of a graphG is said to be aNagamochi-Ibaraki (NI)
forestpacking ifTi is a spanning forest on the edges left inG after
removing those inT1, T2, . . . , Ti−1. For weighted graphs, an edge
with weightwe must appear inwe contiguous forests. TheNI index
of edgee, denotedℓe, is the index of thelast NI forest in whiche
appears. We obtain the following theorem as a simple instantiation
of our general framework.

Theorem 1.3. Let Gǫ be obtained from a weighted graphG by
independently sampling edgee with probabilitype = ρ/λe, where
ρ = Θ(log n/ǫ2) andλe = ℓe. Then,Gǫ containsO(n log2 n/ǫ2)
edges in expectation, andGǫ ∈ (1 ± ǫ)G whp. Moreover, this
algorithm runs inO(m) time.

Linear-time Sparsification Algorithm. We improve the above al-
gorithm further in the next theorem.

Theorem 1.4. There is an algorithm that produces sparsifiers con-
tainingO(n log n/ǫ2) edges in expectation, and runs inO(m) time
for unweighted graphs andO(m) + Õ(n/ǫ2) time for weighted
graphs.

Note that this algorithm has optimal time complexity for unweighted
graphs; for weighted graphs, the time complexity is slightly sub-
optimal if the input graph is already very sparse. The previous best
time complexity for an identical guarantee on the size of the spar-
sifier wasO(m log2 n) for unweighted graphs, andO(m log3 n)
for weighted graphs [4]. On the other hand, the only known algo-
rithm that constructs sparsifiers with fewer edges takesO(n3m/ǫ2)
time [2], which is substantially slower. Our sparsification algorithm
improves the running time for the numerous applications of sparsi-
fiers for dense input graphs (e.g. [13, 15, 18, 24]).



1.2 Cut counting
An important ingredient in our proofs is an extension of Karger’s

random contraction algorithm for computing global minimum cuts
[9, 14]. We give a variant of this algorithm that interleaves ran-
dom edge contractions with edgesplitting-offoperations. The main
purpose is to prove a generalization of the following cut counting
theorem.

Theorem 1.5(Karger [9, 14]). For anyα ≥ 1, the number of cuts
of weight at mostαK in an undirected weighted graph is at most
n2α, whereK is the minimum weight of a cut in the graph.

To state our generalization, we need some definitions. An edge is
said to bek-heavyif the edge connectivity of its endpoints is at
leastk; otherwise, it is said to bek-light. Thek-projectionof a cut
is the set ofk-heavy edges in it. Intuitively, we show that the large
number of cuts of sizeαK for largeα, as predicted by Karger’s
theorem, arises frommanydistinctk-projections of these cuts for
small values ofk, while there arefewdistinctk-projections of these
cuts for large values ofk.

Theorem 1.6. LetG = (V,E) be a weighted, undirected graph.
For anyk and anyα ≥ 1, the number of distinctk-projections in
cuts of weight at mostαk is at mostn2α.

(Note that this theorem reduces to Karger’s cut counting theorem
by settingk to the weight of a global minimum cut.) Given the
numerous applications of Karger’s theorem, e.g. [1, 6, 12, 23], we
suspect our generalization may be of further interest.

Roadmap.The next section contains an overview of the techniques
used in obtaining the various results outlined above. Section 3 con-
tains a proof of the cut counting theorem (Theorem 1.6), which
is used in the proofs of the general framework presented in Sec-
tion 4. We use the general framework to obtain Theorem 1.1 in
Section 4.1. We present the linear-time sparsification algorithm in
Section 5. Finally, some sampling lower bounds are presented in
Section 6.

2. OVERVIEW OF OUR TECHNIQUES
Our first goal is to demonstrate sampling using edge connectivi-

ties, thereby proving Theorem 1.1. The basic intuition behind spar-
sification is two-fold:

1. Edges that arewell-connected4 are less critical to maintain-
ing connectivity of the graph and can hence be sampled at
lower probabilities than those that are not well-connected.

2. Most edges in a dense graph are well-connected; hence, most
edges can be sampled at low probabilities leading to a sparse
sample.

Suppose we sample edgee at probabilitype = Θ(log n/ke) and
give it a weight of1/pe in Gǫ if selected. The next lemma formal-
izes (2).

Lemma 2.1. For any undirected, weighted graphG = (V,E)
wherewe andke respectively represent the weight and connectivity
of edgee,

P

e∈E
we
ke

≤ n− 1.

Formalizing (1) turns out to be more tricky. For example, consider
the complete graph onn vertices. Here, all edges have connectiv-
ity n − 1, and therefore are sampled at probabilityΘ(log n/n).

4The exact definition ofwell-connectednessvaries from one spar-
sification scheme to another.

s t

…
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Figure 1: An example of a graph where Karger’s cut count-
ing theorem is not sufficient to prove that sampling using edge
connectivities yields a good sparsifier.

Now, consider a cut containing∆ edges. Since edges are sampled
independently, Chernoff bounds (see e.g. [19]) ensure that thefail-
ure probability for this cut (i.e., the probability that the sampled
weight of the cut is not in(1 ± ǫ)∆) is 1/nΩ(∆/n). If ∆ = Θ(n),
this bound is inverse polynomial inn. But there are exponentially
many cuts; so a naive union bound that multiplies this probability
by the number of cuts will not work.

A slightly more refined analysis would observe that there are
only nO(∆/n) cuts with∆ edges, either by a direct counting argu-
ment or by applying Karger’s cut counting theorem (Theorem 1.5).
Since each such cut has failure probability1/nΩ(∆/n), we can ap-
ply a union bound for each value of∆. Summing over all values of
∆ gives an overall failure probability that is inverse polynomial in
n.

Unfortunately, this technique does not work for all graphs. For
example, consider the graph in Figure 1. Here, the connectivity
of each edge is two, except that of the(s, t) edge isΘ(n). Now,
consider any cut separatings andt in this graph. The(s, t) edge
has the lowest sampling probability (= Θ(log n/n)), and there-
fore has high variance in the sampled weight even though all the
other edges have low variance. Unfortunately, the Chernoff bound
does not recognize this difference in variance between the edges
and yields a failure probability inverse polynomial inn. This is
too weak, for we have to union bound over the exponentially many
cuts separatings andt. The problem lies in the use of the Cher-
noff bound — in spite of most edges in the cut being sampled at
a relatively high probability (thereby reducing the variance of the
sample), the Chernoff bound is very weak. To overcome this prob-
lem, we partition the edges of a cut in doubling ranges[2i−1, 2i−1]
of their connectivity, and apply Chernoff bounds on each of these
sets separately. Since edges in any such set (call the set of edges
having connectivity in the range[2i−1, 2i− 1] thei-segmentof the
cut) are sampled at roughly the same probability, the bounds ob-
tained are tighter, especially for small values ofi. We run into a
technical hurdle here. Consider the example in Figure 1. The(s, t)
edge is in a connectivity range on its own, and clearly one cannot
obtain tight concentration bounds for just one edge. However, ob-
serve that whether this single edge appears in the sample has almost
no bearing on the quality of the sample. To formalize this intuition,
we will use the following generalization of the Chernoff bound.

Theorem 2.2. LetX1, X2, . . . , Xn ben random variables such
thatXi takes value1/pi with probabilitypi and 0 otherwise. Then,
for any p such thatp ≤ pi for eachi, any ǫ ∈ (0, 1), and any



N ≥ n, the following bound holds:5

P

"

˛

˛

˛

˛

˛

n
X

i=1

Xi − n

˛

˛

˛

˛

˛

> ǫN

#

< 2e−0.38ǫ2pN .

When we apply the above theorem to thei-segment of a cutC, we
setN to the weight of the cutwC , thereby obtaining a meaningful
tail bound. For example, in Figure 1, if a segment comprises the
solitary (s, t) edge, we define the failure event as a deviation of
ǫn from the expected value of one, thereby ensuring that the (over-
whelmingly probable) event of not including the edge(s, t) in the
sample isnot defined as a failure event. One deficiency of this
approach is that the deviation isǫwC for each connectivity range,
leading to an overall deviation ofǫwC log n. However, recall that
the total deviation needs to be at mostǫwC . So we can instead
set the value ofN towC/ log n and, to ensure that the probability
bound remains unchanged, increase the sampling probability by a
factor of log n. (We call this extralog n in the sampling probabil-
ity the overlap overhead). We now use Theorem 1.6 to bound the
failure probability overi-segments of all cuts of weight∆. Finally,
we union bound over all values ofk and∆ to obtain Theorem 1.1.

As observed previously, Theorem 1.1 implies that sampling us-
ing edge strengths (Benczúr-Karger [4]) and effective resistances
(Spielman-Srivastava [25]) yields sparsifiers. Since every edgee
has NI indexℓe ≤ ke, Theorem 1.1 also implies that sampling
using NI indices yields a sparsifier. However, since the sampling
probability isΘ(log2 n/ǫ2λe) (for λe = k′e, ce, ℓe respectively),
the resulting sparsifiers haveO(n log2 n/ǫ2) edges, whereas the
Benczúr-Karger sparsifiers have onlyO(n log n/ǫ2) edges.

Next we describe our general framework which has several ap-
plications, including constructing sparsifiers with onlyO(n log n/ǫ2)
edges under the sampling scheme of Benczúr and Karger (we omit
the details of this construction due to space limitations), and prov-
ing Theorem 1.3.

2.1 The General Framework
Consider the proof sketch for Theorem 1.1 outlined above. As

a first abstraction, note that our argument does not depend on the
exact value of the overlap overhead, i.e. the proof sketch continues
to hold withN = wC/α andpe = Θ(α log n/ǫ22i) (wheree
has connectivity in[2i−1, 2i − 1]) for any valueα of the overlap
overhead. Generalizing further, suppose we identify a subset of
edgesCi (with weightwCi ) in every cutC such that:

• Each edge in thei-segment of a cut is2i-heavy in a graph
containing only the edgesCi for all cutsC.

• Each edge appears inCi for at mostα different values ofi.

Then,N = wCi/α andpe = Θ(α log n/ǫ22i) are sufficient for
the above proof. Moreover, we do not need to definei-segments by
edge connectivities, rather we can define thei-segment of cutC as

the set of edges sampled with probabilitype ∈
h

α logn
ǫ22i , α logn

ǫ2(2i+1−1)

i

.

The proof sketch is valid provided the above two properties are sat-
isfied byi-segments defined in this manner.

We now formalize the above intuition. LetG = (V,E) be
an undirected graph where edgee has weightwe. Consider any
ǫ ∈ (0, 1). We construct a sparse graphGǫ where the weight of
edgee is Re/pe, Re being an independent (of other edges) bino-
mial random variable with parameterswe andpe.6 What values of
5For any eventE , P[E ] represents the probability of eventE .
6This is equivalent to takingwe unweighted copies ofe, sampling
each copy independently with probabilitype and adding a weight
of 1/pe to edgee in Gǫ for each copy selected in the sample.

pe result in a sparseGǫ that satisfiesGǫ ∈ (1 ± ǫ)G whp? Let

pe = min
n

96α lnn
0.38λeǫ2

, 1
o

, whereα is independent ofe andλe is

some parameter ofe satisfyingλe ≤ 2n − 1. The exact choice of
values forα and theλe’s will vary from application to application.
However, we describe below a sufficient condition that character-
izes agoodchoice ofα andλe’s.

To describe this sufficient condition, partition the edges inG
according to the value ofλe into setsF0, F1, . . . , Fk wherek =
⌊lg maxe∈E{λe}⌋ ≤ n − 1 ande ∈ Fj iff 2j ≤ λe ≤ 2j+1 −
1. Now, let G = (G0, G1, G2, . . . , Gi, . . . , Gk) (whereGi =
(V,Ei)) be a set of subgraphs ofG (we allow edges ofG to be
replicated multiple times in theGi’s) such thatFi ⊆ Ei for every
i. For a set of parametersπ = (π0, π1, . . . , πk), G is said to be a
(π, α)-certificatecorresponding to the above choice ofα andλe’s
if the following properties are satisfied:

• π-connectivity. For i ≥ 0, any edgee ∈ Fi is πi-heavy in
Gi.

• α-overlap. For any cutC of weightwC in G, let e(C)
i be

the weight of edges that crossC in Gi. Then, for all cutsC,
Pk
i=0

e
(C)
i 2i−1

πi
≤ αwC .

Theorem 2.3 describes the sufficient condition. We gave the intu-
ition behind the theorem at the beginning of this section; a formal
proof appears in Section 4.

Theorem 2.3. If there exists a(π, α)-certificate for a particular
choice ofα and λe’s, thenGǫ ∈ (1 ± ǫ)G with probability at
least1− 4/n. FurthermoreGǫ hasO(α logn

ǫ2

P

e∈E
we
λe

) edges in
expectation.

2.2 Sparsification Algorithms
Our first algorithmic application of the general framework is to

show that the expected size of the sparsifier obtained when sam-
pling by NI indices7 isO(n log2 n/ǫ2). This proves Theorem 1.3.
In this sampling scheme,λe is the NI index of edgee. Our key
observation is that any edge in NI forestsT2i , T2i+1, . . . , T2i+1−1

is 2i−1-heavy in a graphGi = (V,Ei) containing all edges in
T2i−1 , T2i−1+1, . . . , T2i , . . . , T2i+1−1 (i.e., two successive dou-
bling ranges of NI forests). This lets us defineπi = 2i−1 and
α = 2 since each edge is present in at most twoEi’s. Since the
graphsGi are a(π, α)-certificate for this choice of parameters, we
use Theorem 2.3 to conclude that the expected size of the sparsifier
isO(n log2 n/ǫ2).

Our goal now is to improve the size of the sparsifier toO(n log n/ǫ2)
while maintaining linear running time. To this end, we abstractly
view the NI index-based sampling scheme as an iterative algorithm
that finds a set of edgesEi in iterationi (these are the edges in NI
forestsT2i , T2i+1, . . . , T2i+1−1 and are sampled with probability
Θ(log n/2i)) with the following properties:

• (P1)Each edge inEi has connectivity ofΘ(2i) in Ei−1.

• (P2)The number of edges inEi is Θ(n · 2i).

Our first observation is that property(P1)can be weakened — using
the general framework, we show it is sufficient for each edge inEi
to have connectivity ofΘ(2i) in Gi−1 = (V, Fi−1) whereFi−1 =
Ei−1 ∪ Ei ∪ . . .. Since we are aiming for a sparser sample than
7 Supposing thatwe = nO(1), one would obtain a weaker bound of
O(n log3 n/ǫ2) edges from a straightforward application of The-
orem 1.1 and the previously known fact [4] that

P

e we/ℓe =
O(n log

P

e we).



in the previous algorithm, we also need to make(P2) stricter. Our
new requirement is that the number of edges inEi−1 from any
connected componentC of Gi−1 is O(2i) times the number of
components into whichC decompose inGi. It is not difficult to
show that this stricter condition ensures that the expected number
of edges inGǫ decreases toΘ(n log n/ǫ2).

To complete the description of the algorithm, we need to give
a linear-time construction ofEi’s satisfying the above properties.
Iterationi runs on each component ofGi separately; we describe
the algorithm for any one componentC. First,(2i + 1) NI forests
T1, T2, . . . , T2i+1 are constructed inC and all edges inT2i+1 are
contracted; let the resulting graph beGC = (VC, EC). If |EC| =
O(|VC|·2i), we add the edges inEC toEi and retain the remaining
edges for iterationi + 1. Otherwise, we construct(2i + 1) NI
forests onGC, contract the edges in the(2i + 1)st NI forest, and
updateGC to this contracted graph. We repeat these steps until
|EC| = O(|VC| · 2i); then, we add the edges inEC to Ei and
retain the remaining edges for iterationi+ 1. One may verify that
properties(P1) and (P2) are satisfied by theEi’s constructed by
this algorithm.

This algorithm, with a pre-processing step where the number
of edges is reduced tõO(n) by sampling using NI indices, runs
in O(m) + Õ(n) time, and yields a sparsifier of expected size
O(n log n/ǫ2). This is already optimal for all but very sparse in-
put graphs. We need one additional idea to turn this into a strictly
linear-time algorithm for unweighted graphs. Observe that we would
ideally like to place as many edges as we can in subsetsEi for large
values ofi so as to obtain a sparseGǫ. On the other hand, the fact
that these edges are retained till the later iterative stages implies
that we pay for them in our time complexity repeatedly. To over-
come this dilemma, we use the following trick: instead of sampling
these edges with probability1/2i in iteration i, we sample them
with probability 1/2 in each iterationj < i, and retain them in the
set of edges for the next iteration only if selected in the sample.
Now, we are able to reduce the size of our edge set by a factor of
two (in expectation) in each iteration; therefore, implementing a
single iteration in linear time immediately yields a linear time al-
gorithm overall. However, this iterative sampling scheme creates
several technical hurdles since it introduces dependencies between
the sampling processes for different edges. Our key technical con-
tribution is in showing that these dependencies are mild enough for
us to continue to use the framework that we have developed above
for independent sampling of edges. We present the details of this
algorithm and its analysis in Section 5.

Weighted Graphs. Weighted graphs pose additional challenges.
First, consider a graph with super-polynomial edge weights. An
immediate concern for such graphs is that the number of doubling
categories of sampling probabilities can now be polynomial rather
than logarithmic. For example, in Theorem 1.1, the overlap over-
head will now be polynomial instead of logarithmic.

We have two techniques, each separately solving this problem.
First, a more refined use of the Chernoff bound allows us to, roughly
speaking, show that onlylog n doubling categories have substantial
contribution to the sampled weight of the cut. The analysis is intri-
cate; so we omit the details from this extended abstract. Second, we
can use thewindowing techniquedue to Benczúr and Karger [4].
The basic idea is that if the connectivity of an edgee is ke, then
removing all edges with weight at mostke/n3 and contracting all
edges with weight greater thanke does not significantly alter the
connectivity ofe. This trick lets us deal with only a polynomial
range of edge weights at any point of time, thus alleviating the prob-
lem described above. For algorithmic applications, we also need to

Algorithm 1 An algorithm for finding a smallk-projection by split-
ting off light vertices.

procedureContract(G, k, α)
input: A graphG = (V,E), a parameterk ≥ K whereK is
the weight of a minimum cut inG, and an approximation factor
α

output: ak-projection
While there exists ak-light vertexv

Perform admissible splitting-off atv until v becomes an
isolated vertex
Removev

While there are more than⌈2α⌉ vertices remaining
Pick an edgee uniformly at random
Contracte and remove any self loops
While there exists ak-light vertexv

Perform admissible splitting-off atv until v becomes
an isolated vertex
Removev

Output thek-projection of a cut selected uniformly at random

estimate the edge connectivities for making these alterations to the
input graph. The key observation (due to Benczúr and Karger) is
that amaximum spanning treecan be used to obtain a polynomial
approximation to the connectivity values, and this is sufficient for
our purpose.

Edge weights also introduce complications in the analysis of run-
ning times. Can we sample a weighted edge inO(1) time? Recall
(from the general framework) that sampling an edgee involves the
generation of a binomial random variable with parameterswe and
pe. This can be done inO(wepe) time for edgee (see e.g. [8]), and
thereforeO(

P

e∈E wepe) time overall. It can be verified that this
time complexity is asymptotically identical to the bound on the size
of the sparsifier obtained from Theorem 2.3 for the general frame-
work, and therefore can be ignored in the running time analysis.

Finally, we note that the linear-time sparsification algorithm for
unweighted graphs takesO(m) +O(n log3.5 n) time on weighted
graphs (details omitted due to space limitations).

3. CUT COUNTING
In this section,8 we will prove Theorem 1.6. Our proof strat-

egy, as outlined in the introduction, is to give an algorithm (Algo-
rithm 1) with the following property, which immediately implies
Theorem 1.6. Here,q(F ) denotes the minimum weight of a cut
whosek-projection isF .

Theorem 3.1. For anyk-heavy set of edgesF with q(F ) ≤ αk,
Algorithm 1 outputsF with probability at leastn−2α.

To describe Algorithm 1, we need some additional definitions.
A vertex is said to bek-heavyif it is incident to ak-heavy edge;
otherwise, it isk-light. The algorithm adds new edges toG; for
notational convenience, we will call these edgesk-light irrespective
of their connectivity. Therefore, thek-projection of a cut does not
include any of these edges.

Note that whenk is the minimum weight of a cut inG, there
is no k-light vertex and Algorithm 1 reduces to Karger’s random
contraction algorithm. The main idea is that we can remove the

8In the next two sections, an edge of weightw is replaced byw
unweighted parallel edges.



k-light vertices while preserving the connectivities of allk-heavy
edges by using thesplitting-offoperation. This operation replaces a
pair of edges(u, v) and(v, w) with the edge(u,w), and is said to
beadmissibleif it does not change the edge connectivity between
any two verticess, t 6= v. A deep theorem of Mader [17] asserts
that admissible splitting-off exists under mild assumptions.

Theorem 3.2(Mader [17]). LetG = (V,E) be a connected graph
wherev ∈ V is a vertex which has degree6= 3 and is not incident
to any cut edge.9 Then, there is a pair of edges(u, v) and (v, w)
such that their splitting-off is admissible.

Since uniformly scaling edge weights does not affect the condi-
tions of Theorem 3.1, we may assume thatG is Eulerian and 2-
edge-connected. Moreover these conditions are maintained in our
algorithm. Therefore the inner while loop of Algorithm 1 is feasi-
ble.

To prove Theorem 3.1, we fix ak-projectionF with q(F ) ≤ αk.
It is sufficient to show that, with good probability, the algorithm
maintains the following invariants. +

(I1): F is ak-projection in the remaining graph,

(I2): q(F ) ≤ αk (whereq(F ) now minimizes over cuts in the
remaining graph), and

(I3): every remainingk-heavy edgee has connectivity at leastk.
The only modifications to the graph made by Algorithm 1 are ad-
missible splitting-offs, contraction of edges, and removal of self-
loops. Clearly removing self-loops does not affect the invariants.
Now consider the splitting-off operation.(I1) is preserved because
we only split-offk-light edges;(I2) is preserved because splitting-
off never increases the size of any cut;(I3) is preserved because we
only split-off at a light vertex and the splitting-offs are admissible.

Lemma 3.3. Let the number of remaining vertices ber. Assuming
that the invariants hold, they will continue to hold after the con-
traction operation with probability at least1 − 2α/r.

Proof. For (I3), note that since contraction does not create new
cuts, the edge connectivity of an uncontracted edge cannot decrease.
Now consider the graph before the contraction. Since every remain-
ing vertexv is k-heavy, the degree of each vertex is at leastk; thus
the number of remaining edges is at leastkr/2. Let C be a cut
such thatF is thek-projection ofC andwC = q(F ). Note that
(I1) and (I2) are preserved if the contracted edgee /∈ C. Since
e is picked uniformly at random, the probability thate ∈ C is
P[e ∈ C] ≤ q(F )/(kr/2) = 2q(F )/kr ≤ 2α/r. �

Let the number of remaining vertices after the splitting-off opera-
tions of iterationi in Algorithm 1 beri. Then, the probability that
all the invariants hold throughout Algorithm 1, andF is the output
is at least
„

1 − 2α

r0

«„

1 − 2α

r1

«

. . .

„

1 − 2α

⌈2α⌉ + 1

«

2−(⌈2α⌉−1) ≥ n−2α.

4. THE GENERAL FRAMEWORK
We will now use Theorem 1.6 to prove Theorem 2.3. We re-use

the notation defined in section 2.1, and introduce some additional
notation. For any cutC, letF (C)

i = Fi ∩ C andE(C)
i = Ei ∩ C

for 0 ≤ i ≤ k;10 let f (C)
i = |F (C)

i | ande(C)
i = |E(C)

i |. Also, let

9A cut edgeis an edge whose removal separates a connected graph
into two disconnected components.

10For any cutC and any set of edgesZ, Z ∩ C denotes the set of
edges inZ that cross cutC.

d

f
(C)
i be the total weight of all edges inF (C)

i in the sampled graph

Gǫ. Note that the expected valueE[
d

f
(C)
i ] = f

(C)
i . We first prove a

key lemma.

Lemma 4.1. For any fixedi, with probability at least1 − 4/n2,
every cutC in G satisfies

˛

˛

˛

˛
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˛

˛
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˛

≤ ǫ
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πi · α
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(C)
i

)

Proof. By the π-connectivity property described in section 2.1,
any edgee ∈ Fi is πi-heavy inGi for any i ≥ 0. Therefore,
e
(C)
i ≥ πi. Let Cij be the set of all cutsC such thatπi · 2j ≤
e
(C)
i ≤ πi · 2j+1 − 1, j ≥ 0. We will prove that with probability at

least1−2n−2j+1

, all cuts inCij satisfy the property of the lemma.
The lemma follows by the union bound overj (keepingi fixed)
since2n−2 + 2n−4 + . . .+ 2n−2j + . . . ≤ 4n−2.

We now prove the above claim for cutsC ∈ Cij . Let X(C)
i

denote the set of edges inF (C)
i that are sampled with probability

strictly less than one; correspondingly, letx(C)
i = |X(C)

i | and let
d

x
(C)
i be the total weight of edges inX(C)

i in the sampled graphGǫ.
Since edges inF (C)

i \X(C)
i retain their weight exactly inGǫ, it is

sufficient to show that with probability at least1 − 2n−2j+1

,
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i | ≤
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πi · α
, x

(C)
i

)

for all cutsC ∈ Cij . Since each edgee ∈ X
(C)
i hasλe < 2i+1,

we can use Theorem 2.2 with the lower bound on probabilitiesp =
96α lnn

0.38·2i+1ǫ2
. There are two cases. In the first case, suppose

x
(C)
i ≤ e

(C)
i · 2i−1

πi · α
.

Then, for anyX(C)
i whereC ∈ Cij , by Theorem 2.2, we have
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sincee(C)
i ≥ πi · 2j for anyC ∈ Cij . In the second case,
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e
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Then, for anyX(C)
i whereC ∈ Cij , by Theorem 2.2, we have
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proved that
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for any cutC ∈ Cij . Now, by theπ-connectivity property, we know
that edges inF (C)

i , and therefore those inX(C)
i , areπi-heavy in

Gi. Therefore, by Theorem 1.6, the number of distinctX
(C)
i sets

for cutsC ∈ Cij is at mostn
2

„

πi·2
j+1

πi

«

= n4·2j

. Using the union
bound over these distinctX(C)

i edge sets, we conclude that with

probability at least1− 2n−2j+1

, all cuts inCij satisfy the property
of the lemma. �

We now use the above lemma to prove Theorem 2.3.
Proof (of Theorem 2.3). Lemma 4.1 bounds the sampling error
for a fixedi. In this theorem we bound the total error by summing
from i = 0, . . . , k. Recall thatk ≤ n− 1.

LetwC andcwC be the weight of edges crossing a cutC inG and
Gǫ respectively. By a union bound, the conclusion of Lemma 4.1
holds for every value ofi with probability at least1 − 4/n. There-
fore

k
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for all cutsC. Then, with probability at least1 − 4/n,
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e
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≤ wC

by theα-overlap property, and

k
X

i=0

f
(C)
i ≤ wC

sinceF (C)
i ’s form a partition of the edges inC.

We now prove the bound on the expected number of edges inGǫ.
The expected number of distinct edges inGǫ is

X

e∈E

(1 − (1 − pe)
we) ≤

X

e

wepe.

The bound follows by substituting the value ofpe. �

4.1 Sampling using Edge Connectivities
We now use the general framework to prove Theorem 1.1. For

any edgee = (u, v), setλe to the connectivityke of e; also setα =
3 + lg n andπi = 2i−1. Fi is defined as the set of all edgese with
2i ≤ λe ≤ 2i+1−1 for anyi ≥ 0. For anyi ≥ 1+lg n, letGi con-
tain all edges in NI forestsT2i−1−lg n , T2i−1−log n+1, . . . , T2i+1−1

and all edges inFi. Fori ≤ lg n,Gi contains all edges inT1, T2, . . . , Ti
and all edges inFi. For anyi ≥ 0, let Yi denote the set of edges
in Gi but not inFi. For anyi 6= j, Fi ∩ Fj = ∅ and each edge
appears inYi for at most2+ log n different values ofi; this proves
α-overlap. To proveπ-connectivity, we note that for any pair of
verticesu, v with connectivity11 k(u, v) and for anyi ≥ 1, u, v are

11The connectivity of a pair of vertices is the minimum weight of a
cut separating them.

at leastmin{k(u, v), i}-connected in the firsti NI forests, i.e. in
T1 ∪ T2 ∪ . . . ∪ Ti. Thus, any edgee ∈ Fi is at least2i-heavy in
the (union of) the NI forestsT1, T2, . . . , T2i+1−1. Since there are
at most2i−1 edges overall inT1, T2, . . . , T2i−1−lg n−1, any edge
e ∈ Fi is 2i−1-heavy inGi. This provesπ-connectivity. Theo-
rem 1.1 now follows directly from Theorem 2.3 and Lemma 2.1.

5. LINEAR-TIME ALGORITHM
The algorithm has three phases. The first phase has the following

steps:

• If m ≤ 2ρn, whereρ = 1014 lnn
0.38ǫ2

, thenGǫ = G.

• Otherwise, we construct a set of NI forests ofG and all edges
in the first2ρ NI forests are included inGǫ with weight one.
We call these edgesF0. The edge setY0 is then defined as
E \ F0.

The second phase is iterative. The input to iterationi is a graph
(V, Yi−1), which is a subgraph of the input graph to iterationi− 1
(i.e. Yi−1 ⊆ Yi−2). Iterationi comprises the following steps:

• If the number of edges inYi−1 is at most2ρn, we take all
those edges inGǫ with weight2i−1 each, and terminate the
algorithm.

• Otherwise, all edges inYi are sampled with probability1/2;
call the sampleXi and letGi = (V,Xi).

• We identify a set of edges inXi (call this setFi) that has the
following properties:

– The number of edges inFi is at most2ki|Vc|, where
ki = ρ · 2i+1, andVc is the set of components in
(V, Yi), whereYi = Xi \ Fi.

– Each edge inYi is ki-heavy inGi.

• We give a sampling probabilitypi = min
˘

3
169·22i−9 , 1

¯

to
all edges inFi.

The final phase consists of replacing each edge inFi (for eachi)
with 2i parallel edges, and then sampling each parallel edge inde-
pendently with probabilitypi. If an edge is selected in the sample,
it is added toGǫ with weight1/pi.

We now give a short description of the sub-routine that constructs
the setFi in the second phase of the algorithm. This sub-routine
is iterative itself: we start withVc = V andEc = Xi, and let
Gc = (Vc, Ec). We repeatedly constructki + 1 NI forests forGc
whereki = ρ · 2i+1 and contract all edges in the(ki + 1)st forest
to obtain a newGc, until |Ec| ≤ 2ki|Vc|. The set of edgesEc that
finally achieves this property formsFi.

The complete algorithm is given in Algorithm 2.

Cut Preservation. We use the following notation throughout: for
any set of unweighted edgesZ, cZ denotes these edges with a
weight of c given to each edge. Our goal is to prove the follow-
ing theorem.

Theorem 5.1. Gǫ ∈ (1 ± ǫ)G with probability at least1 − 8/n.

Let K be the maximum value ofi for which Fi 6= ∅; let S =
`

∪Ki=02
iFi
´

∪ 2KYK andGS = (V, S). Then, we prove the fol-
lowing two theorems, which together yield Theorem 5.1 using the
union bound.12

12Observe that sinceǫ ≤ 1, (1 + ǫ/3)2 ≤ 1 + ǫ and(1 − ǫ/3)2 ≥
1 − ǫ.



Algorithm 2 The linear-time sparsification algorithm.
procedureSparsify(G)
input: An undirected unweighted graphG = (V,E), a param-
eterǫ ∈ (0, 1)

output: An undirected weighted graphGǫ = (V,Eǫ)

Setρ = 1014 lnn
0.38ǫ2

.
If m ≤ 2ρn, thenGǫ = G and terminate; else, continue.
Construct NI forestsT1, T2, . . . for G.
Seti = 0; X0 = E; F0 = ∪1≤j≤2ρTj ; Y0 = X0 \ F0.
Add each edge inF0 toGǫ with weight 1.
OuterLoop: If |Yi| ≤ 2ρn, then add each edge inYi to Gǫ
with weight2i−1 and terminate; else, continue.
Sample each edge inYi with probability 1/2 to constructXi+1.
Incrementi by 1; setEc = Xi; Vc = V ; ki = ρ · 2i+1.
InnerLoop: If |Ec| ≤ 2ki|Vc|, then

SetFi = Ec; Yi = Xi \ Ec.
For each edgee ∈ Fi, setλe = ρ · 4i.
Go toOuterLoop.

Else,
Construct NI forestsT1, T2, . . . , Tki+1 for graphGc =
(Vc, Ec).
UpdateGc by contracting all edges inTki+1.
Go toInnerLoop .

For eachi, for each edgee ∈ Fi,

Setpe = min
n

9216 lnn
0.38λeǫ2

, 1
o

= min
˘

3
169·22i−9 , 1

¯

.

Generatere from Binomial(2i, pe).
If re > 0, add edgee toGǫ with weightre/pe.

Theorem 5.2.GS ∈ (1±ǫ/3)G with probability at least1−4/n.

Theorem 5.3.Gǫ ∈ (1±ǫ/3)GS with probability at least1−4/n.

The following property is key to proving both theorems.

Lemma 5.4. For anyi ≥ 0, any edgee ∈ Yi is ki-heavy inGi =
(V,Xi), whereki = ρ · 2i+1.

Proof. Since all edges inY0 are in NI forestsT2ρ+1, T2ρ+2, . . . of
G0 = G, the lemma holds fori = 0.

We now prove the lemma fori ≥ 1. LetGe = (Ve, Ee) be the
component ofGi containinge. We will show thate is ki-heavy
in Ge; sinceGe is a subgraph ofGi, the lemma follows. In the
execution of the else block ofInnerLoop onGe, there are multiple
contraction operations, each comprising the contraction of a set of
edges. We show that any such contracted edge iski-heavy inGe;
it follows thate is ki-heavy inGe.

LetGe havet contraction phases and let the graph produced af-
ter contraction phaser beGe,r. We now prove that all edges con-
tracted in phaser must beki-heavy inGe by induction onr. For
r = 1, sincee appears in the(ki + 1)st NI forest of phase 1,e is
ki-heavy inGe. For the inductive step, assume that the property
holds for phases1, 2, . . . , r. Any edge that is contracted in phase
r + 1 appears in the(ki + 1)st NI forest of phaser + 1; therefore,
e is ki-connected inGe,r. By the inductive hypothesis, all edges of
Ge contracted in previous phases areki-heavy inGe; therefore, an
edge that iski-heavy inGe,r must have beenki-heavy inGe. �

Proof of Theorem 5.2.First, we state a property of edge sampling.
LetR ⊆ Q be subsets of edges such thatR is π-heavy in(V,Q).

Suppose each edgee ∈ R is sampled with probabilityp, and if
selected, given a weight of1/p to form a set of weighted edgesbR.

Now, for any cutC in G, letR(C), Q(C) andR̂(C) be the sets of
edges crossing cutC in R, Q and bR respectively; also let the total

weight of edges inR(C), Q(C) andR̂(C) be r(C), q(C) anddr(C)

respectively. Then the following lemma holds.

Lemma 5.5. For anyδ ∈ (0, 1] satisfyingδ2pπ ≥ 6 lnn
0.38

,

|r(C) − dr(C)| ≤ δq(C)

for all cutsC, with probability at least1 − 4/n2.

Proof. Let Cj be the set of all cutsC such that

2j · π ≤ r(C) ≤ 2j+1 · π − 1

for eachj ≥ 0. We will prove that with probability at least1 −
2n−2j+1

, all cuts inCj satisfy the property of the lemma. Then,
the lemma follows by using the union bound overj since

2n−2 + 2n−4 + . . .+ 2n−2j + . . . ≤ 4n−2.

We now prove the property for cutsC ∈ Cj . Since each edge

e ∈ R(C) is sampled with probabilityp in obtainingR̂(C), we can
use Theorem 2.2 with sampling probabilityp. Then, for anyR(C)

whereC ∈ Cj , by Theorem 2.2, we have

P

h
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˛

˛

dr(C) − r(C)
˛

˛

˛

> δq(C)
i

< 2e−0.38·δ2·p·q(C)

≤ 2e−0.38·δ2·p·π·2j ≤ 2e−6·2j lnn = 2n−6·2j

,

sinceq(C) ≥ π · 2j for anyC ∈ Cj . Since each edge inR(C) is
π-heavy in(V,Q), Theorem 1.6 ensures that the number of distinct

R(C) sets for cutsC ∈ Cj is at mostn
2

„

π·2j+1

π

«

= n4·2j

. Using
the union bound over these distinctR(C) edge sets, we conclude

that with probability at least1− 2n−2j+1

, all cuts inCj satisfy the
property of the lemma. �

The next lemma follows as a corollary of Lemma 5.5 withR =

Yi, Q = Xi, bR = 2Xi+1, δ = ǫ/13

2i/2 , p = 1/2 andπ = ρ · 2i+1.

Lemma 5.6. With probability at least1 − 4/n2, for every cutC
in Gi, |2x(C)

i+1 + f
(C)
i − x

(C)
i | ≤ ǫ/13

2i/2 · x(C)
i , wherex(C)

i , x
(C)
i+1

andf (C)
i respectively denote the weight ofXi ∩C,Xi+1 ∩C and

Fi ∩ C.

We use the above lemma to prove the following lemma, of which
Theorem 5.2 is a corollary forj = 0.

Lemma 5.7. LetSj =
`

∪Ki=j2i−jFi
´

∪ 2K−jYK for anyj ≥ 0.

Then,Sj ∈ (1± (ǫ/3)2−j/2)Gj with probability at least1− 4/n,
whereGj = (V,Xj).

Proof. To prove this lemma, we need to use the following fact
(proof omitted due to space constraints).

Fact 5.1. Letx ∈ (0, 1] andri = 13 · 2i/2. Then, for anyk ≥ 0,

k
Y

i=0

(1 + x/ri) ≤ 1 + x/3

k
Y

i=0

(1 − x/ri) ≥ 1 − x/3.



For any cutC in G, let the edges crossingC in Sj beS(C)
j , and let

their total weight bes(C)
j . Also, letX(C)

i , Y (C)
i andF (C)

i be the
set of edges crossing cutC in Xi, Yi andFi respectively, and let
their weights bex(C)

i , y(C)
i andf (C)

i .
SinceK ≤ n− 1, we can use the union bound on Lemma 5.6 to

conclude that with probability at least1−4/n, for every0 ≤ i ≤ K
and for all cutsC,
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whereri = 13 · 2i/2. Then,
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K−2 + . . .)

≤ (1 + ǫ/rK−1)2
K−1−jx

(C)
K−1 + (2K−2−jf

(C)
K−2 + . . .)

≤ (1 + ǫ/rK−1)(2
K−1−jx

(C)
K−1 + 2K−2−jf

(C)
K−2 + . . .)

. . .

≤ (1 + ǫ/rK−1)(1 + ǫ/rK−2) . . . (1 + ǫ/rj)x
(C)
j

≤ (1 + (ǫ2−j/2)/rK−1−j)(1 + (ǫ2−j/2)/rK−2−j) . . .

. . . (1 + (ǫ2−j/2)/r0)x
(C)
j since rj+i = ri · 2j/2

≤ (1 + (ǫ/3)2−j/2)x
(C)
j by Fact 5.1.

Similarly, we can show thatsCj ≥ (1 − (ǫ/3)2−j/2)x
(C)
j . �

Proof of Theorem 5.3. First, observe that edgesF0 ∪ 2KYK are
identical inGS andGǫ. Therefore, we do not consider these edges
in the analysis below. For anyi ≥ 1, letψ(i) be such that2ψ(i) ≤
ρ · 4i ≤ 2ψ(i)+1 − 1. Note that for anyj, ψ(i) = j for at most one
value ofi. Then, for anyj ≥ 1,Rj = Fi if j = ψ(i) andRj = ∅ if
there is noi such thatj = ψ(i). We setα = 32/3; πj = ρ ·4K ; for
anyj ≥ 1, Qj = (V,Wj) whereWj = ∪i−1≤r≤K4K−r+12rFr
if Rj 6= ∅ andj = ψ(i), andWj = ∅ if Rj = ∅.

The following lemma ensuresπ-connectivity.

Lemma 5.8. With probability at least1 − 4/n, every edgee ∈
Fi = Rψ(i) for eachi ≥ 1 is ρ · 4K -heavy inQψ(i).

Proof. Consider any edgee ∈ Fi. SinceFi ⊆ Yi−1, Lemma 5.4
ensures thate is ρ · 2i-heavy inGi−1 = (V,Xi−1), and therefore
ρ · 22i−1-heavy in(V, 2i−1Xi−1). Sinceǫ ≤ 1, Lemma 5.7 en-
sures that with probability at least1 − 4/n, the weight of each
cut in (V, 2i−1Xi−1) is preserved up to a factor of 2 inZi =
(V,∪i−1≤r≤K2rFr). Thus,e is ρ · 4i−1-heavy inZi.

Consider any cutC containinge ∈ Fi. We need to show that
the weight of this cut inQψ(i) is at least4K . Let the maximum
λa of an edgea in C beρ · 4kC , for somekC ≥ i. By the above
proof,a is ρ ·4kC−1-heavy inZkC . Then, the total weight of edges
crossing cutC inQψ(kC) is at leastρ ·4kC−1 ·4K−kC+1 = ρ ·4K .
Sincekc ≥ i, ψ(kC) ≥ ψ(i) andQψ(kC) is a subgraph ofQψ(i).
Therefore, the the total weight of edges crossing cutC in Qψ(i) is
at leastρ · 4K . �

We now prove theα-overlap property. For any cutC, let f (C)
i

andw(C)
i respectively denote the total weight of edges crossing cut

C in Fi andWψ(i) respectively for anyi ≥ 0. Further, let the

number of edges crossing cutC in ∪Ki=02
iFi be f (C). Then, we

have the following bound:
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22i+1 =
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K
X
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2rf (C)
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32

3
f (C).

Using Theorem 2.3, we conclude the proof of Theorem 5.3.

Size ofGǫ. We now prove that the expected number of edges inGǫ
isO(n log n/ǫ2). For i ≥ 1, defineDi to be the set of connected
components in the graphGi = (V,Xi); letD0 be the single con-
nected component inG. For anyi ≥ 1, if any connected compo-
nent inDi remains intact inDi+1, then there is no edge from that
connected component inFi. On the other hand, if a component
in Di splits into η components inDi+1, then the algorithm ex-
plicitly ensures that

P

e∈Fi

we
λe

13 from that connected component

is
P

e∈Fi

2i

ρ·4i ≤
“

ρ·2i+2·2i

ρ·4i

”

η = 4η ≤ 8(η − 1). Therefore, if

di = |Di|, then

K
X

i=1

X

e∈Fi

we
λe

≤
K
X

i=1

8(di+1 − di) ≤ 8n,

since we can have at mostn singleton components. It follows from
Theorem 2.3 that the expected number of edges added toGǫ by the
sampling isO(n log n/ǫ2).

Time complexity. If m ≤ 2ρn, the algorithm terminates after the
first step which takesO(m) time. Otherwise, we prove that the
expected running time of the algorithm isO(m + n log n/ǫ2) =
O(m) sinceρ = Θ(log n/ǫ2). First, observe that phase 1 takes
O(m + n log n) time. In iterationi of phase 2, the first step takes
|Yi−1| time. We will show that all the remaining steps takeO(|Xi|+
n log n) time. SinceXi ⊆ Yi−1 and the steps are executed only
if Yi−1 = Ω(n log n/ǫ2), it follows that the total time complex-
ity of iteration i of phase 2 isO(|Yi−1|). SinceYi ⊂ Xi and
E[|Xi|] = E[|Xi−1|]/2, and|Y0| ≤ m, it follows that the expected
overall time complexity of phase 2 isO(m). Finally, the time com-
plexity of phase 3 isO(m+ n log n/ǫ2) (see e.g. [8]).

We are now left to prove that all, except the first step, of it-
eration i in phase 2 takesO(|Xi| + n log n) time. Each itera-
tion of the else block takesO(|Vc| log n + |Ec|) time for the cur-
rent Gc = (Vc, Ec). So, the last invocation of the else block
takes at mostO(|Xi| + n log n) time. In any other invocation,
|Ec| = Ω(|Vc| log n) and hence the time spent isO(|Ec|). Now,
consider an iteration that begins with|Ec| > 2ki · |Vc|. Note that
Ec for the next iteration (denoted byE′

c) comprises only edges in
the firstki NI forests constructed in the current iteration. Hence,
|E′
c| ≤ ki · |Vc| < |Ec|/2. Since|Ec| decreases by a factor of 2

from one invocation of the else block to the next, the total time over
all invocations of the else block isO(|Xi| + n log n).

13we is the number of parallel copies ofe in the Binomial sampling
step.



6. LOWER BOUND
We have already noted that independent sampling of edges can-

not produce sparsifiers containingo(n log n) edges. A possible
alternative is to sample spanning trees uniformly at random, and
Theorem 1.2 asserts that this sampling technique indeed produces
cut sparsifiers. We now give a lower bound for the tradeoff between
the number of trees (i.e., the valueρ) and the quality of sparsifica-
tion in Theorem 1.2.

Lemma 6.1. For any constantc ≥ 1, there is a graph such that
ρ = Ω(log n) spanning trees have to be sampled uniformly at ran-
dom to approximate all cuts within a factorc with constant proba-
bility.

Proof. LetG be a graph defined as follows. The set of vertices inG
is {u1, . . . , un} ∪ {v1, . . . , vn+1}. For everyi = 1, . . . , n, there
arek parallel edgesviv

(1)
i+1, . . . , viv

(k)
i+1, and a single length-two

pathvi-ui-vi+1. The edgesviv
(j)
i+1 are calledheavy, and the edges

viui anduivi+1 are calledlight. Note that the heavy edges each
have effective conductance exactly(2k + 1)/2. The light edges
each have effective conductance exactly(2k + 1)/(k + 1) < 2.

A uniform random spanning tree in this graph can be constructed
by repeating the following experiment independently for eachi =
1, . . . , n. With probability2k/(2k + 1), add a uniformly selected
heavy edgeviv

(j)
i+1 to the tree, and add a uniformly selected light

edgeviui or uivi+1 to the tree. In this case we say that the tree is
“heavy in positioni”. Otherwise, with probability1/(2k+ 1), add
both light edgesviui anduivi+1 to the tree but no heavy edges. In
this case we say that the tree is “light in positioni”.

Our sampling procedure produces a sparsifier that is the union
of ρ trees, where every edgee in the sparsifier is assigned weight
ce/ρ. Suppose there is ani such that all sampled trees are light in
positioni. Then the cut defined by vertices{v1, u1, v2, u2, . . . , vi}
has weight exactly(2k+1)/(k+1) < 2 in the sparsifier, whereas
the true value of the cut isk + 1.

The probability that at least one tree is heavy in positioni is
1 − (2k + 1)−ρ. The probability that there exists ani such that
every tree is light in positioni is p = 1 − (1 − (2k + 1)−ρ)n.
Supposeρ = lnn/ ln(2k + 1). Thenlimn→∞ p = 1 − 1/e. So
with constant probability, there is ani such that every tree is light
in positioni, and so the sparsifier does not approximate the original
graph better than a factork+1

2
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