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ABSTRACT General Terms

We present a general framework for constructing cut sparsifiers Theory, Algorithms
in undirected graphs — weighted subgraphs for which every cut
has the same weight as the original graph, up to a multiplicative
factor of (1 + €). Using this framework, we simplify, unify and Keywords
improve upon previous sparsification results. As simple instantia- Graph Sparsification, Edge Connectivity, Sampling
tions of this framework, we show that sparsifiers can be constructed
by sampling edges according to thsirength(a result of Benczir 1 INTRODUCTION
and Karger)effective resistancé result of Spielman and Srivas- ) ) 5
tava), edge connectivityor by samplingrandom spanning trees Can any dense graph be appro?(lm?ted“by a sparse graph? Sur-
Sampling according to edge connectivity is the most aggressive Prisingly, the answer is a resounding “yes”, under a variety of no-
method, and the most challenging to analyze. Our proof that this ions of approximation. For example, given any undirected graph,
method produces sparsifiers resolves an open question of BenczufN€re are sparse subgraphs that approximeairwise distances
and Karger. up to a multiplicative and/or additive error (see [22] and subsequent
While the above results are interesting from a combinatorial stand/€S€arch oispanner, everycut to an arbitrarily small multiplica-
point, we also prove new algorithmic results. In particular, we Ve €rror [3, 4] (calledcut sparsifiery, every eigenvalue to an ar-
develop techniques that give the first (optiméljm)-time spar- bltrarl_ly small multiplicative error [2, '25, _2{(), 27] (callespectral
sification algorithm for unweighted graphs. Our algorithm has a SParsifiery, and so on. Such approximations are a cornerstone of
running time of O(m) + O(n/¢?) for weighted graphs, which ~ humerous important results in theoretical computer science.
is also linear unless the input graph is very sparse itself. In both N this work, we consider the problem of approximating every
cases, this improves upon the previous best running times (due toCut arbitrarily well; tf,]IS problem was originally studied by Karger
Bencz(r and Karger) ad(m log? n) (for the unweighted case) and [0, 11] and Benczlr and Karger [3, 4]. They proved that every
O(mlog®n) (for the weighted case) respectively. Our algorithm undlre_cted graph Wlt_ln vertices andn edges (and_potentlally nor21-
constructs sparsifiers that contaiin log n/¢?) edges in expecta- ~ Negative weights onits edges) has a subgraph with@filylog n/c”)
tion; the only known construction of sparsifiers with fewer edges is ©d9es (and a different set of weights on those edges) such that, for
by a substantially slower algorithm running@(n°m /<?) time. every cut, the weight of the_cut_ in the original graph and its sub-
A key ingredient of our proofs is a natural generalization of 9raph agree up to a multiplicative factor @f + ¢). Such a sub-
Karger's bound on the number of small cuts in an undirected graph. 9raPh is called aut sparsifief or simply asparsifier Benczirand
Given the numerous applications of Karger's bound, we suspect _Karger also gave a randomized algorithm to construct a sparsifier

2 0\ i ; 3,0\ §i
that our generalization will also be of independent interest. in O(mlog”n) time for unweighted graphs ar@(rn log” n) time
for weighted graphs. Their result has now become a standard tool

with widespread use in the design of fast algorithms relating to cuts
and flows [3, 4, 5, 13, 15, 18, 24].
Categories and Subject Descriptors Spielman and Teng [27] realized that a stronger notion of sparsi-
fication would be useful for efficiently solving systems of linear
equations defined by Laplacian matrices. They definegpexc-
tral sparsifierto be a weighted subgraph such that the quadratic
forms defined by the Laplacians of these two graphs agree up to
a multiplicative factor of(1 + €). Spectral sparsifiers are also cut
sparsifiers, as can be seen by evaluating these quadratic forms at

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

Permission to make digital or hard copies of all or part of thizkwfor {0, 1}-vectors. An efficient algorithm to construct a spectral spar-
personal or classroom use is granted without fee providaetidbpies are sifier with O(n log n/€) edges in expectation was given by Spiel-
not made or distributed for profit or commercial advantage aatidbpies man and Srivastava [25]; using later improvements to linear system
bear this notice and the full citation on the first page. Toyooiherwise, to solvers [[16], this algorithm runs i®(mlog®n) time. Further-

republish, to post on servers or to redistribute to listguies prior specific more, a spectral sparsifier with 0nﬂ3](n/e2) edges can be com-
permission and/or a fee. !
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follow the same basic approach. First, they replace eachedfe
weightw, in the input graphG by w. parallel unweighted edggs.
Now, each unweighted edge is sampled independently with prob-
ability p. = min{p/\., 1} for some parameters \.; if chosen,

the weight of edge is increased in the sparsifiéf. by 1/p.. Both
algorithms choosg = ©(logn/c), but differ in their choice of

Ae.
In order to describe their respective choice of parametgrse
require some definitions. For an edget), the (local)edge con-
nectivity betweens andt, denotedk.., is defined to be the min-
imum weight of a cut that separatesand¢. The effective con-
ductanceof edge(s, t), denotedcs,, is the amount of current that
flows when each edge of weight w. is viewed as a resistor of
valuel/w. and a unit voltage difference is imposed betweemd

t. Theeffective resistancef (s, t) is 1/cs:. A k-strong component

of G is a maximalk-edge-connected, vertex-induced subgraph of
G. Thestrengthof edge(s, t), denotedk’,, is the maximum value

of k such that &-strong component off contains boths andt.
Informally, all three ofks:, cs: andk., measure the connectivity
betweens andt.

Benczlr and Karger requirk. < k., whereas Spielman and
Srivastava require. < c.. These hypotheses are incomparable
sincek,, can beQ)(n) times larger tham; or vice versa. However
kst > max {cst, ki, } always holds.

Sampling by Edge Connectivities.The primary objective of this
paper is to consider the more aggressive regime of sampling ac-
cording to edge connectivities, i.8\, < k.. In fact, Benczur and
Karger [4] conjectured that such a sampling scheme would also
produce sparsifiers, and this would result in a simpler analysis and
simpler algorithms. Our work proves this conjecture. Thedrem 1.1
is a succinct corollary of our main theorem; more general results
are described in Section 2.

Theorem 1.1. Let G. be obtained from a weighted grapgh by
independently sampling edgevith probabilityp. = p/A., where
p = O(log?n/e?) and). = k.. ThenG. containsO(n log® n/e*)
edges in expectation, ar@, € (1 + )G whp?3

Sincek. > max {c., k. }, our aggressive sampling scenario sub-
sumes the scenarios of Benczur-Karger and of Spielman-Srieastav

Then the sampled graph is certainly connected after choosing just
one tree. Furthermore, sampling uniformly random spanning trees
is closely related to sampling according to effective conductances,
which leads to the following theorem.

Theorem 1.2. Let G be a weighted graph. Lef. be the union
of p = O(log?®n/e*) uniformly random trees where each edge
is assigned weight. /p. ThenG. hasO(nlog® n/€®) edges and
G. € (1£¢)G, whp.

Surprisingly, we cannot take = o(logn) here either. For any
constant > 1, if we wish to approximate all cuts to within a factor

¢, we show in section 6 that the sampling process of Theorem 1.2
requiresp = Q(logn).

1.1 Sparsification Algorithms

Our framework yields sparsification algorithms that are not only
simpler, but also faster. By a slight modification of known tech-
niques [4], we can bound the edge connectivifiesand derive a
linear-time algorithm that produces sparsifiers vitfn log? n/e?)
edges. This simple resultis stated below as Thebrem 1.3. A stronger
result is given by Theorem 1.4, in which a more sophisticated ap-
proach is used to construct sparsifiers vt log n/¢®) edges in
O(m) + O(n/é?) time.

Sampling by Nagamochi-Ibaraki indices.Nagamochi and Ibaraki
devised a very simple method that finds good estimates to all edge
connectivities. Their method simply partitions the graph into a
sequence of maximal spanning forests. It can be implemented in
O(m)-time for unweighted graphs [21], adélm + n log n)-time
for weighted graphs [20].

More formally, a set of edge-disjoint spanning forests
T, Ts,..., Ty ofagraphG is said to be &agamochi-Ibaraki (NI)
forestpacking ifT; is a spanning forest on the edges lefGrafter
removing those iy, T, ..., T;—1. For weighted graphs, an edge
with weightw,. must appear i, contiguous forests. Thel index
of edgee, denoted/., is the index of thdast NI forest in whiche
appears. We obtain the following theorem as a simple instantiation
of our general framework.

Theorem 1.3. Let G. be obtained from a weighted graph by

the main caveat being that Spielman and Srivastava prove spec-independently sampling edgevith probabilityp. = p/\., where

tral sparsification whereas we do not. On top of unifying these
results, we also extend our technique to obtain a general sparsifi-
cation framework and set out sufficient conditions for a sampling

p = O(logn/c?) and\. = £.. ThenG. containsO(n log®n/c*)
edges in expectation, and. € (1 &+ ¢)G whp. Moreover, this
algorithm runs inO(m) time.

scheme to result in good sparsifiers. This lets us show that some

other natural sampling schemes also yield sparsifiers.

Sampling by Random Spanning TreesCan we sep = o(logn)

in the above sampling schemes? Unfortunately not. To see this,
consider a clique of. vertices — ifp = o(logn) and\. = k.

then with probability tending té the sampled graph would be dis-

connected and hence not approximate the original graph. Such exfor unweighted graphs an@(m)

Linear-time Sparsification Algorithm. We improve the above al-
gorithm further in the next theorem.

Theorem 1.4. There is an algorithm that produces sparsifiers con-
taining O(n logn/€*) edges in expectation, and runs@{m) time
+ O(n/e®) time for weighted

amples also show that the Bencz(r-Karger and Spielman-Srivastaved'aPhs.

algorithms requir€2(n log n) edges.
One way to circumvent these examples is via dependent sam-

pling, such as sampling spanning trees. This idea was explored by

Goyal et al./[7] and was the key approach in the recent progress on
ATSP [1]. Suppose we samppeuniformly random spanning trees.

we assume throughout that all edge weights are integers.

2 G, € (1 =+ €)G will denote thatG. approximates every cut iff
to within a multiplicative factor of 1 + ¢).

3 A property is said to holavith high probability(or whp) if it does
not hold with probability inverse polynomial in.

Note that this algorithm has optimal time complexity for unweighted
graphs; for weighted graphs, the time complexity is slightly sub-
optimal if the input graph is already very sparse. The previous best
time complexity for an identical guarantee on the size of the spar-
sifier wasO(mlog? n) for unweighted graphs, an@(mlog® n)

for weighted graphs [4]. On the other hand, the only known algo-
rithm that constructs sparsifiers with fewer edges takes>m/e?)

time [2], which is substantially slower. Our sparsification algorithm
improves the running time for the numerous applications of sparsi-
fiers for dense input graphs (e.g. [13,/15, 18, 24]).



1.2 Cutcounting

An important ingredient in our proofs is an extension of Karger’s
random contraction algorithm for computing global minimum cuts
[9, 14]. We give a variant of this algorithm that interleaves ran-
dom edge contractions with edgplitting-offoperations. The main
purpose is to prove a generalization of the following cut counting
theorem.

Theorem 1.5(Karger [9, 14]) For anya > 1, the number of cuts
of weight at mostvK in an undirected weighted graph is at most
n?*, whereK is the minimum weight of a cut in the graph.

Figure 1: An example of a graph where Karger’s cut count-

To state our generalization, we need some definitiOI’IS. An edge iSing theorem is not sufﬁcient to prove that samp“ng using edge

said to bek-heavyif the edge connectivity of its endpoints is at
leastk; otherwise, it is said to bk-light. Thek-projectionof a cut

is the set ofk-heavy edges in it. Intuitively, we show that the large
number of cuts of sizeK for large «, as predicted by Karger's
theorem, arises frormanydistinct k-projections of these cuts for
small values of, while there aréewdistinctk-projections of these
cuts for large values of.

Theorem 1.6. LetG = (V, E) be a weighted, undirected graph.
For any k and anya > 1, the number of distindt-projections in
cuts of weight at mostk is at mostn 2,

(Note that this theorem reduces to Karger’s cut counting theorem

by settingk to the weight of a global minimum cut.) Given the
numerous applications of Karger’s theorem, e.g. [1, 6, 12, 23], we
suspect our generalization may be of further interest.

Roadmap. The next section contains an overview of the techniques

used in obtaining the various results outlined above. Section 3 con-

tains a proof of the cut counting theorem (Theofem 1.6), which

is used in the proofs of the general framework presented in Sec-

tion/4. We use the general framework to obtain Thedrem 1.1 in
Section 4.1. We present the linear-time sparsification algorithm in

connectivities yields a good sparsifier.

Now, consider a cut containindy edges. Since edges are sampled
independently, Chernoff bounds (see e.g. [19]) ensure thdaihe
ure probability for this cut (i.e., the probability that the sampled
weight of the cut is notiff1 + €)A) is 1/n(A/™ If A = O(n),

this bound is inverse polynomial im. But there are exponentially
many cuts; so a naive union bound that multiplies this probability
by the number of cuts will not work.

A slightly more refined analysis would observe that there are
only n®A/™) cuts withA edges, either by a direct counting argu-
ment or by applying Karger’s cut counting theorem (Thedrem 1.5).
Since each such cut has failure probabilifgn**/™ , we can ap-
ply a union bound for each value df. Summing over all values of
A gives an overall failure probability that is inverse polynomial in
n.

Unfortunately, this technique does not work for all graphs. For
example, consider the graph in Figlre 1. Here, the connectivity
of each edge is two, except that of the t) edge isO(n). Now,

Section 5. Finally, some sampling lower bounds are presented inconsider any cut separatingandt in this graph. Thes,t) edge

Section 6.

2. OVERVIEW OF OUR TECHNIQUES

Ouir first goal is to demonstrate sampling using edge connectivi-
ties, thereby proving Theorém 1.1. The basic intuition behind spar-
sification is two-fold:

1. Edges that areell-connectdllare less critical to maintain-
ing connectivity of the graph and can hence be sampled a
lower probabilities than those that are not well-connected.

has the lowest sampling probability=(©(logn/n)), and there-

fore has high variance in the sampled weight even though all the
other edges have low variance. Unfortunately, the Chernoff bound
does not recognize this difference in variance between the edges
and yields a failure probability inverse polynomialqin This is

too weak, for we have to union bound over the exponentially many
cuts separating andt. The problem lies in the use of the Cher-
noff bound — in spite of most edges in the cut being sampled at

t a relatively high probability (thereby reducing the variance of the

sample), the Chernoff bound is very weak. To overcome this prob-
lem, we partition the edges of a cut in doubling rangés®, 2* —1]

. Most edges in a dense graph are well-connected; hence, mosbf their connectivity, and apply Chernoff bounds on each of these

edges can be sampled at low probabilities leading to a sparsesets separately. Since edges in any such set (call the set of edges

sample.

Suppose we sample edgeat probabilityp. = O(logn/k.) and
give it a weight ofl /p. in G. if selected. The next lemma formal-
izes (2).

Lemma 2.1. For any undirected, weighted grapfi = (V, E)
wherew,. andk. respectively represent the weight and connectivity

ofedgee, > .. p 7 <n— 1

Formalizing (1) turns out to be more tricky. For example, consider
the complete graph on vertices. Here, all edges have connectiv-
ity n — 1, and therefore are sampled at probabif@ylogn/n).

“The exact definition ofvell-connectednessaries from one spar-
sification scheme to another.

having connectivity in the range’~*, 2¢ — 1] thei-segmenbf the

cut) are sampled at roughly the same probability, the bounds ob-
tained are tighter, especially for small valuesiofWe run into a
technical hurdle here. Consider the example in Figure 1.(3he

edge is in a connectivity range on its own, and clearly one cannot
obtain tight concentration bounds for just one edge. However, ob-
serve that whether this single edge appears in the sample has almost
no bearing on the quality of the sample. To formalize this intuition,
we will use the following generalization of the Chernoff bound.

Theorem 2.2. Let X, X, ..., X,, ben random variables such
that X; takes valud /p; with probabilityp; and 0 otherwise. Then,
for any p such thatp < p; for eachi, anye € (0,1), and any



N > n, the following bound holds: pe result in a sparséi. that satisfies7. € (1 £ ¢)G whp? Let

n , Pe = min { Hann, 1}, wherea is independent oé and ). is
—0.38¢“pN X € A . .
P [ > Xi—n|> fN] <2 P some parameter efsatisfyingh. < 2" — 1. The exact choice of
i=1 values fora and the).’s will vary from application to application.
When we apply the above theorem to theegment of a cut’, we However, we describe below a sufficient condition that character-

setV to the weight of the cutvc, thereby obtaining a meaningful ~ izes agoodchoice ofo andA.’s.

tail bound. For example, in Figure 1, if a segment comprises the 10 describe this sufficient condition, partition the edgesGin
solitary (s, ¢) edge, we define the failure event as a deviation of according to the value of. into setsFy, F, ..., Fy wherek =
en from the expected value of one, thereby ensuring that the (over- 1g maxees{Ac}] < n —1lande € F; iff 27 < A < 27%! —
whelmingly probable) event of not including the edget) in the 1. Now, letG = (Go,G1,Ga,...,Gi,...,Gi) (WhereG; =
sample isnot defined as a failure event. One deficiency of this (V; Ei)) be a set of subgraphs 6 (we allow edges of7 to be
approach is that the deviationdsic for each connectivity range, ~ replicated multiple times in thé';’s) such thatk; C E; for every
leading to an overall deviation efvc log n. However, recall that ¢ For a set of parameters = (mo, m1,...,m), G is said to be a
the total deviation needs to be at mestc. So we can instead (7, @)-certificatecorresponding to the above choicecofindAc's
set the value ofV to w¢/ log n and, to ensure that the probability  if the following properties are satisfied:

bound remains unchanged, increase the sampling probability by a

. . . . = Vi . ) > 1 i - i
factor oflog n. (We call this extrdogn in the sampling probabil- * m-connectivity. Fori > 0, any edge- € % is mi-heavy in

ity the overlap overhead We now use Theorem 1.6 to bound the G-

failure probability oveti-segments of all cuts of weighX. Finally, e «-overlap. For any cutC' of weightwc in G, let el(.c) be

we union bound over all values éfandA to obtain Theorem 1]1. the weight of edges that croésin G;. Then, for all cuts’,
As observed previously, Theorém 1.1 implies that sampling us- ket

ing edge strengths (Benczur-Karger [4]) and effective resistance i=0 &, Sawce.

(Spielman-Srivastava [25]) yields sparsifiers. Since every edge Theorem 2.3 describes the sufficient condition. We gave the intu-

has NI index(. < k., Theorem 1.1 also implies that sampling ition behind the theorem at the beginning of this section; a formal

using NI indices yields a sparsifier. However, since the sampling proof appears in Section 4.

probability is©(log® n/e?\.) (for Ae = kL., c., £ respectively),

the resulting sparsifiers hav@(n log® n/e®) edges, whereas the =~ Theorem 2.3. If there exists &, o)-certificate for a particular

Benczlr-Karger sparsifiers have oiihn log n/€*) edges. choice ofa and A.’s, thenG. € (1 + €)G with probability at
Next we describe our general framework which has several ap- leastl — 4/n. FurthermoreG. hasO(®1% -, %) edges in

plications, including constructing sparsifiers with ofilyn log n/e*) ~ expectation.

edges under the sampling scheme of Benczur and Karger (we omit . . .

the details of this construction due to space limitations), and prov- 2.2 Spar5|flcat|on Algorlthms

ing Theorem 1.3. Ouir first algorithmic application of the general framework is to
show that the expected size of the sparsifier obtained when sam-
2.1 The General Framework pling by NI indiced is O(n log? n/€?). This proves Theoremn 1.3.
Consider the proof sketch for Theorém 1.1 outlined above. As In this sampling scheme). is the NI index of edge. Our key
a first abstraction, note that our argument does not depend on theobservation is that any edge in NI foredts, T5i 1, ..., Toi+1_;
exact value of the overlap overhead, i.e. the proof sketch continuesis 2°~!-heavy in a graptG; = (V, E;) containing all edges in
to hold with N = wc/a andp. = O(alogn/e*2") (wheree Tyi-1,Toi141,--,Toi,...,Toiv1_; (i.e., two successive dou-

has connectivity if2'~*, 2¢ — 1]) for any valuea of the overlap bling ranges of NI forests). This lets us defing = 2! and
overhead. Generalizing further, suppose we identify a subset of o = 2 since each edge is present in at most #s. Since the

edgesC; (with weightwc,) in every cutC such that: graphsG; are a(, «)-certificate for this choice of parameters, we
« Each edge in thé-segment of a cut igi-heavy in a graph :;SS(TT{]E)ZZB%)S to conclude that the expected size of the sparsifier
containing only the edges; for all cutsC. Our goal now is to improve the size of the sparsifiePto: log n/€?)
e Each edge appears @} for at mosta different values of. while maintaining linear running time. To this end, we abstractly

) view the NI index-based sampling scheme as an iterative algorithm
Then,N = we, /a andp. = ©(alogn/e*2") are sufficient for that finds a set of edgds; in iteration: (these are the edges in NI
the above proof. Moreover, we do not need to defisegments by forestsT}:, Thi 1, ..., Thi+1_, and are sampled with probability
edge connectivities, rather we can defined#segment of cuC' as ©(logn/2%)) with the following properties:

the set of edges sampled with probabifitye [a logn %] .

€227 7 2(2it1-1)
The proof sketch is valid provided the above two properties are sat-
isfied byi-segments defined in this manner. e (P2) The number of edges iB; is ©(n - 2*).

We now formalize the above intuition. L&t = (V, E) be . o )
an undirected graph where edgéas weightw.. Consider any Our first observation is that propel_(ltyl)can_ be Weakened—u3|_ng
¢ € (0,1). We construct a sparse gragh where the weight of  the general framework, we show it is sufficient for each edge;in
edgee is R /pe, R. being an independent (of other edges) bino- {0 have connectivity 06(2°) in Gi—1 = (V, Fi—1) whereF;_, =

e (P1)Each edge ir5; has connectivity 0B(2) in E;_.

mial random variable with parameters andp. % What values of E;—1UE; U.... Since we are aiming for a sparser sample than
SFor any event, P[€] represents the probability of evefit ! Supposing that. = n®, one would obtain a weaker bound of
®This is equivalent to taking.. unweighted copies af, sampling O(nlog” n/€”) edges from a straightforward application of The-

each copy independently with probability and adding a weight ~ orem/ 1.1 and the previously known fact [4] thaf_ we/fc =
of 1/p. to edgee in G. for each copy selected in the sample. O(nlogy ", we).



in the previous algorithm, we also need to m#&Re&) stricter. Our
new requirement is that the number of edgesiin ; from any

Algorithm 1 An algorithm for finding a smak-projection by split-
ting off light vertices.

connected componei@® of G,_1 is O(2%) times the number of
components into whiclC decompose irz;. It is not difficult to
show that this stricter condition ensures that the expected number
of edges inG. decreases t®(n logn/c?).

To complete the description of the algorithm, we need to give
a linear-time construction oF;’s satisfying the above properties.
Iteration runs on each component 6f; separately; we describe
the algorithm for any one compone@t First, (2¢ 4 1) NI forests
T1,T>,...,T ., are constructed iC and all edges iffy: ., are
contracted; let the resulting graph 8& = (V, Ec). If |[Ec| =
O(|Vc|-2%), we add the edges ific to E; and retain the remaining
edges for iteratiori + 1. Otherwise, we construd2’ + 1) NI
forests onG ¢, contract the edges in tt(éi + 1)st NI forest, and
updateG¢ to this contracted graph. We repeat these steps until
|Ec| = O(|Vc| - 2%); then, we add the edges #ic to E; and
retain the remaining edges for iteratiba- 1. One may verify that
properties(P1) and (P2) are satisfied by thé”;’s constructed by
this algorithm.

This algorithm, with a pre-processing step where the number

procedure Contract(G, k, «)

input: A graphG = (V, E), a parametek > K whereK is
the weight of a minimum cut i, and an approximation factor
o

output: ak-projection
While there exists &-light vertexv

Perform admissible splitting-off at until v becomes an
isolated vertex

Removev
While there are more thaj2a/] vertices remaining
Pick an edge uniformly at random
Contracte and remove any self loops
While there exists &-light vertexv

Perform admissible splitting-off at until v becomes
an isolated vertex

Removev
Output thek-projection of a cut selected uniformly at random

of edges is reduced t0(n) by sampling using NI indices, runs

in O(m) + O(n) time, and yields a sparsifier of expected size
O(nlogn/e?). This is already optimal for all but very sparse in-
put graphs. We need one additional idea to turn this into a strictly
linear-time algorithm for unweighted graphs. Observe that we would
ideally like to place as many edges as we can in sulisefisr large
values ofi so as to obtain a sparge.. On the other hand, the fact
that these edges are retained till the later iterative stages implies
that we pay for them in our time complexity repeatedly. To over-
come this dilemma, we use the following trick: instead of sampling
these edges with probability/2° in iterations, we sample them
with probability 1/2 in each iteratios < 4, and retain them in the

set of edges for the next iteration only if selected in the sample.
Now, we are able to reduce the size of our edge set by a factor of
two (in expectation) in each iteration; therefore, implementing a
single iteration in linear time immediately yields a linear time al-
gorithm overall. However, this iterative sampling scheme creates

several technical hurdles since it introduces dependencies between

the sampling processes for different edges. Our key technical con-
tribution is in showing that these dependencies are mild enough for

us to continue to use the framework that we have developed above

for independent sampling of edges. We present the details of this
algorithm and its analysis in Sectioh 5.

Weighted Graphs. Weighted graphs pose additional challenges.

estimate the edge connectivities for making these alterations to the
input graph. The key observation (due to Benczur and Karger) is

that amaximum spanning tregan be used to obtain a polynomial

approximation to the connectivity values, and this is sufficient for
our purpose.

Edge weights also introduce complications in the analysis of run-
ning times. Can we sample a weighted edg®ifi) time? Recall
(from the general framework) that sampling an edgevolves the
generation of a binomial random variable with parametersand

pe. This can be done i@ (w.p.) time for edgee (see e.g![8]), and
thereforeO (3, . ; wepe) time overall. It can be verified that this
time complexity is asymptotically identical to the bound on the size

of the sparsifier obtained from Theorem 2.3 for the general frame-

work, and therefore can be ignored in the running time analysis.

Finally, we note that the linear-time sparsification algorithm for
unweighted graphs také¥(m) + O(nlog3-® n) time on weighted
graphs (details omitted due to space limitations).

3. CUT COUNTING

In this sectioffl we will prove Theorem 1)6. Our proof strat-
egy, as outlined in the introduction, is to give an algorithm (Algo-
rithm[1) with the following property, which immediately implies

First, consider a graph with super-polynomial edge weights. An Theorem 1.6. Hereg(F') denotes the minimum weight of a cut
immediate concern for such graphs is that the number of doubling Whosek-projection isF".

categories of sampling probabilities can now be polynomial rather
than logarithmic. For example, in Theorem 1.1, the overlap over-
head will now be polynomial instead of logarithmic.

We have two techniques, each separately solving this problem.

First, a more refined use of the Chernoff bound allows us to, roughly A

speaking, show that onlyg n doubling categories have substantial
contribution to the sampled weight of the cut. The analysis is intri-
cate; so we omit the details from this extended abstract. Second, w
can use thavindowing techniquelue to Benczlr and Karger [4].
The basic idea is that if the connectivity of an edgis k., then
removing all edges with weight at mokt /»n* and contracting all
edges with weight greater than does not significantly alter the
connectivity ofe. This trick lets us deal with only a polynomial
range of edge weights at any point of time, thus alleviating the prob-
lem described above. For algorithmic applications, we also need to

e

Theorem 3.1. For any k-heavy set of edges with ¢(F) < ak,

Algorithm 1 outputs?” with probability at least ~2*,

To describe Algorithm 11, we need some additional definitions.
vertex is said to bé:-heavyif it is incident to ak-heavy edge;
otherwise, it isk-light. The algorithm adds new edges @) for
notational convenience, we will call these edgdight irrespective
of their connectivity. Therefore, the-projection of a cut does not
include any of these edges.

Note that wherk is the minimum weight of a cut id7, there
is no k-light vertex and Algorithm 1 reduces to Karger's random
contraction algorithm. The main idea is that we can remove the

8n the next two sections, an edge of weightis replaced byw
unweighted parallel edges.



k-light vertices while preserving the connectivities of alheavy

edges by using theplitting-offoperation. This operation replaces a

pair of edgegu, v) and(v, w) with the edggu, w), and is said to

be admissibléef it does not change the edge connectivity between

any two verticess, t # v. A deep theorem of Mader [17] asserts
that admissible splitting-off exists under mild assumptions.

Theorem 3.2(Mader [17]) LetG = (V, E) be a connected graph
wherev € V is a vertex which has degreé 3 and is not incident
to any cut edgé. Then, there is a pair of edgés, v) and (v, w)
such that their splitting-off is admissible.

Since uniformly scaling edge weights does not affect the condi-

tions of Theorem 3.1, we may assume thats Eulerian and 2-

" - C ) (
edge-connected. Moreover these conditions are maintained in our®

algorithm. Therefore the inner while loop of Algorithm 1 is feasi-
ble.

To prove Theorem 3.1, we fixiaprojectionF with q(F) < ak.
It is sufficient to show that, with good probability, the algorithm
maintains the following invariants. +

(11): F is ak-projection in the remaining graph,

(12): q(F) < ak (whereq(F) now minimizes over cuts in the
remaining graph), and

(13): every remaining:-heavy edge has connectivity at leagt

The only modifications to the graph made by Algorithin 1 are ad-
missible splitting-offs, contraction of edges, and removal of self-
loops. Clearly removing self-loops does not affect the invariants.

Now consider the splitting-off operatiofl.1) is preserved because
we only split-off k-light edges{12) is preserved because splitting-
off never increases the size of any diiB) is preserved because we
only split-off at a light vertex and the splitting-offs are admissible.

Lemma 3.3. Let the number of remaining vertices heAssuming

that the invariants hold, they will continue to hold after the con-

traction operation with probability at least — 2«/r.

Proof. For (13), note that since contraction does not create new
cuts, the edge connectivity of an uncontracted edge cannot decrease
Now consider the graph before the contraction. Since every remain-

ing vertexw is k-heavy, the degree of each vertex is at ldgshus
the number of remaining edges is at leksf2. Let C be a cut
such thatF’ is the k-projection ofC andwe = ¢(F). Note that
(I11) and (12) are preserved if the contracted edget C. Since
e is picked uniformly at random, the probability thate C'is
Ple € C] < q(F)/(kr/2) = 2q(F)/kr < 2a/r. u

Let the number of remaining vertices after the splitting-off opera-

tions of iteration: in Algorithm[1 ber;. Then, the probability that
all the invariants hold throughout Algoritim 1, adis the output
is at least

o2 (1o2) (1o e Y g2aln 5 e
ro 1 [2a] 4+ 1

4. THE GENERAL FRAMEWORK

We will now use Theorem 1.6 to prove Theorem 2.3. We re-use
the notation defined in sectiﬁz.l, and introduce some additional

notation. For any cu€’, IetF( =FnC andE D=EnC
for0 < i < ki'9let £ = \F(C)| ande!”) = |E“|. Also, let

A cut edgds an edge whose removal separates a connected graph

into two disconnected components.

OFor any cutC' and any set of edge®, Z N C denotes the set of
edges inZ that cross cuC'.

fl.(c) be the total weight of all edges iﬁi(c) in the sampled graph

G.. Note that the expected valiigf ] =
key lemma.

fi(c). We first prove a

Lemma 4.1. For any fixedi, with probability at leastl — 4/n?,
every cutC' in G satisfies

(C) 21 1
<6max{’ f(c)}
2 T«

Proof. By the w-connectivity property described in section 2.1,
any edgee € F; is m;-heavy inG; for anyi > 0. Therefore,
§C> > m;. LetC;; be the set of all cut§’ such thatr; - 2 <

@ < ;29— 1,5 > 0. We will prove that with probability at
leastl — 2n~ 2" , all cuts inC;; satisfy the property of the lemma.
The lemma follows by the union bound ovgrkeepings fixed)
since2n 2+ 2n "t + ...+ 2 ¥ ... < 4n"2

We now prove the above claim for cu$ € C;;. Let Xfc)
denote the set of edges F)(c) that are sampled with probability
strictly less than one; correspondingly, 6 = | X9 and let

xz(.c) be the total weight of edges '’ in the sampled grap..

Since edges ilﬂ(C) \Xfc) retain their weight exactly i, it is
sufficient to show that with probability at leakt- 2n‘2”1,

5O - O

() 21 1

2 — 2l < (£ )max{l , 5“}
2 i+

for all cutsC € C;;. Since each edge € Xfc) has)\. < 2¢t1,
we can use Theorem 2.2 with the lower bound on probabilities

0333711?62- There are two cases. In the first case, suppose
(C) 21 1
:vgc) < .

T~

Then, for anyXfc) whereC' € C;;, by Theorem 2.2, we have
(C) i—1
€ -2
P )z
|: r = (2) T+« :|

(C) Hi—1
_038£( 96a Inn )ei 2"
3877

0.38-21+1e2

(©) _ (©)

T

< 2e
Gegc) Inn
< 2 T

—6.27
§2€ 6-2 ln'n7

sinceegc) > ;- 29 foranyC € C;;. In the second case,

(C) i—1
-2
29 >

v T«

Then, for anyXi(C) whereC' € C;;, by Theorem 2.2, we have
€\ @
- (2) T }

P|:JZ
96alnn ) (c

_ e2
< 2e 0-38° (0 38.20+1¢2

—6-27 1
< 2e nn

(C) gi—1

() _ (C)

6e{ nn
< 2e i

27971 or anyC € C;;. Thus, we have

(C)  oi—1
2
NBPWECES)
2 T

—6.27
=2n

smcex( ) >
proved that

p[x

267&21 Inn

T C

(©) _ (©)

<



for any cutC' € C;;. Now, by ther-connectivity property, we know
that edges irF,L-(C>, and therefore those Mfc), arem;-heavy in
G,. Therefore, by Theorem 1.6, the number of distixdf” sets

_ (=2 _
for cutsC € C;; is at mostn i ) =n*? Using the union
bound over these distincX}C) edge sets, we conclude that with
probability at least — 2n*2j+1, all cuts inC;; satisfy the property
of the lemma. |

ks

We now use the above lemma to prove Thedrem 2.3.
Proof (of Theorem 2.3). Lemma 4.1 bounds the sampling error
for a fixed:. In this theorem we bound the total error by summing
fromi=0,...,k. Recallthatt <n — 1.

Letwc andwe be the weight of edges crossing a €lin G and
G. respectively. By a union bound, the conclusion of Lemma 4.1
holds for every value of with probability at least — 4/n. There-
fore

(@) gi-1

ko k
(@) _ () < (E) max { L= f(©)
;0 ‘fz fz | — ; 2 T« 7f'L

for all cutsC. Then, with probability at least — 4/n,

ko k ko
—~ C C C C
@ —wel = |3 H =D RO < I = 1
i=0 i=0 =0
& o) gi-1 ©
< = t ;
< Fman S
ko (C) 5i—1 K
€ e -2 ©)
< 2<Z e T | seve
i=0 1=0
since
k eEC)_zi—l
> we
- Urmmet
1=0

by the«a-overlap property, and

k
Z fi<C) < we
i=0

sinceFZ.<C>’s form a partition of the edges i@
We now prove the bound on the expected number of edgés.in
The expected number of distinct edgesinis

Z (1 - (1 _pe)we) < Zwepe

ecE

The bound follows by substituting the valuegf.

4.1 Sampling using Edge Connectivities

We now use the general framework to prove Thedrem 1.1. For

any edge: = (u, v), set\. to the connectivityc. of ¢; also setx =
3+ Ignandm; = 2°71. F; is defined as the set of all edgewith

20 < X\, < 2t _1foranyi > 0. Foranyi > 1+lgn, letG; con-
tain all edges in Nl forest®,; —1-15n, Toi—1-10gn 1, - - -, Toi+1_3
and all edges itf;. Fori < lgn, G; contains all edges iy, 1%, ..., T;
and all edges irfi;. For any: > 0, letY; denote the set of edges
in G; but not inF;. For anyi # j, F; N F; = () and each edge
appears iry; for at most2 + log n different values ot; this proves
a-overlap. To prover-connectivity, we note that for any pair of
verticesu, v with connectivity’ k(u,v) and foranyi > 1, u, v are

at leastmin{k(u, v), i}-connected in the first NI forests, i.e. in
Ty UT, U...UT;. Thus, any edge € F; is at leas’-heavy in
the (union of) the NI forest8, 75, ..., T5:+1_,. Since there are
at most2‘~! edges overall ifTy, Ty, ..., Thi—1-1zn_4, any edge
e € F; is 2" '-heavy inG;. This provesr-connectivity. Theo-
rem 1.1 now follows directly from Theorém 2.3 and Lemmd 2.1.

5. LINEAR-TIME ALGORITHM

The algorithm has three phases. The first phase has the following
steps:

10141Inn
0.38¢2 '

o If m < 2pn, wherep = thenGe = G.

e Otherwise, we construct a set of NI forestg®and all edges
in the first2p NI forests are included it with weight one.
We call these edgeB,. The edge seYj is then defined as
E\ Fp.

The second phase is iterative. The input to iteratid® a graph
(V,Yi—1), which is a subgraph of the input graph to iteration 1
(i.e. Y1 C Y;_»). Iterationi comprises the following steps:

o If the number of edges ii¥;_; is at most2pn, we take all
those edges i6. with weight2'~! each, and terminate the
algorithm.

e Otherwise, all edges ilt; are sampled with probability/2;
call the sampleX; and letG; = (V, X;).

o \We identify a set of edges iX; (call this setF;) that has the
following properties:

— The number of edges if; is at most2k;|V.|, where
k; p - 271 and V. is the set of components in
(V,Y:), whereY; = X; \ F;.

— Each edge ify; is k;-heavy inG;.

e We give a sampling probability; = min { 55,1} to
all edges inF;.

The final phase consists of replacing each edgg;iffor eachi)

with 2¢ parallel edges, and then sampling each parallel edge inde-
pendently with probability;. If an edge is selected in the sample,

it is added to&. with weight1/p;.

We now give a short description of the sub-routine that constructs
the setF; in the second phase of the algorithm. This sub-routine
is iterative itself: we start with, = V andE. = X;, and let
G. = (V., E;). We repeatedly construét + 1 NI forests forG.
wherek; = p - 2°T! and contract all edges in ttf&; + 1)st forest
to obtain a new., until |E.| < 2k;|V;|. The set of edgeg. that
finally achieves this property fornis;.

The complete algorithm is given in Algorithim 2.

Cut Preservation. We use the following notation throughout: for
any set of unweighted edges, ¢Z denotes these edges with a
weight of ¢ given to each edge. Our goal is to prove the follow-
ing theorem.

Theorem 5.1. G € (1 + €)G with probability at least — 8/n.

Let K be the maximum value of for which F; # 0; let S =
(U2 Fy) U 2% Yk andGs = (V, S). Then, we prove the fol-
lowing two theorems, which together yield Theorlem/ 5.1 using the
union bound2

The connectivity of a pair of vertices is the minimum weight of a '?Observe that since< 1, (1 + ¢/3)> < 14+ eand(1 — ¢/3)? >

cut separating them.

1—e.



Algorithm 2 The linear-time sparsification algorithm.
procedure Sparsify()
input: An undirected unweighted gragh = (V, E), a param-
etere € (0,1)
output: An undirected weighted graphie = (V, E)
Setp = 19iilsz,
If m < 2pn, thenG. = G and terminate; else, continue.
Construct NI forest§7, 75, . .. for G.
Seti = 0; Xo = E; Fo = U1<;<2,T;; Yo = Xo \ Fo.
Add each edge i, to G with weight 1.

OuterLoop: If |Y;| < 2pn, then add each edge i} to G.
with weight2°~! and terminate; else, continue.
Sample each edge ¥} with probability 1/2 to construck; ;1.
Incrementi by 1; setE. = X;; V. =V k; = p - 2074
InnerLoop: If |E.| < 2k;|Ve|, then
SetF;, = E.;Y; = X; \ E..
For each edge € F;, set\. = p - 4%
Go toOuterLoop.
Else,
Construct NI forestsly, Tx, . .
(Ve, Ex).
UpdateG. by contracting all edges iy, ;1.
Go tolnnerLoop.

For eachi, for each edge € F;,

_ . [9216Inn o 3
Setpe = min { 0.38Ace2 1} = min { 1692219 1}.

Generate. from Binomial (2°, p.).
If re > 0, add edge: to G with weightr. /pe.

.y T, +1 for graphG. =

Theorem 5.2. Gs € (1+¢/3)G with probability at least. —4 /n.

Theorem 5.3. G. € (1+¢/3)Gs with probability at leastt —4/n.
The following property is key to proving both theorems.

Lemma 5.4. For anyi > 0, any edge: € Y; is k;-heavy inG; =
(V, X;), wherek; = p - 211,

Proof. Since all edges iy are in NI forestsl,41, T2p42, . . . Of
Go = G, the lemma holds foi = 0.

We now prove the lemma far> 1. LetG. = (V., E.) be the
component ofG; containinge. We will show thate is k;-heavy
in G.; sinceG. is a subgraph ofy;, the lemma follows. In the
execution of the else block ¢finerLoop onG., there are multiple

Suppose each edgee R is sampled with probability, and if
selected, given a weight df/p to form a set of weighted edgé%
Now, for any cutC' in G, let R, Q(© and R(©) be the sets of
edges crossing cdt in R, Q andR respectively; also let the total
weight of edges iR(©), Q@ and R©© be (@, ¢(©) andr(©)
respectively. Then the following lemma holds.

Lemma 5.5. For anys € (0, 1] satisfyings*pr > &laz,

|,,.(C) _ 7Ic\)| < 5q(C)
for all cutsC, with probability at leastl — 4/n2.
Proof. LetC; be the set of all cut§’ such that
2 <@ <M

for eachj > 0. We will prove that with probability at least —

2n‘2j+1, all cuts inC; satisfy the property of the lemma. Then,
the lemma follows by using the union bound oyesince

m iyt oY §4n72.

We now prove the property for cuts € C;. Since each edge
e € R is sampled with probability in obtainingR(¢), we can
use Theorem 212 with sampling probability Then, for anyR(”
whereC € C;, by Theorem 2.2, we have

P Hﬁa — r(c)’ > 5q<c)] < 2¢70-38:%pa(?

< 2670438462-;7477-2-7 < 2676»2j Inn _ 2n—6-21
sinceq'®) > 7 .27 foranyC' € C;. Since each edge iR(“) is
m-heavy in(V, @), Theorem 1.6 ensures that the number of distinct
_ of m29+1 . _
R(©) sets for cuts” € C; is at mostn ( g ) =n*? . Using
the union bound over these distingt®’ edge sets, we conclude
that with probability at least — 202" all cuts inC; satisfy the
property of the lemma. |

The next lemma follows as a corollary of Lemmal5.5 wikh=
Y, Q=X;,R=2X;11,0 = ;%717 =1/2andr = p- 2"
Lemma 5.6. With probability at leastl — 4/n?, for every cutC
in Gi, \Qmiﬂ + 19— 29 < ;{/12 -2l wherexz(.c),mﬁﬂ

and fi(c) respectively denote the weight®&f N C, X;,1 N C and
FinC.

We use the above lemma to prove the following lemma, of which

contraction operations, each comprising the contraction of a set of Theorem 5.2 is a corollary for = 0.

edges. We show that any such contracted edge-feavy inG.;
it follows thate is k;-heavy inGe.

Lemma5.7. LetS; = (U277 F;) U 25 7Yk foranyj > 0.

Let G. havet contraction phases and let the graph produced af- Then,S; e (1 =+ (¢/3)277/2)G; with probability at least. — 4/n,

ter contraction phasebeG. .. We now prove that all edges con-
tracted in phase must bek;-heavy inG. by induction onr. For
r = 1, sincee appears in thék; + 1)st NI forest of phase X is

whereG; = (V, Xj;).

Proof. To prove this lemma, we need to use the following fact

ki-heavy inG.. For the inductive step, assume that the property (proof omitted due to space constraints).

holds for phases, 2,...,r. Any edge that is contracted in phase
r + 1 appears in thék; + 1)st NI forest of phase + 1; therefore,

e is k;-connected irG. . By the inductive hypothesis, all edges of
G contracted in previous phases &teheavy inG.; therefore, an
edge that ig:;-heavy inG.,» must have beeh;-heavy inG.. R

Proof of Theorem[5.2.First, we state a property of edge sampling.
Let R C @ be subsets of edges such tliats 7-heavy in(V, Q).

Fact5.1. Letz € (0,1] andr; = 13- 2/2. Then, for any > 0,

k

[Ja+az/r) < 1+a/3
k
H(l—m/ri) > 1—xz/3.



For any cutC'in G, let the edges crossir@ in S; beSJ(O), and let
their total weight bes'”. Also, let X\, v“) and F{“) be the
set of edges crossing catin X;, Y; and F; respectively, and let
their weights be:z(c), yic) andfi(c).

SinceK < n — 1, we can use the union bound on Lemma 5.6 to
conclude that with probability at leakt-4/n, foreveryd < : < K
and for all cutsC,

iﬁ + f(c) < (1+ e/m)xEC)
Qfoi + fi(c) > (1- e/ri):cz(-c),

wherer; = 13 - 2/2, Then,

S]c _ ZKJ(C)+2K ]fC)+2KIJf(C) +fj(C)
= 289D oK IO 4y O
since nyC) + fl((c) = :rg(c)
= 2+ )+ @A )
< (U4e/re-)25 20+ 5RO + )
< (U e/reo) @ g 125 D, )
< (+efr1)(1+e/rs)... (1+e/r)al”
< (4 (27 freeag) (14 (27 J/Z)/TK—2—J')-~
(L (27972 fro)al@ since rji =i 27/
< (14 (e/3)2” J/Q)xg-c) by Fact[5.1
Similarly, we can show that{’ > (1 — (e/3)277/)z{“. ]

Proof of Theorem|5.3. First, observe that edgd® U 25 Y are
identical inG's andG.. Therefore, we do not consider these edges
in the analysis below. For any> 1, lett)(i) be such tha2*® <
p- 48 < 2@+ _ 1 Note that for anyj, 1(i) = j for at most one
value ofi. Then, foranyj > 1, R; = F;if j = ¢ (i) andR; = Qif
there is na such tha = (7). We setn = 32/3; 7; = p-4%; for
anyj > 1, Qj = (V, Wj) Wherer = Ui_1§r§K4K7T+12TFT
if R; # 0 andj = (i), andW; = 0 if R; = 0.

The following lemma ensures-connectivity.

Lemma 5.8. With probability at leastl — 4/n, every edge: €
F; = Ry foreachi > 1is p - 4% -heavy inQ ;).

Proof. Consider any edge € F;. SinceF; C Y;_1, Lemmd 5.4
ensures that is p - 2°-heavy inG;_1 = (V, X;_1), and therefore
- 2% neavy in(V,271X;_1). Sincee < 1, Lemmad 5.7 en-
sures that with probablllty at leasgt— 4/n, the weight of each
cut in (V,2°71X;_,) is preserved up to a factor of 2 iff; =
(V,Ui—1<r<x2"F;). Thus,eis p - 4 !-heavy inZ;.

Consider any cuC containinge € F;. We need to show that
the weight of this cut inQy ;) is at least”. Let the maximum
A of an edgez in C bep - 4%¢, for someke > i. By the above
proof,a is p-4Fc 1 heavyinZ;CC Then, the total weight of edges
crossing cut in kac) is at leasp - 47C —1 . 4K ko +L — 5 4K
Sincek. > i, (ko) > (i) andQy k) is a subgraph o€, ; )
Therefore, the the total weight of edges crossingClim Q. ;)
at leastp - 4%, l

We now prove thex-overlap property. For any cut, let fi(c)
andw
C in F; and Wy, respectively for any > 0. Further, let the

number of edges crossing cGtin UX ,2'F; be f(©). Then, we
have the following bound:
iw’gc>2¢(i)—1 inC‘)p 4t B K wgc)
: 7 : 2p 4K T L= Q. 4K-i
=1 i=1 i=1
B K w(C) f(C) 2r gE-r+1
= D5 ar Z Z =
=1 i=1r=i—1
K K f(c) K r+1 (©)
= Z Z or—2i—1 :ZZ or—2i—1
i=1r=i—1 r=0 i=1
K <) r+1
_ fr 241 _ 32 © _ 32 .0
= D 5.2 22 R =51

Using Theorem 2.3, we conclude the proof of Thedrem 5.3.

Size ofG.. We now prove that the expected number of edge&s.dn
is O(nlogn/€*). Fori > 1, defineD; to be the set of connected
components in the grapt; = (V, X;); let Dy be the single con-
nected component i&. For any: > 1, if any connected compo-
nent inD; remains intact inD; 1, then there is no edge from that
connected component if;. On the other hand, if a component
in D; splits inton components inD;1, then the algorithm ex-
plicitly ensures thaEeeF %. from that connected component
IS cp ;41 < (" 21, 21) n = 4n < 8(n — 1). Therefore, if

di = ‘DL|, then

K We K

since we can have at mastingleton components. It follows from
Theorem 2.3 that the expected number of edges addéd by the
sampling isO(n logn/€?).

Time complexity. If m < 2pn, the algorithm terminates after the
first step which take®(m) time. Otherwise, we prove that the
expected running time of the algorithm@(m + nlogn/e?) =
O(m) sincep = O(logn/e®). First, observe that phase 1 takes
O(m + nlogn) time. In iteration: of phase 2, the first step takes
|Y;—1]| time. We will show that all the remaining steps takd X; |+
nlogn) time. SinceX; C Y;_; and the steps are executed only
if ;-1 = Q(nlogn/e?), it follows that the total time complex-
ity of iteration ¢ of phase 2 isO(|Y;—1]). SinceY; C X; and
E[|X;|] = E[| X:-1]]/2, and|Y,| < m, it follows that the expected
overall time complexity of phase 2 (m). Finally, the time com-
plexity of phase 3 i©(m + nlogn/e®) (see e.g. [8]).

We are now left to prove that all, except the first step, of it-
erationi in phase 2 take®(]X;| + nlogn) time. Each itera-
tion of the else block take®(|V.|logn + | E.|) time for the cur-
rent Ge. = (V., E;). So, the last invocation of the else block
takes at mosO(|X;| + nlogn) time. In any other invocation,
|E:| = Q(]Ve|logn) and hence the time spentd(|E.|). Now,
consider an iteration that begins with.| > 2k; - |V.|. Note that
E. for the next iteration (denoted b¥.) comprises only edges in
the firstk; NI forests constructed in the current iteration. Hence,
|EL| < ki - |Ve| < |Ec|/2. Since|E,| decreases by a factor of 2
from one invocation of the else block to the next, the total time over
all invocations of the else block 8(|X;| + nlogn).

respectively denote the total weight of edges crossing cut 13y, is the number of parallel copies efin the Binomial sampling

step.



6. LOWER BOUND

We have already noted that independent sampling of edges can-
not produce sparsifiers containimgn logn) edges. A possible
alternative is to sample spanning trees uniformly at random, and [6]
Theorent 1.2 asserts that this sampling technique indeed produces
cut sparsifiers. We now give a lower bound for the tradeoff between
the number of trees (i.e., the valgpand the quality of sparsifica-
tion in Theorem 1.2.

(5]

(7]

Lemma 6.1. For any constant > 1, there is a graph such that
p = Q(log n) spanning trees have to be sampled uniformly at ran-
dom to approximate all cuts within a factowith constant proba-
bility.

(8]

(9]

Proof. LetG be a graph defined as follows. The set of verticeS in
is {u1,...,un} U{v1,...,vnq1}. Foreveryi =1,...,n,there
are k parallel edgea)ivﬁr)l, o ,uwii)l, and a single length-two
pathv;-u;-v;+1. The edgeszivzgfl are callecheavy and the edges
viu; andw,v; 41 are calledight. Note that the heavy edges each
have effective conductance exac{Bk + 1)/2. The light edges
each have effective conductance exa¢tly + 1)/(k + 1) < 2.

A uniform random spanning tree in this graph can be constructed
by repeating the following experiment independently for eaeh

1,...,n. With probability2k/(2k + 1), add a uniformly selected

heavy edge;wffl to the tree, and add a uniformly selected light
edgev;u; Or u;v;4+1 to the tree. In this case we say that the tree is
“heavy in positions”. Otherwise, with probabilityl /(2k + 1), add
both light edge®;u; andu,v;+1 to the tree but no heavy edges. In
this case we say that the tree is “light in positidn

Our sampling procedure produces a sparsifier that is the union
of p trees, where every edgein the sparsifier is assigned weight
ce/p. Suppose there is arsuch that all sampled trees are light in
position:i. Then the cut defined by vertic€s: , u1, v, u2, ..., v}
has weight exactly2k + 1) /(k + 1) < 2 in the sparsifier, whereas
the true value of the cut is + 1.

The probability that at least one tree is heavy in positida
1 — (2k + 1)~". The probability that there exists drsuch that
every tree is light in position isp = 1 — (1 — (2k + 1)77)".
Suppose = Inn/In(2k + 1). Thenlim, ..cp =1 —1/e. So
with constant probability, there is arsuch that every tree is light
in positioni, and so the sparsifier does not approximate the original
graph better than a factd*. [ ]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]
(18]
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